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SINGULAR NONLINEAR DIFFERENTIAL
EQUATIONS ON THE HALF LINE

DoNaL O’REGAN

1. Introduction

This paper presents existence results to second order problems on the semi-
infinite interval of the form

-y =q®)f(t,y,y), 0<t< oo,
(L.1) y(0) =0,
y bounded on [0, c0),

where f may be singular at y = 0. The boundary condition at infinity will
also be discussed. Problems of the above form occur in many applications. For
example in power law fluids [4, 5, 15] we encounter the equation

(1.2) y' + o)y =0, 0<t<oo, y(0)=a>0,

with A > 0 and ¢ nonnegative and continuous. Also in nonlinear mechanics in
the study of unsteady flow of gas through a semi-infinite porous medium [1, 3,
9] the problem

—y" =2ty %y, 0<t< oo,
13) {

occurs. In the literature (1.2) was examined by Taliaferro [15] for the nonsingular
problem (i.e. @ > 0). The goal in this paper is to tackle the more general problem
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138 D. O’REGAN

(1.1). This automatically produces a result for (1.2) in the singular case (o = 0).
Our theory also includes the problem (1.3).

The discussion of the boundary value problem on the half line will be in three
stages. We first establish the existence of solutions to

_y// = q(t)f(tayﬂ y/)a 0<t< n,

y(0)=0, yn)=b>0, neNt={1,2,...}
This together with the Arzela—Ascoli theorem and a diagonalization argument
[3, 8, 14] will establish the existence of a global solution to (1.1). Finally, the

limit condition at infinity will be discussed.
To conclude this section we state a well known existence principle [7, 10].

THEOREM 1.1. Suppose g : [c,d] x R? — R is continuous with q € C(c,d),
q > 0 on (¢,d) and q € LYc,d]. In addition assume there is a constant M,
independent of A\, with

(1.4) max{?ug ly(t)], ?ug ly' ()]} < M

for each solution y to

"= MX(t)g(t,y,y'), c<t<b,
15) {y a(t)g(t,y.y')

y(C) = €1, y(d) = €2,
for each \ € (0,1). Then (1.5); has at least one solution y € Clc,d] N C?%(c,d).

2. The equation y” + f(t,y) = 0

Our goal in this section will be to examine
7y” = Q(t)f(tay)v 0 <t < o0,
(2.1) y(0) = 0,
y bounded on [0, c0).

The boundary condition at infinity will also be discussed. Now let n € N* be
fixed. We first discuss a boundary value problem on the finite interval, namely

-y =q()f(ty), 0<t<m,
2.2 y(0) =1/m,

y(n) =b>0,
where m € {N,N +1,... .} is fixed; here N € N* and b > 1/N. The idea is to
show that (2.2)™ has a solution for each m € {N, N +1,...} and then this will
be used to establish the existence of a solution to
{ —y" =q)f(t.y), 0<t<n,

(2.3)
y(0) =0, y(n)=>b>0.
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THEOREM 2.1. Suppose that
(24) qe€C(0,00) with g >0 on (0,00),
(25) [T zq(z) dz < oo and [;° q(x)dr < oo,
(2.6) 0 < f(t,y) < g(y) + h(y) on (0,00) x (0,00) with f continuous on
[0,00) x (0,00), g > 0 continuous and nonincreasing on (0,00) and h > 0

continuous on [0, 00),

(2.7)  h/g is nondecreasing on (0,00) and there exists a constant My > 0 such
that for z > 0,

* dz < h(z)> /°° boda
— < (14— xq(x)dx—!—/ —
/0 g(z) 9(2) /) Jo o 9()
implies z < M,
(2.8)  for each constant H > 0 there exists a function ¥y continuous on [0, c0)
and positive on (0,00) such that f(t,y) > ¥u(t) on (0,00) x (0, H]; in
addition, [;° xq(x)p(z)dr < oo,

and

(2.9)  for any R > 0, 1/g is differentiable on (0, R] with g'/g? < 0 integrable
on [0, R]; in addition, fooo(\g’(t)ﬂ/?/g(t)) dt = co.

Then (2.3) has a solution y € C[0,n] N C2%(0,n].

PRrooOF. Consider the modified problem
_yl/ = )‘Q(t)f*(tay)a 0<t< n,
(2107 y(0) = 1/m,
y(n)=>b>0,
where 0 < A < 1 withm € {N,N+1,...}, Ne N and b > 1/N. Here f* >0
is any continuous extension of f from y > 1/m. Let y € C1[0,n] N C%(0,n] be
a solution to (2.10)%". Now y(0) = 1/m, y(n) = b > 0 together with y” < 0
on (0,n) implies y(t) > 1/m > 0 for t € [0,n]. (To see this suppose there
exists a 6 € (0,n) with y(§) < 1/m. Now since there exists a v € (d,n) with
Yy (v)(n—9) = y(n)—y(d) > 0 we have ¢/ (v) > 0 and this together with ¢/ < 0 on
(0,n) implies ¢’ > 0 on (0,9). In particular y(§) > y(0) = 1/m, a contradiction.)
Now there are two cases to consider: either y’ > 0 on (0,n) or there exists a
to € (0,n) with ¥/ > 0 on (0,t9) and v’ < 0 on (tg,n).

REMARK. It is of interest to note that y'(0) > 0 for if '(0) < 0 then ¢’ <0
on (0,n) and so y(n) < y(0), a contradiction.

CASE (i): ¥ >0 on (0,n). Then we have

(2.11) 1/m <y(t) <b forte|0,n].
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Casg (ii): ' > 0 on (0,t9) and y' < 0 on (to,n); to € (0,n). Now for
x € (0,n) we have

(2.12) (@) < q(x)g(y(x»{l n

h(y(x)) }
g(y(x))

and so integration from ¢ (¢t < tg) to ¢y yields

0 < gtuen{1+ 200 [V o) an

Consequently, for t € (0,tg) we have

y(1) By(to) | [*
(1) = {1 T 9lulio)) }/ a(@) d

and integration from 0 to ¢y yields
y(to) to rto
1m  9(u) gy(to)) ) Jo Js

[ st = (vt s [ 50

and so (2.7) implies that there exists a constant My with y(tg) < My. Thus

Hence

(2.13) 1/m <y(t) < My fort € [0,n].
REMARK. Notice that My is independent of m,n and A.
Combining both cases yields

(2.14) 1/m < y(t) < max{b, Mo} =M fort € [0,n].

In addition (2.12) implies for = € (0,n) that

(2.15) —y"(z) < g(;) {1 + m}q(m)

Now since y(0) = 1/m, y(n) = b there exists v € (0,n) with y/(v) = (b — 1/m)/n.

CaAsE (i): ¥’ > 0 on (0,n). Integrating (2.15) from 0 to v yields

y'(0) < b+g<;>{1+ ZEJ\AQ}/an(x)dx = K,

and so since y” < 0 on (0,n) we have
(2.16) 0<y(t)<y'(0) <Ky fortel0n]

CasE (ii): ¥ > 0 on (0,ty) and y' < 0 on (tg,n); to € (0,n). Integrating
(2.15) from ¢ (t < to) to to yields

(2.17) OSy'(t)Sg(é){l—l—zgﬂj\g}/onq(x)dleﬁ for t € [0, o).
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Similarly integrating (2.15) from to to t (¢ > tp) yields
(2.18) 0<—y/(t) < Ky forté€ [to,n].
Combining (2.17) and (2.18) yields

(2.19) ly'(t)] < Ky for t €[0,n].
Thus in both cases

(2.20) |y (t)] < Ko for t €[0,n].

Now (2.14),(2.20) and Theorem 1.1 imply that (2.10)7" has a solution y,, €
C0,n) N C?(0,n] with 1/m < y,(t) < M for t € [0,n]. Also since y,, > 1/m
on [0,n] it follows that y,, is a solution of (2.2)™.

Additional estimates must be derived before we can show that (2.3) has a
solution. We first claim that there is a constant N independent of m and n with

[ e as <

where y,, is the solution to (2.2)™ constructed above.

CASE (i): y,, > 0 on (0,n). Now there exists v € (0,n) with y/,(v) =
(b—1/m)/n <b. Also we have

Y (@) x h(M) T T n
(221 Socty St G} ereeom

First since y,/, <0 on (0,n) we have
(2.22) 0<y,(t)<b fortelvn].

Now integrating (2.21) from 0 to n yields

—Yr(n) Y, (0) "= (Ym(s) [, 12 ds
2y —te s s | {92<ym<s>> }[y’“( " d
WD) [
S{”gm}/o a(@)do

and so using (2.22) we obtain

) e g
ean [{ZHE e
MDY X
<{ue i} [ s =
CASE (ii): y,, > 0 on (0,to) and y,, < 0 on (to,n); to € (0,n). Integrate
(2.21) from 0 to n to obtain (2.23) and so

ez [y s < (e 2R [T an
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Combining (2.24) and (2.25) yields

29D\ o2 s
(226) [ Ay foras <

where N is defined in (2.24).

REMARK. Notice that N is independent of m and n.

Next assumption (2.8) implies that there exists a function ¢ (¢) (which may
depend on M) continuous on [0, c0) and positive on (0,00) with f(¢,y) > ¥ar(t)
for (t,y) € (0,00) x (0, M]; here M is as defined in (2.14). Notice y,,, satisfies

)=+ 2t (1= 1) [ s o,y do
[ (1 D)ot o) do

and so

t

b t

(2.27) ym(t) > 21 (1 - ) | satyonite) s
n n/) Jo

Choose a constant kg with

(2.28)

b
ko < min {1, = }
fo xq<x),¢)]\/f (.’I}) dx
Then b > ko [, zq(z)¥a(x) dz and putting this into (2.27) yields for ¢ € [0, n]
that

Ym(t) > kot /000 xq(z)Yp () de + k;o/o xq(x) Yy (x) dz

n

#(1-n-1) qe)ou (@) da
o [ alwyin () e+ (1 ko) (1 - ;) / qw)ou (@) da

kot [

+ o xq(x)Yp (x) de.

t

Consequently, for ¢ € [0,n] we have

t
(2.29) Ym () > ko/ xq(x)p(x) de = @ py(t)
0
where ko is chosen as in (2.28).
REMARK. Notice that ®,,(t) is independent of m and n.
For later purposes it will be of benefit to note that

(2.30) Ym(x) = Ppr(D)z for z € [0,1].
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To see this let )

r(x) = ym(x) — {m(l —x)+ ym(l)x}.
Then r”(z) = y//,(x) <0 on (0,n) and 7(0) = r(1) = 0. Consequently, » > 0 on
[0,1] so

Ym(T) > rln(l —2)+ Ym(D)z > ym(D)z > @3 (1) for z € [0,1].

Hence (2.30) is true and combining with (2.29) yields
(2.31) ym(t) > Qu(t) for t € [0,n],

where

e Oy (1)t, 0<t<1,
MU o), t>1.

Thus
(2.32) Qp(t) <ym(t) <M fort e [0,n]
and
" g'(ym(S))} ! a2
2.33 / { Y (8)]7ds < N,
( ) 0 9%(Ym(s)) i (5)]
where M and N are as in (2.14) and (2.24) respectively. Consider

ey
I(z)f/o ) du.

Now [ is an increasing map from [0, co) onto [0, 00) with I continuous on [0, K] for
any K > 0. First notice that {I(y.,)}5°_ is uniformly bounded since |y, (t)| <
M for t € [0,n] and T is continuous; in particular, there exists a constant @ > 0
with

(2.34) [T(ym(t))] < Q fort € [0,n].

Also {I(ym)} is equicontinuous on [0,n]. To see this take t,s € [0,n]; then
Holder’s inequality yields

ynz(t / u 1/2
(g () = I(gm(s))] = \ / | {gg((u))}du
{9 (ym(2)}1/2 )}/

<ji- s|1/2( { M }[ymz)]?dz)l/z

< N1/2|t _ S|1/2.

The Arzela—Ascoli theorem guarantees the existence of a subsequence {I(yn.)}
converging uniformly on [0,n] to some I(y) € C[0,n]. This together with the
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fact that -1 is a continuous increasing map and {I(y,,/)} is uniformly bounded
implies that the subsequence y,,, converges uniformly on [0,n] to y € C[0,n].
Also y(0) =0, y(n) = b and

(2.35) Qu(t) <y(t) <M forte|0,n].
REMARK. Note that y(t) > 0 for ¢ € (0,n].

Now y,,, satisfies the integral equation

230) ) =um (3 )+t (3) (1= 3) + | /( — 0)q(5)f (5, yme () ds.

REMARK. It is of interest to note that (2.36) (take ¢ = 3/4 say) implies that
{y,./(1/2)} is a bounded sequence (bound independent of m') since Qp(t) <
y(t) < M for t € [0,n]. Thus {y,,,(1/2)} has a convergent subsequence; for
convenience let {y; ,(1/2)} denote this subsequence also and let r be its limit.
(In fact, the original sequence {y,,,(1/2)} is Cauchy from (2.36).)

Fix t € (0,n]. Since f is uniformly continuous on compact subsets of
[min(1/2,¢), max(1/2,t)] x (0, M], let m' — oo in (2.36) to obtain (r € R)

231) ) = y(;) " r(t - ;) +f /< — 1)q(5)f (5, (s) ds.

From (2.37) we have y € C2(0,n] and —y"(¢) = q(t)f(¢,y(t)) for t € (0,n). Also
y” <0on (0,n) since y > 0 on (0,n]. In addition, essentially the same reasoning
as that used to derive (2.26) (in this case we integrate (2.21) from ¢ to n; here

[ e as <,

where N is as defined in (2.24). O

€ > 0 is small) yields

If (2.9) is replaced by

(2.38) /O (D)g(t) dt < oo

then the solution to (2.3) will have added smoothness, as the next result shows.

THEOREM 2.2. Suppose (2.2)—(2.8) and (2.38) are satisfied. Then (2.3) has
a solution y € C'[0,n] N C?(0,n].

PROOF. Asin Theorem 2.1 we find that (2.2)™ has a solution y,, € C*[0,n]N
C?(0,n] with

(2.39) Qu(t) <ym(t) <M fort €0,n].
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We now claim that there exists a constant @y (independent of m and n) with
(2.40) lyr, ()] < Qo for t € [0,n].

Case (i): y,, > 0 on (0,n). Now there exists £ € (0,1) with y/,(§) =
ym(l) - ym(o) <b-— 1/m < b so

(2.41) 0<y,(t)<b forteln].

On the other hand, since

" h(M)
(2.42) a0 < (14 537 Jaha(st (1)
we see on integrating from ¢ (¢t < £) to & that
! h(M) 1 x z))dz
(2.43) 0<y,(t) <b+ (1+ g(M))/O q(x)g(Q (z)) da.

Thus (2.40) is true in this case.

REMARK. Note that

1 1
/ 4(@)g(U (x)) dir = / 4(@)g(® s (1)) dir < oo,
0 0

CASE (ii): y,, > 0 on (0,to) and y,, < 0 on (to,n); to € (0,n). Integrate
(2.42) from ¢ (t < tg) to to to obtain
h(M)

(2.44) 0<y,(t) < <1 + 9(]\4)> /000 q(2)g(Qpr(x))dx for t € [0,%0].

REMARK. Note that
/ " g9 (2)) d = / " 4@)g(@r(2)) dz < g(@rr(1)) / " ) de < oo.

On the other hand, for ¢t > ¢ty we have

(245)  0< —yl (t) < <1 + m) /000 q(z)g(Qnr(x))dx  for t € [to, n].

Once again (2.40) is true.
Now (2.38), (2.39), (2.40) and (2.42) imply that {y,(rjl)}, j = 0,1, is uniformly
bounded and equicontinuous on [0,n] so the Arzela—Ascoli theorem guarantees

(@)

m/’

the existence of a subsequence {y,} and a function y € C'[0,n] with y
converging uniformly on [0,n] to y©), j = 0,1. Also y(0) = 0, y(n) = b and

Qu(t) <yt) <M, |y'(t)] <Qo forte[0,n].

It is easy to check as in Theorem 2.1 that y is a solution of (2.3). O
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We now discuss the semi-infinite problems
—y" =q(t)f(t,y), 0<t<oo,
(2.46) y(0) =0,
y bounded on [0, o),
and
-y =q@)f(t,y), 0<t<oo,
(2.47) y(0) =0,
limy o0 y(t) exists.
THEOREM 2.3. Suppose (2.4)—(2.9) are satisfied. Then (2.46) and (2.47)
have a solution y € C[0,00) N C?(0, 00).

PROOF. Now Theorem 2.1 implies that for each n € NT there exists a solu-
tion y, € C[0,n] N C?(0,n] with

(2.48) Qur(t) <yn(t) <M fort € [0,n]
and

" —g'(yn(s)) " ()12 ds
(2.49) /0 { 92(yn(3)) }[yn( )] ds < -
Let

gy
1) = [

and as in Theorem 2.1 there exists a constant @ (see (2.34)) with

(2.50) I(ya(®)| < Q for t€[0,n)

and

(2.51) L (ya(£)) — Lyn(s))] < Nt — s|"/2 for t,s € [0,n]
Define

() = { yn(x), x €[0,n],

b, x € (n,00).
Then wu, is continuous on [0,00) and u,(t) > Qu(t) for t € [0,n]. Now for
t,s € [0,00) it is easy to check that

(2.52) [ (un (1)) < Q
and
(2.53) [T (un(t) = I(un(s))| < Nt — s['/2.

Let S = {I(un)}>2,. By the Arzela—Ascoli theorem there is a subsequence Ny of
NT and a continuous function I(z1) on [0,1] such that I(u,) — I(z1) uniformly
on [0,1] as n — oo through Nj. Since /7! is a continuous increasing map and
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(2.52) holds, we have u,(x) — z1(x) uniformly on [0,1] as n — oo through Nj.
Also Qp(t) < z1(t) < M for t € [0,1] and 21(0) = 0. Again the Arzela—Ascoli
theorem implies there is a subsequence N2 of Ny and a function I(z3) € C[0, 2]
such that u, () — z2(x) uniformly on [0, 2] as n — oo through Na. Note z3 = 21
on [0,1] since Ny C Ny. Also Qp(t) < 22(t) < M for t € [0,2] and 25(0) = 0.
Proceed inductively to obtain for & = 1,2,... a subsequence N, C N¥ with
Ny € Ni_; and a function z; € C[0, k] such that w,(x) — zx(x) uniformly on
[0, k] as n — oo through Nj. Also z; = z;—1 on [0, k—1] with Qs (¢) < 2z, (t) < M
for t € [0, k] and z;(0) = 0.

Define a function y as follows. Fix z € [0,00) and let k¥ € Nt with x < k.
Define y(z) = zi(x). Now y is well defined with y € C[0,00), y(0) = 0 and
Qu(t) < y(t) < M for t € [0,00). Again fix z > 0 and choose k > z, k € NT.
Then for ¢t € (0, k) we have

U (t) = Uy (;) +ul, (;) (t — ;) + /1:2(5 —1)q(s)f(s,un(s)) ds.

Let n — oo through Ny, so for ¢t € (0, k] we obtain (r € R),

“(t) = k(;) ¥ r(t - ;) +f /< — 0q(5) (5, 24(5)) ds

since f is uniformly continuous on compact subsets of [min(1/2,t), max(1/2,t)] x
(0, M] and z(t) > Qpr(t) > 0 for t € (0, k]. Thus for ¢t € (0, k] we have

o(3) +r(t=3)+ [ =t as

and so —y"(x) = q(z)f(x,y(x)). Thus for 0 < s < oo we have —y"(s) =
q(s)f(s,y(s)) and y € C?(0,0). Thus we have shown that there exists a solution
y € C[0,00) N C?%(0,00) to (2.46) with Qp(t) < y(t) < M for t € [0,00). Now
since y(t) > Qp(t) > 0 for t > 0 and —y"'(t) = q(¢) f(¢,y(t)), t > 0, it follows
that y”(t) < 0 for ¢ € (0,00). Thus y' is nonincreasing on (0,00) so y will

y(t)

be eventually monotonic (either 3’ is of fixed sign on (0,00) or there exists
to € (0,00) with y'(tg) = 0) i.e. there exists u € (0,00) with y monotonic for
t > p. This together with 0 < y(t) < M for t € [0, 00) implies that lim; o y(t)
exists. Consequently, y is a solution to (2.47). In fact, lim;—, y(t) € [0, M]. O
ExaMPLE. The boundary value problem

—y" =q(t)y™, 0 <t < oo,

y(0) =0,

y bounded on [0, ),
with o > 0 and (2.4), (2.5) holding, has a solution y € C[0,00) N C?(0, 00).
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To see this we apply Theorem 2.3. Clearly (2.6) with g(y) = y~ and h(y) =
0, (2.7),(2.8) with ¢y () = H~%, and (2.9) are satisfied. The result now follows
from Theorem 2.3.

THEOREM 2.4. Suppose (2.4)—(2.8) and (2.38) are satisfied. Then (2.46)
and (2.47) have a solution y € C1[0,00) N C?(0, 00).

PROOF. Essentially the same reasoning as in Theorem 2.3 (except that we
use Theorem 2.2) establishes the result. For more details see the proof of Theo-
rem 3.2. O

Finally, we examine the boundary condition at infinity. In particular, we
discuss
-y =qt)f(t,y), 0<t<oo,
(2.54) y(0) = 0,
lim; o ¥/ (t) = 0.

THEOREM 2.5. Suppose (2.4)—(2.8) and (2.38) are satisfied. Then (2.54) has
a solution y € C[0,00) N C%(0,00) (in fact, in C*[0,00) N C?(0,00)).

PROOF. Theorem 2.3 implies that (2.46) has a solution y with Q(t) <
y(t) < M for t € [0,00). Note that since y is a solution to —y” = qf(t,y),
0 <t < oo, with y(0) = 0 we have

y(t) = At + / 2q(2) (2, y(x)) dz — t / 4(@) f (e, y(x)) dz,

where A is a constant. However, since y(t) < M for ¢ € [0, 00) we get
00 t
255y =t [ a@f@ye)dst [ o)y dn
t 0

REMARK. (i) Notice that [~ zq(z)f(z, y(z)) dz < oo since

1 h(M) 1
/0 2q(@)f (2, y(a)) d < <1+9(M)) / 4(@)g(@ 3 (1)) dz < o0

and
e h(M) >
[ s@rp@)ds < (14 25 o) [ s do < .

(ii) Also [ q(z)f(z,y(z))dz < oo and limy_oo t [ q(z) f(z,y(x))dz = 0
since for ¢t > 0 we have

o<t f " (@) f (e y(a)) di < / " 2g(@) f( y(2) de.

Now (2.55) implies
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y'(t) = /too q(z)f(x,y(x))dz fort >0

so y' > 0 on (0,00) with lim;—,« ¢'(¢) = 0. Thus y is a solution to (2.54). O

3. The equation y"” + f(t,y,y) = 0
In this section we discuss
7y” = q(t)f(ta:%y/), 0 <t < o0,
(3.1) y(0) =0,
y bounded on [0, 00).
Two cases will be examined, the case when ¢ is nonincreasing on (0, 00) and the

case when ¢ is nondecreasing on (0, 00).

Ezistence theory I. In this subsection we examine the situation when ¢ is non-
increasing on (0,00). The strategy will be to examine for n € N* the boundary
value problem

—y" =qt)f(t,y,y), 0<t<n,
(3.2)™ y(0) =1/m,
y(n) =b>0,

where m € {N,N +1,...} with N € N* and b > 1/N. Existence of a solution
to (3.2)™ will then be used to establish existence

—y" =qt)f(t,y,y'), 0<t<nmn,
(3.3) y'=at)f(ty,y)
y(0) =0, y(n)=>b>0.
THEOREM 3.1. Suppose (2.4), (2.5) hold and in addition
(3.4) ¢ is nonincreasing on (0,00) and bounded on [0, 1],

(35) 0 < f(t,y,p) < [g(y) + h(y)][Alp| + B] on (0,00) x (0,00) x (—00,00)
with f continuous on [0,00) x (0,00) X (—00,00), g > 0 continuous and
nonincreasing on (0,00), h > 0 continuous on [0,00) and A >0, B > 0
constants,

(3.6)  h/g is nondecreasing on (0,00) and there exists a constant My > 0 such
that for z > 0,

/Ozg(?i)g (1+;L((3>{Az/oooq(:r)derB/oooxq(x)dx}Jr/olgc(lj;)
implies z < My,

1
(3.7 /0 g(x) dz < oo,

and
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(3.8)  for constants H > 0, K > 0 there exists a function ¥g i continuous on
[0,00) and positive on (0,00) such that f(t,y,p) > ¥u k(t) on (0,00) X
(0, H] x [-K, K]; in addition [, q(z)m x(z)ds < co.

Then (3.3) has a solution y € C1[0,n] N C?(0,n].
PrOOF. Consider the modified problem
_yll = )‘Q(t)f*(taya y/)7 0<t< n,
393" y(0) = 1/m,
y(n)=5b>0,
where 0 < A < 1 and f* > 0 is any continuous extension of f from y > 1/m.
Let y € C*[0,n] N C?%(0,n] be a solution to (3.9)5. Now y” < 0 on (0,n) and
y>1/mon (0,n).
CASE (i): ¥ > 0 on (0,n). Then
(3.10) 1/m <y(t) <b fortel0,n].

CAsE (ii): ¥ > 0 on (0,t9) and ¥’ < 0 on (to,n); to € (0,n). Now for
x € (0,t9) we have

N S U P
'@ < a@wen{1+ S0 (ay(o) + 5)
so integration from t (t < to) to o yields

v < gt {1+ 2D (g [ @ e+ 8 [ oo ).

Thus
o =1 oty J (Aeomen 48 | RE )

and integration from 0 to ¢y yields

[ st = (e Yoo [ storaess [omoraa) [

Now (3.6) implies that there exists a constant My with y(t9) < My and so

(3.11) 1/m <y(t) < My forte[0,n)]
Combining both cases yields
(3.12) 1/m < y(t) < max{b, Mo} =M fort e [0,n].
Next we show there is a constant V', independent of A and n, with

(3.13) ly'(t)] <V forte[0,n]



SINGULAR EQUATIONS ON THE HALF LINE

CASE (i): ¥ > 0 on (0,n). There exists £ € (0,1) with ¢'(§) = y(1) — y(0) <

b—1/m < b and so
(3.14) 0<y(t)<b forteln].
Also

A‘f’yB < q(t)lg(y) + h(y)ly

so integration from ¢ (¢ < £) to & yields

y'(t) b
(3.15) / Lt / Ty M ) / (9(u) + h(u)] du.

Let

(3.16) J(z) = /O ﬁ du

and note J(c0) = oo with J : [0,00) — [0, 00) an increasing function.
REMARK. We can of course calculate J explicitly.

Now (3.15) implies

e v < ([t ) | o) + ) )
=Ry forte]l0,&.
Combining (3.14) and (3.17) yields
(3.18) 0 <9/(t) <max{b,Ro} = Ry fortec]0,n].
CAaSE (ii): ¥’ > 0 on (0,t0) and ¥’ <0 on (tg,n); to € (0,n).
Now for ¢ € (0,%9) we have
A‘yy% < a(la(v) + h(w)ly’

so integration from t (t < to) to o yields

My
(3.19) 0<y/(t)y<J? (sup q(t)/o [g(u) + h(u)] du) =Ry fort e [0,%].

[0,1]
On the other hand, for ¢ € (tg,n) we have

ﬁ < a®)g(y) + W)~y

and integration from to to t (¢t > to) yields
(3.20) 0<—9y/(t) <Ry forte l[ty,n]
Now (3.19) and (3.20) yield

(3.21) ly'(t)] < Ry for t € [0,n].
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With V' = max{R;, Re} we obtain (3.13). Now (3.12),(3.13) and Theorem 1.1
imply that (3.9)7 has a solution y,, € C*[0,n] N C?(0,n] with

(3.22) 1/m <yn(t) <M and |y,,(t)| <V fortel0,n].

In addition, since ¥y, > 1/m on [0,n], it follows that y,, is a solution of (3.2)™.

Next assumption (3.8) implies that there exists a function ¥, v (t) continuous
on [0, 00) and positive on (0,00) with f(¢,y,p) > ¥ar,v (t) for (¢,y,p) € (0,00) x
(0, M] x [V, V]. Now with

. b
ko < min {1, fooo 24(@) bty (2) dm}

we deduce by essentially the same argument as in Theorem 2.1 that

t
(3.23) Ym(t) > ko/ zq(x)Ypm,y (x)de = @y v (t) for t € [0, n].
0
Let
Oy, 0<t<1,
Quv(t) =
Dy v(t), t>1.

and as in Theorem 2.1,
(3.24) Ym(t) > Qv ()  for t € [0,n].

Also for z € (0,n),

e < ottt (12 MDY
i) < a0t () (14 S Y (4l )]+ 8
(3.25)  —yn(x) < (1 + ZE]\AQ) [AV 4+ Blq(x)g(Qm,v(x)) for z € (0,n).

Now (3.22) and (3.25) imply that {y%)}, j = 0,1, is uniformly bounded and
equicontinuous on [0,n] so the Arzela—Ascoli theorem guarantees the existence
()

. converging uniformly

of a subsequence {y,, } and a function y € C*[0, n] with y
on [0,n] to y¥), j =0,1. Also (0) =0, y(n) = b with

(3.26) Quyv(t)<y@t) <M and |y'(t)| <V fortel0,n].

Essentially the same reasoning as in Theorem 2.1 now implies

w0 =u(3) v (3) (1= 3) [ o= 0ot .

Consequently, y € C%(0,n] and —y"(t) = q(t)f(t,y(t),y'(t)) for t € (0,n). Also
y”" <0 on (0,n) and
h(M)

(3.27) —y"(x) < (1 + S?(M) [AV + Blq(z)g9(Qr,v(z)) for z € (0,n). O
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We next discuss the semi-infinite problems
-y =q@)f(t,y,y), 0<t<oo,
(3.28) y(0) =0,
y bounded on [0, ),
and
-y =q@)f(t,y,y"), 0<t<oo,
(3.29) y(0) =0,
lim;, o0 y(t) exists.
THEOREM 3.2. Suppose (2.4), (2.5) and (3.4)—(3.8) are satisfied. Then
(3.28) and (3.29) have a solution y € C[0,00) N C?(0, ).

PROOF. Theorem 3.1 guarantees for each n € Nt a solution y,, € C1[0,n] N
C?(0,n] with

(3.30) Quyv(t) <yn(t) <M and |y,(t)| <V forte|0,n]
and
(3.31) —yl(z) < (1 + ZEAA;[))) [AV + Blq(z)g9(Qr,v(z)) for z € (0,n).

Notice that for ¢,s € [0,n] we have

(3'32) |yn(t) - yn(s)| S Vlt - S‘
and
o W) t
(333)  |l(t) —wi(s)] < (1 n g(M)) AV BJ] [ 0@ .
Define

{ Yn(z), x€10,n],
un () =
b, x € (n,00).
Each w, is continuous on [0,00) and is twice continuously on (0,00) except
possibly at x = n. Let S = {u,}2,. By the Arzela—Ascoli theorem there is
a subsequence N7 of N* and a function z; € C*[0,1] with uﬁf)(az) — z%j)(x),
j = 0,1, uniformly on [0,1] as n — oo through Ny. Let N3 = N7 /{1}. Then
there is a subsequence N3 of Nj and a function 2o € C1[0,2] with ugf)(x) —
zéj)(x)7 j = 0,1, uniformly on [0,2] as n — oo through Nj. Note that zo = 21
on [0,1]. Let Ny = N3 /{2} and proceed inductively to obtain for k¥ = 1,2, ...
a subsequence N} C Nj_; and a function z; € C[0, k] with ug)(x) — z,(cj)(x),
j =0, 1, uniformly on [0, k] as n — oo through Nj.

Define the function y as follows. Fix z € [0,00) and let k € Nt with = < k.
Then define y(z) = 2zx(z) so y € C[0,00), y(0) = 0 with Qpr v (1) < y(t) < M,
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t € [0,00) and |y/(t)] < V, t € [0,00). Essentially the same argument as in
Theorem 2.3 shows that y is a solution to (3.28) and (3.29). O

Next we discuss
7y” = q(t)f(tay,y/)v 0<t< 00,
(3.34) y(0) =0,
lim; o ¢'(t) = 0.
THEOREM 3.3. Suppose (2.4), (2.5) and (3.4)—(3.8) are satisfied. Then
(3.34) has a solution y € C*[0,00) N C?(0,00).
PRrROOF. Theorem 3.2 implies that (3.28) has a solution y with Qas v (¢) <
y(t) < M for t € [0,00) and |y'(¢)| <V for ¢t € [0,00). Consequently,
00 t
(335 w0 =t [ o)y @)det [ o))y @) d
t 0

REMARK. Notice that

/Oo 2q(2)f(z,y(x),y (z)) dz < oo and /OO q(z) f(z, y(x),y'(x)) dz < oo
0 0

since

1
/0 rq(@)f (2, y(z), ¥ (2)) de

h(M) , :
< (1 n g(M)) AV + BJsupa(n [ at@snvyo) o < .

Now (3.35) implies
V(O = [ a@f e,y @)ds fort>0
t
soy’ > 0 on (0,00) with lim; . ¥'(¢t) = 0. O

Exzistence theory II. In this subsection we will assume ¢ is nondecreasing on
(0,00). Our existence theory is motivated by (1.3); see [1, 3]. We first discuss
the boundary value problem (3.3).

THEOREM 3.4. Suppose (2.4) holds and in addition assume that
(3.36)  f is continuous on [0,00) x (0,00) X (—00,00),
(3.37)  pf(t,y,p) =0 on [0,00) x (0,00) x (—00,00),

(3.38)  f(t,y,p) < [9(y) +h(y)]u(lpl) on (0,00) x (0, 00) x (00, 00) with g >0
continuous and nonincreasing on (0,00), h > 0 continuous on [0,00)
and h/g nondecreasing on (0,00),

(3.39) ¢ is nondecreasing on (0,00) and bounded on [0, 1],
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(3.40) fo x)dr < oo,

(3.41)  p >0 is continuous on (—o0,00) with
<z h(b) b bz
——dx > supq(t <1+>/ g a?)d:v—i—/ ——dx
/0 p(z) [0,1] Q g(b) 0 ( 0 K()

(3.42)  for constants H > 0, K > 0 there exists a function Y continuous

and

n [0,00), positive and nondecreasing on (0,00) and constants A >
0, B>0,1<r < 2 such that f(t,y,p) > Yu x(t)[Ap" + B] on
(0,00) x (0, H] x [0, K].

Then (3.3) has a solution y € C1[0,n] N C%(0,n].
PRrROOF. Let y be a solution to (3.9)}" with
t,1/m,p), u<1/m,
P = { A,
REMARK. Note that pf*(t,u,p) > 0 on [0,00) X (—00,00) X (—00,00).
We claim that
(3.43) y' >0 on [0,n].

To see this notice that for any 7 € [0,n) and ¢ > 7 we have

(O] + —2) / (2,9(2), 5/ (2)) dx > 0
(3.44) O <) fort>r

If 4/(0) = 0 then (3.44) with 7 = 0 implies ¢/(¢t) = 0 for ¢t € [0, n], a contradiction
since b > 1/m. Thus y'(0) # 0. Then either ¢’ # 0 on [0, n] or there exists § < n
with ¢/(¢) # 0 for ¢t € [0,0) and y'(4) = 0.

CASE (i): ¢ #0 on [0,n]. If ¥/ < 0 on [0,n] then 1/m = y(0) > y(n) =b, a
contradiction. Thus ¢’ > 0 on [0, n].

CASE (ii): There ezists § < n with y'(t) # 0 for t € [0,0) and y'(0) = 0.
Now (3.44) with 7 = ¢ implies ¢y’ = 0 on [d,n] so y(t) = b for t € [§,n]. If ¥/ <0
on [0,0) then y(§) < 1/m, a contradiction. Hence ¢’ > 0 on [0, ).

Consequently, (3.43) is true. Now the definition of f* together with (3.37)
implies y” < 0 on (0,n). Also

(3.45) 1/m <y(t) <b forte|[0,n].
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Now there exists £ € (0,1) with ¢/ () = y(1) — y(0) < b and so

(3.46) 0<y'(t)<b forteln].

Also since ) hy(0)
—YYy Yy /
U < a0atu(o) 1+ 54

we deduce on integration from ¢ (¢ < ) to £ that

/Oyl(t) %u) du < iilﬁt](zf) (1 + Z%) /Obg(U) du + /Ob ﬁ du.
Define .
S0 o /0 m i

(3.47) y(t)<K! ([Sol’lgq(t) (1 + ZEZ;) /Obg(u) du + /Ob ﬁ du)

ENO for t € [0,5]
Combining (3.46) and (3.47) yields
(3.48) 0 <9/ (t) <max{Ny,b} =V fort € [0,n].

Theorem 1.1 implies that (3.9)7" (and consequently (3.2)™) has a solution y,,
with

(3.49) 1/m<ym(t)<b and 0<y, () <V fortel0,n].

Next assumption (3.42) implies there is a function v, v (t) with f(t,y,p) >
Vv (t) for (t,y,p) € (0,00) x (0,b] x [0, V]. Thus

(3.50) =Y (t) = q(O)¢p,v (H)[A(Y,, (1)" + B] for t € (0,n).

CASE (i): 7 = 1. Integrating (3.50), with r = 1, from ¢ to n yields

yn(t) = gty (1) / "y (2) do
Y (t) = Ad(t)ny (Db — ym (0]

Integration from 0 to ¢ now yields
t
(351) ym(t) > b— bexp ( A/ Q(x)qpb,\/(x) dl‘) = (Pl(t)v te [O,TL]
0

REMARK. Note that ®;(t) — b as t — co.

CASE (ii): 1 < r < 2. We know either y/,, > 0 on [0, n] or there exists 6 <n
with y/, > 0 on [0,8) and v/, = 0 on [§,n]. Multiply (3.50) by (y.,)'~" and
integrate from ¢ to n if y/, > 0 on [0, n] whereas integrate from ¢ (¢ < ) to § if



SINGULAR EQUATIONS ON THE HALF LINE 157

yr, > 0 on [0,9) and y,,(6) = 0, to obtain (using the fact that ¢ and v are
nondecreasing on (0, c0))

Yl (8) > (A2 — 7)q(t)p.v (B)[b — Yo (8)]) Y/ 7.
Hence

b= (0] 7yl (6) > (A2 — P)a(t)h, v (1) V0.
Integrate from 0 to ¢ to obtain

t

om0/ 2 500 (220) [ e ratan (@)
- 0

Thus on [0,n] we have

(3:52)  ym(t)

(14 br=0/@=n (225) [1(A2 = r)g(@)ibn,v (x)) /@0 da) =D/ CG=7)
= P,.(¢).
REMARK. Note that ®,.(t) — b as t — oo.

Let

As in Theorem 2.1 we have
(3.53) Q) <ym(t)<b and 0<y,,(t) <V fortel0,n].
REMARK. Note that Q.(t) — b as t — oo.

Finally, for ¢ € (0,n) we have

h(b)

1

=y (t) < q(t)g(Q-(t <1+>max p).

(1) < ) (@) (14 55 ) ma ()

Essentially the same reasoning as in Theorem 2.1 now implies that (3.3) has a
solution. g

The argument in Theorem 3.2 immediately implies the following result.

THEOREM 3.5. Suppose (2.4) and (3.36)—(3.42) are satisfied. Then (3.28)
and (3.29) have a solution y € C*[0,00) N C?(0, 00).

Consider the boundary value problem

_y” = q<t)f(t’ yay/), 0<it< o0,
(3.54) y(0) =0,
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THEOREM 3.6. Suppose (2.4) and (3.36)—(3.42) are satisfied. Then (3.54)
has a solution y € C1[0,00) N C?(0, 00).

PROOF. Theorem 3.5 guarantees a solution y € C*[0,00)NC?(0, 00) to (3.28)
with Q,.(t) < y(t) < b for t € [0,00). Now since Q,.(t) — b as t — oo the result
follows. O

ExXAMPLE. The boundary value problem
—y" =2y'y~ %, 0<t< oo,
(3.55) y(0) =0,
limy o0 y(t) = 1,
has a solution.

Let q(t) = 2t, f(t,y,p) = py~ '/, g(y) =y~ /% h(y) = 0, p(p) = |p| + 1 and
b = 1. Notice that (2.4), (3.36)—(3.40), (3.41) since

* <
—da::/ — dxr = o0,
/0 p(x) o z+1

and (3.42), with ¢ x = H-'2 A=1,r=1, B =0, are satisfied. Existence of
a solution to (3.55) is guaranteed by Theorem 3.6.
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