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ON A QUASILINEAR PROBLEM AT STRONG RESONANCE

Antonio Ambrosetti1 — David Arcoya2

Dedicated to Louis Nirenberg on the occasion of his 70th birthday

1. Introduction

This paper deals with a class of nonlinear problems at strong resonance
involving the p-Laplace operator. Let Ω be a bounded domain in RN with
smooth boundary ∂Ω and let f(x, u) be a bounded continuous function. We are
concerned with the quasilinear problem at resonance

(1)

{
−∆pu = λ1|u|p−2u + f(x, u), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

where p > 1, ∆pu ≡ div(|∇u|p−2∇u) denotes the p-Laplace operator and λ1 > 0
is the “first eigenvalue” of −∆p with zero Dirichlet boundary conditions (see [3]).

When p = 2 problem (1) becomes the semilinear problem

(2)

{
−∆u = λ1u + f(x, u), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

(λ1 denotes now the principal eigenvalue of −∆ with zero Dirichlet boundary
conditions) and has been extensively studied in the past years, after the work
[11]. For example, if f(x, s) = b(s) − h(x) and b(s) → b+, resp. b−, as s → ∞,
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resp. −∞, a solution of (2) exists whenever h satisfies the Landesman–Lazer
condition

b−
∫

Ω

φ1(x) dx <

∫
Ω

h(x)φ1(x) dx < b+

∫
Ω

φ1(x) dx,

where φ1 > 0 denotes the (normalized) eigenfunction associated with λ1.
This result has been extended to the quasilinear case in [7] (see also [4, 9]

for some former partial results), proving that the Landesman–Lazer condition
suffices for the existence of solutions of (1).

Problem (1), or (2), is said to be at strong resonance when b+ = b− = 0 or,
more generally, when f(x, s) → 0 as |s| → ∞. Semilinear problems at strong
resonance like (2) have also been studied (see for example [5, 6, 8]). On the
contrary, nothing is known for quasilinear problems at strong resonance and the
purpose of this paper is to study a class of such problems. Roughly, we consider
an f such that

f(x, 0) = 0 and lim
s→∞

f(x, s) = 0, uniformly in x ∈ Ω,

and show that (1) has a positive solution provided f changes sign in a suitable
way. See Section 2 for precise statements. We also prove a multiplicity result,
see Theorem 2.4.

Unlike the previous works on this topic, we employ here a new approach,
based on global bifurcation. Using the techniques of [2] (see also [1]) we show
that there is a continuum S ⊂ R× C(Ω) of positive solutions (λ, u) of

(Pλ)

{
−∆pu = λ|u|p−2u + f(x, u), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

which branches off from the trivial solution and blows up at infinity as λ → λ1.
By suitable estimates we prove that S meets the set {λ1} × C(Ω), yelding a
positive solution of (1).

2. Statement of the results

In the sequel we shall always assume that f ∈ C(Ω × R+) is such that
f(x, 0) = 0 for all x ∈ Ω. To simplify the notation, the dependence on x will be
hereafter eliminated (all the limits are understood to hold uniformly in x).

We will deal with problem (Pλ), which is meant as a nonlinear perturbation
of the homogeneous problem

(3)

{
−∆pu = λ|u|p−2u, x ∈ Ω,

u = 0, x ∈ ∂Ω.
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Let us recall that there exists a unique λ = λ1 such that (3) has a positive solution
ϕ1 (see [3]). Moreover, λ1 has the following variational characterization:

(4) λ1 = inf
{ ∫

Ω

|∇u|p dx : u ∈ W 1,p
0 (Ω),

∫
Ω

|u|p dx = 1
}

.

The existence of positive solutions of (1) will be established under appropriate
sign conditions on the limits

lim
s→∞

f(s)s = c,(5)

lim
s→0+

f(s)
sp−1

= α.(6)

We say that f satisfies (f1+), respectively (f1−), if (5) holds with c > 0, resp.
c < 0.

Similarly, we say that f satisfies (f2+), respectively (f2−), if (6) holds where
either α > 0 (resp. α < 0) or α = 0 and there is δ > 0 such that f(s) > 0
(respectively f(s) < 0) for all s ∈ (0, δ].

A first existence result is

Theorem 2.1. Problem (1) has a positive solution provided that f satisfies
either (f1−)–(f2+), or (f1+)–(f2−).

Instead of (f1−) we can require that

(f3) there exists s0 > 0 such that f(s0) + λ1s
p−1
0 < 0.

Theorem 2.2. Problem (1) has a positive solution provided that f satisfies
(f2+) and (f3).

By a limiting argument we can also handle the case in which

(f4) lim
s→0+

f(s)
sp−1

= ∞.

Theorem 2.3. Problem (1) has a positive solution provided f satisfies (f4)
and either (f1−) or (f3).

In general, problem (1) has no solution if we merely assume (f1+) and (f2+)
or (f4): it suffices to consider the case when f(s) > 0 for every s > 0. In
contrast, the following multiplicity result can be proved.

Theorem 2.4. Suppose that f satisfies (f1+) and (f3). Then (1) has at
least two positive solutions provided that either (f2+) or (f4) holds.

Actually, some of the above results hold in a greater generality (see Remarks
4.1).

The proofs of these theorems are postponed until Section 4, while Section 3
is devoted to some preliminary lemmas concerning problem (Pλ).
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3. Preliminary lemmas

In this section we deal with problem (Pλ). Actually, since we are looking for
positive solutions of (Pλ), we can consider the problem

(P̃λ)

{
−∆pu = gλ(u), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

where

gλ(s) =

{
λsp−1 + f(s) for s ≥ 0,

0 for s < 0.

By the maximum principle [13] it follows that if (λ, u) is a nontrivial solution
of (P̃λ) then u > 0; hence (λ, u) is a solution of (Pλ). Problem (P̃λ) is suited
to be handled by the degree-theoretic arguments of [2] and [1]. Precisely, let us
consider the Banach space

X = {u ∈ C(Ω) : u(x) = 0 on ∂Ω}

endowed with the norm ‖ · ‖∞ and set

Σ = cl {(λ, u) ∈ R×X | u 6= 0 is a solution of (P̃λ)}
= cl {(λ, u) ∈ R×X | u > 0 is a solution of (Pλ)},

where cl(A) denotes the closure of A. The behaviour of f at s = 0 and s = ∞
allows us to use the bifurcation results of [2] and [1] yielding

Lemma 3.1. (i) If (6) holds then λ0 = λ1−α is a bifurcation point from the
trivial solution and the only one. Precisely, there exists an unbounded contin-
uum (i.e. closed connected sets, maximal with respect to the inclusion) Σ0 ⊂ Σ
branching off from (λ0, 0).

(ii) If lims→∞ f(s) = 0 then λ∞ = λ1 is a bifurcation point from infinity,
and the only one. Precisely, there exists an unbounded continuum Σ∞ ⊂ Σ
branching off from (λ1,∞).

Let us recall that λ∞ is a bifurcation from infinity if there exist (λn, un) ∈ Σ
such that λn → λ∞ and ‖un‖∞ →∞.

We anticipate that in all theorems but Theorem 2.3 we shall show that Σ0 =
Σ∞. For this, some estimates are in order.

Lemma 3.2. Let γ ∈ R and % > 0 be such that f(%) + γ%p−1 < 0. If
(λ, u) ∈ Σ and ‖u‖∞ = % then λ > γ.

Proof. We argue by contradiction and assume that λ ≤ γ. Let x0 ∈ Ω be
such that u(x0) = %. Then there exists r > 0 such that

−∆pu(x) = λu(x)p−1 + f(u(x)) ≤ γu(x)p−1 + f(u(x)) < 0
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for all x ∈ Br(x0) ⊂ Ω. Now, by the strong maximum principle [13], we obtain
u(x) = % for all x ∈ Br(x0). This proves that {x ∈ Ω : u(x) = %} is open. But
it is also closed and hence is all Ω, a contradiction. �

From the preceding lemma we infer:

Corollary 3.3. (i) If (f2±) holds then there exists Λ > 0 such that Σ ⊂
(−Λ,∞)×X.

(ii) If (f3) holds then, for λ ≤ λ1, problem (Pλ) has no positive solution u

such that ‖u‖∞ = s0.

Proof. (i) Let Λ > 0 be such that f(s) < Λsp−1 for all s > 0. Then Lemma
3.2 applies with γ = −Λ and all % > 0. Hence (λ, u) ∈ Σ implies that λ > −Λ.

(ii) If (f3) holds then f(s0) < −λsp−1
0 for all λ ≤ λ1 and Lemma 3.2 implies

that ‖u‖∞ 6= s0 whenever (λ, u) ∈ Σ and λ ≤ λ1. �

Remark 3.4. If (f4) holds, f is bounded and λ < 0, we set

%(λ) = inf{r > 0 : f(s) < −λsp−1 for all s ≥ r}.

Then limλ→−∞ %(λ) = 0 and f(%) + λ%p−1 < 0 for all % ∈ (%(λ),∞). Hence if
(λ, u) ∈ Σ, Lemma 3.2 yields ‖u‖∞ < %(λ).

Moreover, by (4) we infer

Lemma 3.5. There exists Λ∗ > 0 such that Σ ⊂ (−∞,Λ∗)×X.

Proof. Let Λ∗ > 0 be such that Λ∗sp−1 + f(s) > Lsp−1 for all s > 0, with
L > λ1. If (λ, u) ∈ Σ with λ ≥ Λ∗ it follows that u is an upper solution of the
problem {

−∆pu = L|u|p−2u, x ∈ Ω,

u = 0, x ∈ ∂Ω.

Then, using tϕ1 as lower solution with t > 0 sufficient small, we would obtain
a positive solution of this problem; i.e. a positive eigenfunction of −∆p with
associated eigenvalue L > λ1. But this is not possible [3, Proposition 2]. �

When Corollary 3.3(i) and Lemma 3.5 apply it follows immediately that
Σ0 = Σ∞:

Lemma 3.6. If (f2±) holds and lims→∞ f(s) = 0 then there is a continuum
S ⊂ Σ bifurcating from infinity at λ = λ1 and from zero at λ = λ0. Moreover,
S ⊂ (−Λ,Λ∗)×X.

The remainder of this section is devoted to the behaviour of S near the
bifurcation points. Recall that a bifurcation is said subcritical or supercritical
provided S is on the left, respectively on the right, in a deleted neighbourhood
of the bifurcation point.
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Lemma 3.7. Assume f satisfies (f2+) (respectively (f2−)) with α = 0. Then
the bifurcation at (λ0, 0) is subcritical (resp. supercritical).

Proof. We deal with the case when (f2+) holds. The other is proved in a
similar way, with obvious changes. Suppose, by contradiction, that there exists
a sequence (λn, un) ∈ S such that λn > λ1, λn → λ1, ‖un‖∞ → 0, un 6= 0.
Without loss of generality, ‖un‖∞ ≤ δ and hence un is an upper solution of the
problem {

−∆pu = λn|u|p−2u, x ∈ Ω,

u = 0, x ∈ ∂Ω.

Arguing as in the proof of Lemma 3.5, we arrive at a contradiction. �

Lemma 3.8. If (f1−) (respectively (f1+)) holds, then the bifurcation from
infinity is supercritical (resp. subcritical).

Proof. Let un be a positive solution of (Pλn) with λn → λ1, ‖un‖∞ →∞.
Dividing (Pλ) by ‖un‖p−1

∞ , we infer that vn = un‖un‖−1
∞ satisfies

−∆pvn = λn|vn|p−2vn +
f(un)
‖un‖p−1

.

From the regularity theory [12] it follows that, up to a subsequence, vn → v in
C1(Ω) and v ∈ X has norm 1 and satisfies

−∆pv = λ1|v|p−2v, x ∈ Ω.

As a consequence, v = ϕ1, with ‖ϕ1‖∞ = 1.
Now we consider separately the cases where (f1−) or (f1+) hold.
Case (a). From the preceding arguments we infer that un(x) = ‖un‖∞vn(x)

→∞ for every x ∈ Ω. Then the Lebesgue theorem and (f1−) imply

(7) lim
n→∞

∫
Ω

f(un(x))un(x) dx = cmeas(Ω) < 0.

From (4) we also deduce

λ1

∫
Ω

|un|p dx ≤
∫

Ω

|∇un|p dx = λn

∫
Ω

|un|p dx +
∫

Ω

f(un)un dx.

Then from (7) it follows that λn > λ1 for large n enough and this means that
the bifurcation from infinity is supercritical.

Case (b). Suppose that (f1+) holds. Since vn → ϕ1 in C1(Ω) we can
assume that 1

2ϕ1(x) ≤ vn(x) ≤ 3
2ϕ1(x) for every x ∈ Ω. Let {tn} be a sequence

of positive numbers such that

lim
n→∞

tn
‖un‖∞

= ∞, tn ≥
3
2
‖un‖∞, ∀n ∈ N.
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Consider the functional I defined on

D(I) = {(u, v) : u, v ∈ W 1,p
0 (Ω), u, v ≥ 0, uv−1, vu−1 ∈ L∞(Ω)}

by setting

I(u, v) =
〈
−∆pu,

up − vp

up−1

〉
−

〈
−∆pv,

up − vp

vp−1

〉
.

One has

I(tnϕ1, un) = (λ1 − λn)
∫

Ω

[tpnϕp
1 − up

n] dx−
∫

Ω

f(un)
tpnϕp

1 − up
n

up−1
n

dx.

Moreover, it is known (see [10]) that I ≥ 0. Hence it follows that∫
Ω

f(un)
tpnϕp

1 − up
n

up−1
n

dx ≤ (λ1 − λn)
∫

Ω

[tpnϕp
1 − up

n] dx.

We claim that the left hand side of this inequality tends to ∞ provided (f1+)
holds. Indeed, we have∫

Ω

f(un)
tpnϕp

1 − up
n

up−1
n

dx

=
(

tn
‖un‖∞

)p ∫
Ω

f(un)un

(
‖un‖∞ϕ1

un

)p

dx−
∫

Ω

f(un)un dx.

Now, since ‖un‖∞un(x)−1ϕ1(x) = vn(x)−1ϕ1(x) ≤ 2 for every x ∈ Ω, we deduce
from (f1+) that

lim
n→∞

∫
Ω

f(un)un

(
‖un‖∞ϕ1

un

)p

dx = cmeas(Ω) > 0,

which, together with (7), gives

lim
n→∞

∫
Ω

f(un)un
tpnϕp

1 − up
n

up−1
n

dx = ∞,

proving the claim. Therefore, for n large enough,

0 < (λ1 − λn)
∫

Ω

[tpnϕp
1 − up

n] dx.

Recalling that tnϕ1(x) ≥ 3
2‖un‖∞ϕ1(x) ≥ un(x) for every x ∈ Ω, this implies

that λ1 > λn and thus the bifurcation is subcritical in this case. �
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4. Proof of Theorems

Proof of Theorem 2.1. First suppose (f1−) and (f2+). Then Lemma 3.6
applies and yields a continuum S ⊂ Σ which connects (λ1 − α, 0) and (λ1,∞).
By Lemma 3.8, S emanates from the right of (λ1,∞) and hence there exists
(λ, u) ∈ S \ {0} with λ > λ1. Moreover, there also exists (λ, u) ∈ S \ {0} with
λ < λ1. If α > 0 this is immediate because then the bifurcation takes place at
λ0 = λ1 − α; if α = 0 the claim holds true because the bifurcation is subcritical
(see Lemma 3.7).

Since S is connected it follows that there exists u 6= 0 such that (λ1, u) ∈ S,
yielding a positive solution of (1).

If f satisfies (f1+) and (f2−) the proof is similar. �

Proof of Theorem 2.2. Consider the unbounded continuum Σ0 branching
off from (λ0, 0) (see Lemma 3.1(i)). As in the proof of Theorem 2.1 assumption
(f2+) implies that there is (λ, u) ∈ Σ0 \ {0} with λ < λ1. Taking into account
that Σ0 is connected and unbounded and using Corollary 3.3(i), (ii), one infers
that Σ0 meets the set {λ1} ×X and the result follows. �

Proof of Theorem 2.3. Let fn ∈ C(Ω × R+) be a sequence of functions
such that fn(s) = f(s) for s ≥ 1 and satisfying

lim
s→0+

fn(s)
sp−1

= n.

If (f1−) (respectively (f3)) holds then we can use Theorem 2.1 (respectively
Theorem 2.2) to find positive solutions un of the approximated problems{

−∆pu = λ1u
p−1 + fn(u), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω.

We claim that there are constants a, b > 0 such that a ≤ ‖un‖∞ ≤ b. The
upper bound follows by repeating the arguments used in the proof of Lemma
3.8 (Case (a)), with λ1 instead of λn. As for the lower bound, we shall closely
follow the proof of Lemma 3.8 (Case (b)) and thus we shall be sketchy. Suppose,
by contradiction, that ‖un‖∞ → 0. From I(ϕ1, un) ≥ 0 it follows by direct
calculation that ∫

Ω

f(un)
ϕp

1 − up
n

up−1
n

dx ≤ 0.

Since un → 0 and (f4) holds, we find a contradiction, proving the claim. Finally,
the uniform bound allows us to pass to the limit yielding a positive solution
of (1). �

Proof of Theorem 2.4. Consider the continuum S connecting (λ0, 0) and
(λ1,∞). A first positive solution u1 of (1), with ‖u1‖∞ < s0, can be found using
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Theorem 2.3. Since (f1+) holds, the bifurcation from infinity is now subcritical
and hence (1) has a second positive solution u2 with ‖u2‖∞ > s0. �

Remarks 4.1.

1. Minor changes would allow us to substitute the assumption lims→∞ f(s)
= 0 with the slightly more general lims→∞ f(s)s1−p = 0, as well as to
permit that c and α depend on x.

2 In Theorem 2.2 we do not require f(s) → 0 as s → ∞; it suffices to
assume that f is bounded.

3 The results of Section 3 allow us to describe the bifurcation diagram of
(Pλ). In particular, in the case covered by Theorem 2.3, Remark 3.4
shows that the projection of Σ∞ on the λ axis contains (−∞, 0) and
hence (Pλ) has positive solutions for all λ < 0. Moreover, along Σ∞ one
has that ‖u‖∞ → 0 for all (λ, u) ∈ Σ∞ with λ → −∞.
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[5] D. Arcoya and A. Cañada, Critical point theorems and applications to nonlinear
boundary value problems, Nonlinear Anal. 14 (1990), 393–411.

[6] D. Arcoya and D. G. Costa, Nontrivial solutions for a strongly resonant problem,
Differential Integral Equations 8 (1995), 151–159.

[7] D. Arcoya and L. Orsina, Landesman–Lazer conditions and quasilinear elliptic equa-

tions, Nonlinear Anal. (to appear).

[8] P. Bartolo, V. Benci and D. Fortunato, Abstract critical point theorems and ap-
plications to some nonlinear problems with strong resonance at infinity, Nonlinear Anal.

7 (1983), 981–1012.
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