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SINGULAR NONLINEAR DIFFERENTIAL
EQUATIONS ON THE HALF LINE

Donal O’Regan

1. Introduction

This paper presents existence results to second order problems on the semi-
infinite interval of the form

(1.1)


−y′′ = q(t)f(t, y, y′), 0 < t <∞,

y(0) = 0,

y bounded on [0,∞),

where f may be singular at y = 0. The boundary condition at infinity will
also be discussed. Problems of the above form occur in many applications. For
example in power law fluids [4, 5, 15] we encounter the equation

(1.2) y′′ + φ(t)y−λ = 0, 0 < t <∞, y(0) = α ≥ 0,

with λ > 0 and φ nonnegative and continuous. Also in nonlinear mechanics in
the study of unsteady flow of gas through a semi-infinite porous medium [1, 3,
9] the problem

(1.3)

{
−y′′ = 2ty−1/2y′, 0 < t <∞,

y(0) = 0, limt→∞ y(t) = 1,

occurs. In the literature (1.2) was examined by Taliaferro [15] for the nonsingular
problem (i.e. α > 0). The goal in this paper is to tackle the more general problem
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(1.1). This automatically produces a result for (1.2) in the singular case (α = 0).
Our theory also includes the problem (1.3).

The discussion of the boundary value problem on the half line will be in three
stages. We first establish the existence of solutions to{

−y′′ = q(t)f(t, y, y′), 0 < t < n,

y(0) = 0, y(n) = b > 0, n ∈ N+ = {1, 2, . . . }.

This together with the Arzelà–Ascoli theorem and a diagonalization argument
[3, 8, 14] will establish the existence of a global solution to (1.1). Finally, the
limit condition at infinity will be discussed.

To conclude this section we state a well known existence principle [7, 10].

Theorem 1.1. Suppose g : [c, d] × R2 → R is continuous with q ∈ C(c, d),
q > 0 on (c, d) and q ∈ L1[c, d]. In addition assume there is a constant M ,
independent of λ, with

(1.4) max{sup
[c,d]

|y(t)|, sup
[c,d]

|y′(t)|} ≤M

for each solution y to

(1.5)λ

{
y′′ = λq(t)g(t, y, y′), c < t < b,

y(c) = e1, y(d) = e2,

for each λ ∈ (0, 1). Then (1.5)1 has at least one solution y ∈ C1[c, d]∩C2(c, d).

2. The equation y′′ + f(t, y) = 0

Our goal in this section will be to examine

(2.1)


−y′′ = q(t)f(t, y), 0 < t <∞,

y(0) = 0,

y bounded on [0,∞).

The boundary condition at infinity will also be discussed. Now let n ∈ N+ be
fixed. We first discuss a boundary value problem on the finite interval, namely

(2.2)m


−y′′ = q(t)f(t, y), 0 < t < n,

y(0) = 1/m,

y(n) = b > 0,

where m ∈ {N,N + 1, . . . .} is fixed; here N ∈ N+ and b > 1/N . The idea is to
show that (2.2)m has a solution for each m ∈ {N,N + 1, . . . } and then this will
be used to establish the existence of a solution to

(2.3)

{
−y′′ = q(t)f(t, y), 0 < t < n,

y(0) = 0, y(n) = b > 0.
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Theorem 2.1. Suppose that

(2.4) q ∈ C(0,∞) with q > 0 on (0,∞),

(2.5)
∫∞
0
xq(x) dx <∞ and

∫∞
0
q(x) dx <∞,

(2.6) 0 ≤ f(t, y) ≤ g(y) + h(y) on (0,∞) × (0,∞) with f continuous on
[0,∞)×(0,∞), g > 0 continuous and nonincreasing on (0,∞) and h ≥ 0
continuous on [0,∞),

(2.7) h/g is nondecreasing on (0,∞) and there exists a constant M0 > 0 such
that for z > 0,∫ z

0

dx

g(x)
≤

(
1 +

h(z)
g(z)

) ∫ ∞

0

xq(x) dx+
∫ 1

0

dx

g(x)

implies z ≤M0,

(2.8) for each constant H > 0 there exists a function ψH continuous on [0,∞)
and positive on (0,∞) such that f(t, y) ≥ ψH(t) on (0,∞) × (0,H]; in
addition,

∫∞
0
xq(x)ψH(x) dx <∞,

and

(2.9) for any R > 0, 1/g is differentiable on (0, R] with g′/g2 < 0 integrable
on [0, R]; in addition,

∫∞
0

(|g′(t)|1/2/g(t)) dt = ∞.

Then (2.3) has a solution y ∈ C[0, n] ∩ C2(0, n].

Proof. Consider the modified problem

(2.10)m
λ


−y′′ = λq(t)f?(t, y), 0 < t < n,

y(0) = 1/m,

y(n) = b > 0,

where 0 < λ < 1 with m ∈ {N,N + 1, . . . }, N ∈ N+ and b > 1/N . Here f? ≥ 0
is any continuous extension of f from y ≥ 1/m. Let y ∈ C1[0, n] ∩ C2(0, n] be
a solution to (2.10)m

λ . Now y(0) = 1/m, y(n) = b > 0 together with y′′ ≤ 0
on (0, n) implies y(t) ≥ 1/m > 0 for t ∈ [0, n]. (To see this suppose there
exists a δ ∈ (0, n) with y(δ) < 1/m. Now since there exists a ν ∈ (δ, n) with
y′(ν)(n−δ) = y(n)−y(δ) > 0 we have y′(ν) > 0 and this together with y′′ ≤ 0 on
(0, n) implies y′ > 0 on (0, δ). In particular y(δ) > y(0) = 1/m, a contradiction.)

Now there are two cases to consider: either y′ ≥ 0 on (0, n) or there exists a
t0 ∈ (0, n) with y′ ≥ 0 on (0, t0) and y′ ≤ 0 on (t0, n).

Remark. It is of interest to note that y′(0) > 0 for if y′(0) ≤ 0 then y′ ≤ 0
on (0, n) and so y(n) ≤ y(0), a contradiction.

Case (i): y′ ≥ 0 on (0, n). Then we have

(2.11) 1/m ≤ y(t) ≤ b for t ∈ [0, n].
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Case (ii): y′ ≥ 0 on (0, t0) and y′ ≤ 0 on (t0, n); t0 ∈ (0, n). Now for
x ∈ (0, n) we have

(2.12) −y′′(x) ≤ q(x)g(y(x))
{

1 +
h(y(x))
g(y(x))

}
and so integration from t (t < t0) to t0 yields

y′(t) ≤ g(y(t))
{

1 +
h(y(t0))
g(y(t0))

} ∫ t0

t

q(x) dx.

Consequently, for t ∈ (0, t0) we have

y′(t)
g(y(t))

≤
{

1 +
h(y(t0))
g(y(t0))

} ∫ t0

t

q(x) dx

and integration from 0 to t0 yields∫ y(t0)

1/m

du

g(u)
≤

{
1 +

h(y(t0))
g(y(t0))

} ∫ t0

0

∫ t0

s

q(x) dx ds.

Hence ∫ y(t0)

0

du

g(u)
≤

{
1 +

h(y(t0))
g(y(t0))

} ∫ ∞

0

xq(x) dx+
∫ 1

0

du

g(u)
and so (2.7) implies that there exists a constant M0 with y(t0) ≤M0. Thus

(2.13) 1/m ≤ y(t) ≤M0 for t ∈ [0, n].

Remark. Notice that M0 is independent of m,n and λ.

Combining both cases yields

(2.14) 1/m ≤ y(t) ≤ max{b,M0} ≡M for t ∈ [0, n].

In addition (2.12) implies for x ∈ (0, n) that

(2.15) −y′′(x) ≤ g

(
1
m

){
1 +

h(M)
g(M)

}
q(x).

Now since y(0) = 1/m, y(n) = b there exists ν ∈ (0, n) with y′(ν) = (b− 1/m)/n.

Case (i): y′ ≥ 0 on (0, n). Integrating (2.15) from 0 to ν yields

y′(0) ≤ b+ g

(
1
m

){
1 +

h(M)
g(M)

} ∫ n

0

q(x) dx ≡ K0

and so since y′′ ≤ 0 on (0, n) we have

(2.16) 0 ≤ y′(t) ≤ y′(0) ≤ K0 for t ∈ [0, n].

Case (ii): y′ ≥ 0 on (0, t0) and y′ ≤ 0 on (t0, n); t0 ∈ (0, n). Integrating
(2.15) from t (t < t0) to t0 yields

(2.17) 0 ≤ y′(t) ≤ g

(
1
m

){
1 +

h(M)
g(M)

} ∫ n

0

q(x) dx ≡ K1 for t ∈ [0, t0].
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Similarly integrating (2.15) from t0 to t (t > t0) yields

(2.18) 0 ≤ −y′(t) ≤ K1 for t ∈ [t0, n].

Combining (2.17) and (2.18) yields

(2.19) |y′(t)| ≤ K1 for t ∈ [0, n].

Thus in both cases

(2.20) |y′(t)| ≤ K0 for t ∈ [0, n].

Now (2.14), (2.20) and Theorem 1.1 imply that (2.10)m
1 has a solution ym ∈

C1[0, n] ∩ C2(0, n] with 1/m ≤ ym(t) ≤ M for t ∈ [0, n]. Also since ym ≥ 1/m
on [0, n] it follows that ym is a solution of (2.2)m.

Additional estimates must be derived before we can show that (2.3) has a
solution. We first claim that there is a constant N independent of m and n with∫ n

0

{
− g′(ym(s))
g2(ym(s))

}
[y′m(s)]2 ds ≤ N,

where ym is the solution to (2.2)m constructed above.

Case (i): y′m ≥ 0 on (0, n). Now there exists ν ∈ (0, n) with y′m(ν) =
(b− 1/m)/n ≤ b. Also we have

(2.21)
−y′′m(x)
g(ym(x))

≤ q(x)
{

1 +
h(M)
g(M)

}
for x ∈ (0, n).

First since y′′m ≤ 0 on (0, n) we have

(2.22) 0 ≤ y′m(t) ≤ b for t ∈ [ν, n].

Now integrating (2.21) from 0 to n yields

(2.23)
− y′m(n)
g(b)

+
y′m(0)
g(1/m)

+
∫ n

0

{
− g′(ym(s))
g2(ym(s))

}
[y′m(s)]2 ds

≤
{

1 +
h(M)
g(M)

} ∫ ∞

0

q(x) dx

and so using (2.22) we obtain

(2.24)
∫ n

0

{
− g′(ym(s))
g2(ym(s))

}
[y′m(s)]2 ds

≤
{

1 +
h(M)
g(M)

} ∫ ∞

0

q(x) dx+
b

g(b)
≡ N.

Case (ii): y′m ≥ 0 on (0, t0) and y′m ≤ 0 on (t0, n); t0 ∈ (0, n). Integrate
(2.21) from 0 to n to obtain (2.23) and so

(2.25)
∫ n

0

{
− g′(ym(s))
g2(ym(s))

}
[y′m(s)]2 ds ≤

{
1 +

h(M)
g(M)

} ∫ ∞

0

q(x) dx.
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Combining (2.24) and (2.25) yields

(2.26)
∫ n

0

{
− g′(ym(s))
g2(ym(s))

}
[y′m(s)]2 ds ≤ N,

where N is defined in (2.24).

Remark. Notice that N is independent of m and n.

Next assumption (2.8) implies that there exists a function ψM (t) (which may
depend on M) continuous on [0,∞) and positive on (0,∞) with f(t, y) ≥ ψM (t)
for (t, y) ∈ (0,∞)× (0,M ]; here M is as defined in (2.14). Notice ym satisfies

ym(t) =
1
m

+
b

n
t+

(
1− t

n

) ∫ t

0

xq(x)f(x, ym(x)) dx

+ t

∫ n

t

(
1− x

n

)
q(x)f(x, ym(x)) dx

and so

(2.27) ym(t) ≥ b

n
t+

(
1− t

n

) ∫ t

0

xq(x)ψM (x) dx.

Choose a constant k0 with

(2.28) k0 ≤ min
{

1,
b∫∞

0
xq(x)ψM (x) dx

}
.

Then b ≥ k0

∫∞
0
xq(x)ψM (x) dx and putting this into (2.27) yields for t ∈ [0, n]

that

ym(t) ≥ k0t

n

∫ ∞

0

xq(x)ψM (x) dx+ k0

∫ t

0

xq(x)ψM (x) dx

+
(

1− k0 −
t

n

) ∫ t

0

xq(x)ψM (x) dx

= k0

∫ t

0

xq(x)ψM (x) dx+ (1− k0)
(

1− t

n

) ∫ t

0

xq(x)ψM (x) dx

+
k0t

n

∫ ∞

t

xq(x)ψM (x) dx.

Consequently, for t ∈ [0, n] we have

(2.29) ym(t) ≥ k0

∫ t

0

xq(x)ψM (x) dx ≡ ΦM (t)

where k0 is chosen as in (2.28).

Remark. Notice that ΦM (t) is independent of m and n.

For later purposes it will be of benefit to note that

(2.30) ym(x) ≥ ΦM (1)x for x ∈ [0, 1].
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To see this let

r(x) = ym(x)−
{

1
m

(1− x) + ym(1)x
}
.

Then r′′(x) = y′′m(x) ≤ 0 on (0, n) and r(0) = r(1) = 0. Consequently, r ≥ 0 on
[0, 1] so

ym(x) ≥ 1
m

(1− x) + ym(1)x ≥ ym(1)x ≥ ΦM (1)x for x ∈ [0, 1].

Hence (2.30) is true and combining with (2.29) yields

(2.31) ym(t) ≥ ΩM (t) for t ∈ [0, n],

where

ΩM (t) =

{
ΦM (1)t, 0 ≤ t ≤ 1,

ΦM (t), t ≥ 1.
Thus

(2.32) ΩM (t) ≤ ym(t) ≤M for t ∈ [0, n]

and

(2.33)
∫ n

0

{
−g′(ym(s))
g2(ym(s))

}
[y′m(s)]2 ds ≤ N,

where M and N are as in (2.14) and (2.24) respectively. Consider

I(z) =
∫ z

0

{−g′(u)}1/2

g(u)
du.

Now I is an increasing map from [0,∞) onto [0,∞) with I continuous on [0,K] for
any K > 0. First notice that {I(ym)}∞m=N is uniformly bounded since |ym(t)| ≤
M for t ∈ [0, n] and I is continuous; in particular, there exists a constant Q > 0
with

(2.34) |I(ym(t))| ≤ Q for t ∈ [0, n].

Also {I(ym)} is equicontinuous on [0, n]. To see this take t, s ∈ [0, n]; then
Hölder’s inequality yields

|I(ym(t))− I(ym(s))| =
∣∣∣∣ ∫ ym(t)

ym(s)

{−g′(u)}1/2

g(u)
du

∣∣∣∣
=

∣∣∣∣ ∫ t

s

{−g′(ym(z))}1/2

g(ym(z))
y′m(z) dz

∣∣∣∣
≤ |t− s|1/2

( ∫ n

0

{
−g′(ym(z))
g2(ym(z))

}
[y′m(z)]2 dz

)1/2

≤ N1/2|t− s|1/2.

The Arzelà–Ascoli theorem guarantees the existence of a subsequence {I(ym′)}
converging uniformly on [0, n] to some I(y) ∈ C[0, n]. This together with the
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fact that I−1 is a continuous increasing map and {I(ym′)} is uniformly bounded
implies that the subsequence ym′ converges uniformly on [0, n] to y ∈ C[0, n].
Also y(0) = 0, y(n) = b and

(2.35) ΩM (t) ≤ y(t) ≤M for t ∈ [0, n].

Remark. Note that y(t) > 0 for t ∈ (0, n].

Now ym′ satisfies the integral equation

(2.36) ym′(t) = ym′

(
1
2

)
+ y′m′

(
1
2

)(
t− 1

2

)
+

∫ t

1/2

(s− t)q(s)f(s, ym′(s)) ds.

Remark. It is of interest to note that (2.36) (take t = 3/4 say) implies that
{y′m′(1/2)} is a bounded sequence (bound independent of m′) since ΩM (t) ≤
y(t) ≤ M for t ∈ [0, n]. Thus {y′m′(1/2)} has a convergent subsequence; for
convenience let {y′m′(1/2)} denote this subsequence also and let r be its limit.
(In fact, the original sequence {y′m′(1/2)} is Cauchy from (2.36).)

Fix t ∈ (0, n]. Since f is uniformly continuous on compact subsets of
[min(1/2, t),max(1/2, t)]× (0,M ], let m′ →∞ in (2.36) to obtain (r ∈ R)

(2.37) y(t) = y

(
1
2

)
+ r

(
t− 1

2

)
+

∫ t

1/2

(s− t)q(s)f(s, y(s)) ds.

From (2.37) we have y ∈ C2(0, n] and −y′′(t) = q(t)f(t, y(t)) for t ∈ (0, n). Also
y′′ ≤ 0 on (0, n) since y > 0 on (0, n]. In addition, essentially the same reasoning
as that used to derive (2.26) (in this case we integrate (2.21) from ε to n; here
ε > 0 is small) yields ∫ n

0

{
−g′(y(s))
g2(y(s))

}
[y′(s)]2 ds ≤ N,

where N is as defined in (2.24). �

If (2.9) is replaced by

(2.38)
∫ 1

0

q(t)g(t) dt <∞

then the solution to (2.3) will have added smoothness, as the next result shows.

Theorem 2.2. Suppose (2.2)–(2.8) and (2.38) are satisfied. Then (2.3) has
a solution y ∈ C1[0, n] ∩ C2(0, n].

Proof. As in Theorem 2.1 we find that (2.2)m has a solution ym ∈ C1[0, n]∩
C2(0, n] with

(2.39) ΩM (t) ≤ ym(t) ≤M for t ∈ [0, n].
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We now claim that there exists a constant Q0 (independent of m and n) with

(2.40) |y′m(t)| ≤ Q0 for t ∈ [0, n].

Case (i): y′m ≥ 0 on (0, n). Now there exists ξ ∈ (0, 1) with y′m(ξ) =
ym(1)− ym(0) ≤ b− 1/m ≤ b so

(2.41) 0 ≤ y′m(t) ≤ b for t ∈ [ξ, n].

On the other hand, since

(2.42) −y′′m(t) ≤
(

1 +
h(M)
g(M)

)
q(t)g(ΩM (t))

we see on integrating from t (t < ξ) to ξ that

(2.43) 0 ≤ y′m(t) ≤ b+
(

1 +
h(M)
g(M)

) ∫ 1

0

q(x)g(ΩM (x)) dx.

Thus (2.40) is true in this case.

Remark. Note that∫ 1

0

q(x)g(ΩM (x)) dx =
∫ 1

0

q(x)g(ΦM (1)x) dx <∞.

Case (ii): y′m ≥ 0 on (0, t0) and y′m ≤ 0 on (t0, n); t0 ∈ (0, n). Integrate
(2.42) from t (t < t0) to t0 to obtain

(2.44) 0 ≤ y′m(t) ≤
(

1 +
h(M)
g(M)

) ∫ ∞

0

q(x)g(ΩM (x)) dx for t ∈ [0, t0].

Remark. Note that∫ ∞

1

q(x)g(ΩM (x)) dx =
∫ ∞

1

q(x)g(ΦM (x)) dx ≤ g(ΦM (1))
∫ ∞

1

q(x) dx <∞.

On the other hand, for t > t0 we have

(2.45) 0 ≤ −y′m(t) ≤
(

1 +
h(M)
g(M)

) ∫ ∞

0

q(x)g(ΩM (x)) dx for t ∈ [t0, n].

Once again (2.40) is true.
Now (2.38), (2.39), (2.40) and (2.42) imply that {y(j)

m }, j = 0, 1, is uniformly
bounded and equicontinuous on [0, n] so the Arzelà–Ascoli theorem guarantees
the existence of a subsequence {ym′} and a function y ∈ C1[0, n] with y

(j)
m′

converging uniformly on [0, n] to y(j), j = 0, 1. Also y(0) = 0, y(n) = b and

ΩM (t) ≤ y(t) ≤M, |y′(t)| ≤ Q0 for t ∈ [0, n].

It is easy to check as in Theorem 2.1 that y is a solution of (2.3). �
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We now discuss the semi-infinite problems

(2.46)


−y′′ = q(t)f(t, y), 0 < t <∞,

y(0) = 0,

y bounded on [0,∞),

and

(2.47)


−y′′ = q(t)f(t, y), 0 < t <∞,

y(0) = 0,

limt→∞ y(t) exists.

Theorem 2.3. Suppose (2.4)–(2.9) are satisfied. Then (2.46) and (2.47)
have a solution y ∈ C[0,∞) ∩ C2(0,∞).

Proof. Now Theorem 2.1 implies that for each n ∈ N+ there exists a solu-
tion yn ∈ C[0, n] ∩ C2(0, n] with

(2.48) ΩM (t) ≤ yn(t) ≤M for t ∈ [0, n]

and

(2.49)
∫ n

0

{
−g′(yn(s))
g2(yn(s))

}
[y′n(s)]2 ds ≤ N.

Let

I(z) =
∫ z

0

{−g′(u)}1/2

g(u)
du

and as in Theorem 2.1 there exists a constant Q (see (2.34)) with

(2.50) |I(yn(t))| ≤ Q for t ∈ [0, n]

and

(2.51) |I(yn(t))− I(yn(s))| ≤ N |t− s|1/2 for t, s ∈ [0, n].

Define

un(x) =

{
yn(x), x ∈ [0, n],

b, x ∈ (n,∞).
Then un is continuous on [0,∞) and un(t) ≥ ΩM (t) for t ∈ [0, n]. Now for
t, s ∈ [0,∞) it is easy to check that

(2.52) |I(un(t))| ≤ Q

and

(2.53) |I(un(t))− I(un(s))| ≤ N |t− s|1/2.

Let S = {I(un)}∞n=1. By the Arzelà–Ascoli theorem there is a subsequence N1 of
N+ and a continuous function I(z1) on [0, 1] such that I(un) → I(z1) uniformly
on [0, 1] as n → ∞ through N1. Since I−1 is a continuous increasing map and
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(2.52) holds, we have un(x) → z1(x) uniformly on [0, 1] as n → ∞ through N1.
Also ΩM (t) ≤ z1(t) ≤ M for t ∈ [0, 1] and z1(0) = 0. Again the Arzelà–Ascoli
theorem implies there is a subsequence N2 of N1 and a function I(z2) ∈ C[0, 2]
such that un(x) → z2(x) uniformly on [0, 2] as n→∞ through N2. Note z2 = z1
on [0, 1] since N2 ⊆ N1. Also ΩM (t) ≤ z2(t) ≤ M for t ∈ [0, 2] and z2(0) = 0.
Proceed inductively to obtain for k = 1, 2, . . . a subsequence Nk ⊆ N+ with
Nk ⊆ Nk−1 and a function zk ∈ C[0, k] such that un(x) → zk(x) uniformly on
[0, k] as n→∞ throughNk. Also zk = zk−1 on [0, k−1] with ΩM (t) ≤ zk(t) ≤M

for t ∈ [0, k] and zk(0) = 0.
Define a function y as follows. Fix x ∈ [0,∞) and let k ∈ N+ with x ≤ k.

Define y(x) = zk(x). Now y is well defined with y ∈ C[0,∞), y(0) = 0 and
ΩM (t) ≤ y(t) ≤ M for t ∈ [0,∞). Again fix x > 0 and choose k > x, k ∈ N+.
Then for t ∈ (0, k) we have

un(t) = un

(
1
2

)
+ u′n

(
1
2

)(
t− 1

2

)
+

∫ t

1/2

(s− t)q(s)f(s, un(s)) ds.

Let n→∞ through Nk so for t ∈ (0, k] we obtain (r ∈ R),

zk(t) = zk

(
1
2

)
+ r

(
t− 1

2

)
+

∫ t

1/2

(s− t)q(s)f(s, zk(s)) ds

since f is uniformly continuous on compact subsets of [min(1/2, t),max(1/2, t)]×
(0,M ] and zk(t) ≥ ΩM (t) > 0 for t ∈ (0, k]. Thus for t ∈ (0, k] we have

y(t) = y

(
1
2

)
+ r

(
t− 1

2

)
+

∫ t

1/2

(s− t)q(s)f(s, y(s)) ds

and so −y′′(x) = q(x)f(x, y(x)). Thus for 0 < s < ∞ we have −y′′(s) =
q(s)f(s, y(s)) and y ∈ C2(0,∞). Thus we have shown that there exists a solution
y ∈ C[0,∞) ∩ C2(0,∞) to (2.46) with ΩM (t) ≤ y(t) ≤ M for t ∈ [0,∞). Now
since y(t) ≥ ΩM (t) > 0 for t > 0 and −y′′(t) = q(t)f(t, y(t)), t > 0, it follows
that y′′(t) ≤ 0 for t ∈ (0,∞). Thus y′ is nonincreasing on (0,∞) so y will
be eventually monotonic (either y′ is of fixed sign on (0,∞) or there exists
t0 ∈ (0,∞) with y′(t0) = 0) i.e. there exists µ ∈ (0,∞) with y monotonic for
t ≥ µ. This together with 0 ≤ y(t) ≤ M for t ∈ [0,∞) implies that limt→∞ y(t)
exists. Consequently, y is a solution to (2.47). In fact, limt→∞ y(t) ∈ [0,M ]. �

Example. The boundary value problem
−y′′ = q(t)y−α, 0 < t <∞,

y(0) = 0,

y bounded on [0,∞),

with α > 0 and (2.4), (2.5) holding, has a solution y ∈ C[0,∞) ∩ C2(0,∞).
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To see this we apply Theorem 2.3. Clearly (2.6) with g(y) = y−α and h(y) =
0, (2.7), (2.8) with ψH(t) = H−α, and (2.9) are satisfied. The result now follows
from Theorem 2.3.

Theorem 2.4. Suppose (2.4)–(2.8) and (2.38) are satisfied. Then (2.46)
and (2.47) have a solution y ∈ C1[0,∞) ∩ C2(0,∞).

Proof. Essentially the same reasoning as in Theorem 2.3 (except that we
use Theorem 2.2) establishes the result. For more details see the proof of Theo-
rem 3.2. �

Finally, we examine the boundary condition at infinity. In particular, we
discuss

(2.54)


−y′′ = q(t)f(t, y), 0 < t <∞,

y(0) = 0,

limt→∞ y′(t) = 0.

Theorem 2.5. Suppose (2.4)–(2.8) and (2.38) are satisfied. Then (2.54) has
a solution y ∈ C[0,∞) ∩ C2(0,∞) (in fact, in C1[0,∞) ∩ C2(0,∞)).

Proof. Theorem 2.3 implies that (2.46) has a solution y with ΩM (t) ≤
y(t) ≤ M for t ∈ [0,∞). Note that since y is a solution to −y′′ = qf(t, y),
0 < t <∞, with y(0) = 0 we have

y(t) = At+
∫ t

0

xq(x)f(x, y(x)) dx− t

∫ t

0

q(x)f(x, y(x)) dx,

where A is a constant. However, since y(t) ≤M for t ∈ [0,∞) we get

(2.55) y(t) = t

∫ ∞

t

q(x)f(x, y(x)) dx+
∫ t

0

xq(x)f(x, y(x)) dx.

Remark. (i) Notice that
∫∞
0
xq(x)f(x, y(x)) dx <∞ since∫ 1

0

xq(x)f(x, y(x)) dx ≤
(

1 +
h(M)
g(M)

) ∫ 1

0

q(x)g(ΦM (1)x) dx <∞

and ∫ ∞

1

xq(x)f(x, y(x)) dx ≤
(

1 +
h(M)
g(M)

)
g(ΦM (1))

∫ ∞

1

xq(x) dx <∞.

(ii) Also
∫∞
0
q(x)f(x, y(x)) dx < ∞ and limt→∞ t

∫∞
t
q(x)f(x, y(x)) dx = 0

since for t > 0 we have

0 ≤ t

∫ ∞

t

q(x)f(x, y(x)) dx ≤
∫ ∞

t

xq(x)f(x, y(x)) dx.

Now (2.55) implies
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y′(t) =
∫ ∞

t

q(x)f(x, y(x)) dx for t > 0

so y′ ≥ 0 on (0,∞) with limt→∞ y′(t) = 0. Thus y is a solution to (2.54). �

3. The equation y′′ + f(t, y, y′) = 0

In this section we discuss

(3.1)


−y′′ = q(t)f(t, y, y′), 0 < t <∞,

y(0) = 0,

y bounded on [0,∞).

Two cases will be examined, the case when q is nonincreasing on (0,∞) and the
case when q is nondecreasing on (0,∞).

Existence theory I . In this subsection we examine the situation when q is non-
increasing on (0,∞). The strategy will be to examine for n ∈ N+ the boundary
value problem

(3.2)m


−y′′ = q(t)f(t, y, y′), 0 < t < n,

y(0) = 1/m,

y(n) = b > 0,

where m ∈ {N,N + 1, . . . } with N ∈ N+ and b > 1/N . Existence of a solution
to (3.2)m will then be used to establish existence

(3.3)

{
−y′′ = q(t)f(t, y, y′), 0 < t < n,

y(0) = 0, y(n) = b > 0.

Theorem 3.1. Suppose (2.4), (2.5) hold and in addition

(3.4) q is nonincreasing on (0,∞) and bounded on [0, 1],

(3.5) 0 ≤ f(t, y, p) ≤ [g(y) + h(y)][A|p| + B] on (0,∞) × (0,∞) × (−∞,∞)
with f continuous on [0,∞)× (0,∞)× (−∞,∞), g > 0 continuous and
nonincreasing on (0,∞), h ≥ 0 continuous on [0,∞) and A > 0, B > 0
constants,

(3.6) h/g is nondecreasing on (0,∞) and there exists a constant M0 > 0 such
that for z > 0,∫ z

0

dx

g(x)
≤

(
1 +

h(z)
g(z)

){
Az

∫ ∞

0

q(x) dx+B

∫ ∞

0

xq(x) dx
}

+
∫ 1

0

dx

g(x)

implies z ≤M0,

(3.7)
∫ 1

0

g(x) dx <∞,

and
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(3.8) for constants H > 0, K > 0 there exists a function ψH,K continuous on
[0,∞) and positive on (0,∞) such that f(t, y, p) ≥ ψH,K(t) on (0,∞)×
(0,H]× [−K,K]; in addition

∫∞
0
xq(x)ψH,K(x) dx <∞.

Then (3.3) has a solution y ∈ C1[0, n] ∩ C2(0, n].

Proof. Consider the modified problem

(3.9)m
λ


−y′′ = λq(t)f?(t, y, y′), 0 < t < n,

y(0) = 1/m,

y(n) = b > 0,

where 0 < λ < 1 and f? ≥ 0 is any continuous extension of f from y ≥ 1/m.
Let y ∈ C1[0, n] ∩ C2(0, n] be a solution to (3.9)m

λ . Now y′′ ≤ 0 on (0, n) and
y ≥ 1/m on (0, n).

Case (i): y′ ≥ 0 on (0, n). Then

(3.10) 1/m ≤ y(t) ≤ b for t ∈ [0, n].

Case (ii): y′ ≥ 0 on (0, t0) and y′ ≤ 0 on (t0, n); t0 ∈ (0, n). Now for
x ∈ (0, t0) we have

−y′′(x) ≤ q(x)g(y(x))
{

1 +
h(y(x))
g(y(x))

}(
Ay′(x) +B

)
so integration from t (t < t0) to t0 yields

y′(t) ≤ g(y(t))
{

1 +
h(y(t0))
g(y(t0))

}(
Aq(t)

∫ t0

t

y′(x) dx+B

∫ t0

t

q(x) dx
)
.

Thus
y′(t)
g(y(t))

≤
{

1 +
h(y(t0))
g(y(t0))

}(
Aq(t)y(t0) +B

∫ t0

t

q(x) dx
)

and integration from 0 to t0 yields∫ y(t0)

0

du

g(u)
≤

{
1+

h(y(t0))
g(y(t0))

}(
Ay(t0)

∫ ∞

0

q(x) dx+B
∫ ∞

0

xq(x) dx
)

+
∫ 1

0

du

g(u)
.

Now (3.6) implies that there exists a constant M0 with y(t0) ≤M0 and so

(3.11) 1/m ≤ y(t) ≤M0 for t ∈ [0, n].

Combining both cases yields

(3.12) 1/m ≤ y(t) ≤ max{b,M0} ≡M for t ∈ [0, n].

Next we show there is a constant V , independent of λ and n, with

(3.13) |y′(t)| ≤ V for t ∈ [0, n].
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Case (i): y′ ≥ 0 on (0, n). There exists ξ ∈ (0, 1) with y′(ξ) = y(1)− y(0) ≤
b− 1/m ≤ b and so

(3.14) 0 ≤ y′(t) ≤ b for t ∈ [ξ, n].

Also
−y′y′′

Ay′ +B
≤ q(t)[g(y) + h(y)]y′

so integration from t (t < ξ) to ξ yields

(3.15)
∫ y′(t)

0

u

Au+B
du ≤

∫ b

0

u

Au+B
du+ (sup

[0,1]

q(t))
∫ b

0

[g(u) + h(u)] du.

Let

(3.16) J(z) =
∫ z

0

u

Au+B
du

and note J(∞) = ∞ with J : [0,∞) → [0,∞) an increasing function.

Remark. We can of course calculate J explicitly.

Now (3.15) implies

y′(t) ≤ J−1

( ∫ b

0

u

Au+B
du+ (sup

[0,1]

q(t))
∫ b

0

[g(u) + h(u)] du
)

(3.17)

≡ R0 for t ∈ [0, ξ].

Combining (3.14) and (3.17) yields

(3.18) 0 ≤ y′(t) ≤ max{b, R0} ≡ R1 for t ∈ [0, n].

Case (ii): y′ ≥ 0 on (0, t0) and y′ ≤ 0 on (t0, n); t0 ∈ (0, n).
Now for t ∈ (0, t0) we have

−y′y′′

Ay′ +B
≤ q(t)[g(y) + h(y)]y′

so integration from t (t < t0) to t0 yields

(3.19) 0 ≤ y′(t) ≤ J−1

(
sup
[0,1]

q(t)
∫ M0

0

[g(u) + h(u)] du
)
≡ R2 for t ∈ [0, t0].

On the other hand, for t ∈ (t0, n) we have

y′y′′

A(−y′) +B
≤ q(t)[g(y) + h(y)](−y′)

and integration from t0 to t (t > t0) yields

(3.20) 0 ≤ −y′(t) ≤ R2 for t ∈ [t0, n].

Now (3.19) and (3.20) yield

(3.21) |y′(t)| ≤ R2 for t ∈ [0, n].
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With V = max{R1, R2} we obtain (3.13). Now (3.12), (3.13) and Theorem 1.1
imply that (3.9)m

1 has a solution ym ∈ C1[0, n] ∩ C2(0, n] with

(3.22) 1/m ≤ ym(t) ≤M and |y′m(t)| ≤ V for t ∈ [0, n].

In addition, since ym ≥ 1/m on [0, n], it follows that ym is a solution of (3.2)m.
Next assumption (3.8) implies that there exists a function ψM,V (t) continuous

on [0,∞) and positive on (0,∞) with f(t, y, p) ≥ ψM,V (t) for (t, y, p) ∈ (0,∞)×
(0,M ]× [−V, V ]. Now with

k0 ≤ min
{

1,
b∫∞

0
xq(x)ψM,V (x) dx

}
we deduce by essentially the same argument as in Theorem 2.1 that

(3.23) ym(t) ≥ k0

∫ t

0

xq(x)ψM,V (x) dx ≡ ΦM,V (t) for t ∈ [0, n].

Let

ΩM,V (t) =

{
ΦM,V (1)t, 0 ≤ t ≤ 1,

ΦM,V (t), t ≥ 1.
and as in Theorem 2.1,

(3.24) ym(t) ≥ ΩM,V (t) for t ∈ [0, n].

Also for x ∈ (0, n),

−y′′m(x) ≤ q(x)g(ym(x))
(

1 +
h(ym(x))
g(ym(x))

)
[A|y′m(x)|+B]

so

(3.25) −y′′m(x) ≤
(

1 +
h(M)
g(M)

)
[AV +B]q(x)g(ΩM,V (x)) for x ∈ (0, n).

Now (3.22) and (3.25) imply that {y(j)
m }, j = 0, 1, is uniformly bounded and

equicontinuous on [0, n] so the Arzelà–Ascoli theorem guarantees the existence
of a subsequence {ym′} and a function y ∈ C1[0, n] with y(j)

m′ converging uniformly
on [0, n] to y(j), j = 0, 1. Also y(0) = 0, y(n) = b with

(3.26) ΩM,V (t) ≤ y(t) ≤M and |y′(t)| ≤ V for t ∈ [0, n].

Essentially the same reasoning as in Theorem 2.1 now implies

y(t) = y

(
1
2

)
+ y′

(
1
2

)(
t− 1

2

)
+

∫ t

1/2

(s− t)q(s)f(s, y(s), y′(s)) ds.

Consequently, y ∈ C2(0, n] and −y′′(t) = q(t)f(t, y(t), y′(t)) for t ∈ (0, n). Also
y′′ ≤ 0 on (0, n) and

(3.27) −y′′(x) ≤
(

1 +
h(M)
g(M)

)
[AV +B]q(x)g(ΩM,V (x)) for x ∈ (0, n). �
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We next discuss the semi-infinite problems

(3.28)


−y′′ = q(t)f(t, y, y′), 0 < t <∞,

y(0) = 0,

y bounded on [0,∞),

and

(3.29)


−y′′ = q(t)f(t, y, y′), 0 < t <∞,

y(0) = 0,

limt→∞ y(t) exists.

Theorem 3.2. Suppose (2.4), (2.5) and (3.4)–(3.8) are satisfied. Then
(3.28) and (3.29) have a solution y ∈ C1[0,∞) ∩ C2(0,∞).

Proof. Theorem 3.1 guarantees for each n ∈ N+ a solution yn ∈ C1[0, n] ∩
C2(0, n] with

(3.30) ΩM,V (t) ≤ yn(t) ≤M and |y′n(t)| ≤ V for t ∈ [0, n]

and

(3.31) −y′′n(x) ≤
(

1 +
h(M)
g(M)

)
[AV +B]q(x)g(ΩM,V (x)) for x ∈ (0, n).

Notice that for t, s ∈ [0, n] we have

(3.32) |yn(t)− yn(s)| ≤ V |t− s|

and

(3.33) |y′n(t)− y′n(s)| ≤
(

1 +
h(M)
g(M)

)
[AV +B]

∣∣∣∣ ∫ t

s

q(x)g(ΩM,V (x)) dx
∣∣∣∣.

Define

un(x) =

{
yn(x), x ∈ [0, n],

b, x ∈ (n,∞).

Each un is continuous on [0,∞) and is twice continuously on (0,∞) except
possibly at x = n. Let S = {un}∞n=1. By the Arzelà–Ascoli theorem there is
a subsequence N?

1 of N+ and a function z1 ∈ C1[0, 1] with u
(j)
n (x) → z

(j)
1 (x),

j = 0, 1, uniformly on [0, 1] as n → ∞ through N?
1 . Let N1 = N?

1 /{1}. Then
there is a subsequence N?

2 of N1 and a function z2 ∈ C1[0, 2] with u
(j)
n (x) →

z
(j)
2 (x), j = 0, 1, uniformly on [0, 2] as n → ∞ through N?

2 . Note that z2 = z1

on [0, 1]. Let N2 = N?
2 /{2} and proceed inductively to obtain for k = 1, 2, . . .

a subsequence N?
k ⊆ Nk−1 and a function zk ∈ C1[0, k] with u

(j)
n (x) → z

(j)
k (x),

j = 0, 1, uniformly on [0, k] as n→∞ through N?
k .

Define the function y as follows. Fix x ∈ [0,∞) and let k ∈ N+ with x ≤ k.
Then define y(x) = zk(x) so y ∈ C1[0,∞), y(0) = 0 with ΩM,V (t) ≤ y(t) ≤ M ,
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t ∈ [0,∞) and |y′(t)| ≤ V , t ∈ [0,∞). Essentially the same argument as in
Theorem 2.3 shows that y is a solution to (3.28) and (3.29). �

Next we discuss

(3.34)


−y′′ = q(t)f(t, y, y′), 0 < t <∞,

y(0) = 0,

limt→∞ y′(t) = 0.

Theorem 3.3. Suppose (2.4), (2.5) and (3.4)–(3.8) are satisfied. Then
(3.34) has a solution y ∈ C1[0,∞) ∩ C2(0,∞).

Proof. Theorem 3.2 implies that (3.28) has a solution y with ΩM,V (t) ≤
y(t) ≤M for t ∈ [0,∞) and |y′(t)| ≤ V for t ∈ [0,∞). Consequently,

(3.35) y(t) = t

∫ ∞

t

q(x)f(x, y(x), y′(x)) dx+
∫ t

0

xq(x)f(x, y(x), y′(x)) dx.

Remark. Notice that∫ ∞

0

xq(x)f(x, y(x), y′(x)) dx <∞ and
∫ ∞

0

q(x)f(x, y(x), y′(x)) dx <∞

since∫ 1

0

xq(x)f(x, y(x), y′(x)) dx

≤
(

1 +
h(M)
g(M)

)
[AV +B] sup

[0,1]

q(t)
∫ 1

0

g(ΦM,V (1)x) dx <∞.

Now (3.35) implies

y′(t) =
∫ ∞

t

q(x)f(x, y(x), y′(x)) dx for t > 0

so y′ ≥ 0 on (0,∞) with limt→∞ y′(t) = 0. �

Existence theory II . In this subsection we will assume q is nondecreasing on
(0,∞). Our existence theory is motivated by (1.3); see [1, 3]. We first discuss
the boundary value problem (3.3).

Theorem 3.4. Suppose (2.4) holds and in addition assume that

(3.36) f is continuous on [0,∞)× (0,∞)× (−∞,∞),

(3.37) pf(t, y, p) ≥ 0 on [0,∞)× (0,∞)× (−∞,∞),

(3.38) f(t, y, p) ≤ [g(y)+h(y)]µ(|p|) on (0,∞)× (0,∞)× (−∞,∞) with g > 0
continuous and nonincreasing on (0,∞), h ≥ 0 continuous on [0,∞)
and h/g nondecreasing on (0,∞),

(3.39) q is nondecreasing on (0,∞) and bounded on [0, 1],
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(3.40)
∫ 1

0
g(x) dx <∞,

(3.41) µ > 0 is continuous on (−∞,∞) with∫ ∞

0

x

µ(x)
dx > sup

[0,1]

q(t)
(

1 +
h(b)
g(b)

) ∫ b

0

g(x) dx+
∫ b

0

x

µ(x)
dx

and

(3.42) for constants H > 0, K > 0 there exists a function ψH,K continuous
on [0,∞), positive and nondecreasing on (0,∞) and constants A >

0, B ≥ 0, 1 ≤ r < 2 such that f(t, y, p) ≥ ψH,K(t)[Apr + B] on
(0,∞)× (0,H]× [0,K].

Then (3.3) has a solution y ∈ C1[0, n] ∩ C2(0, n].

Proof. Let y be a solution to (3.9)m
λ with

f?(t, u, p) =

{
f(t, 1/m, p), u ≤ 1/m,

f(t, u, p), u ≥ 1/m.

Remark. Note that pf?(t, u, p) ≥ 0 on [0,∞)× (−∞,∞)× (−∞,∞).

We claim that

(3.43) y′ ≥ 0 on [0, n].

To see this notice that for any τ ∈ [0, n) and t > τ we have

−[y′(t)]2 + [y′(τ)]2 = 2λ
∫ t

τ

q(x)y′(x)f?(x, y(x), y′(x)) dx ≥ 0

so

(3.44) [y′(t)]2 ≤ [y′(τ)]2 for t ≥ τ.

If y′(0) = 0 then (3.44) with τ = 0 implies y′(t) = 0 for t ∈ [0, n], a contradiction
since b > 1/m. Thus y′(0) 6= 0. Then either y′ 6= 0 on [0, n] or there exists δ ≤ n

with y′(t) 6= 0 for t ∈ [0, δ) and y′(δ) = 0.

Case (i): y′ 6= 0 on [0, n]. If y′ < 0 on [0, n] then 1/m = y(0) > y(n) = b, a
contradiction. Thus y′ > 0 on [0, n].

Case (ii): There exists δ ≤ n with y′(t) 6= 0 for t ∈ [0, δ) and y′(δ) = 0.
Now (3.44) with τ = δ implies y′ = 0 on [δ, n] so y(t) = b for t ∈ [δ, n]. If y′ < 0
on [0, δ) then y(δ) < 1/m, a contradiction. Hence y′ > 0 on [0, δ).

Consequently, (3.43) is true. Now the definition of f? together with (3.37)
implies y′′ ≤ 0 on (0, n). Also

(3.45) 1/m ≤ y(t) ≤ b for t ∈ [0, n].
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Now there exists ξ ∈ (0, 1) with y′(ξ) = y(1)− y(0) ≤ b and so

(3.46) 0 ≤ y′(t) ≤ b for t ∈ [ξ, n].

Also since
−y′y′′

µ(y′)
≤ q(t)g(y(t))

(
1 +

h(y(t))
g(y(t))

)
y′

we deduce on integration from t (t < ξ) to ξ that∫ y′(t)

0

u

µ(u)
du ≤ sup

[0,1]

q(t)
(

1 +
h(b)
g(b)

) ∫ b

0

g(u) du+
∫ b

0

u

µ(u)
du.

Define

K(z) =
∫ z

0

u

µ(u)
du

so

y′(t) ≤ K−1

(
sup
[0,1]

q(t)
(

1 +
h(b)
g(b)

) ∫ b

0

g(u) du+
∫ b

0

u

µ(u)
du

)
(3.47)

≡ N0 for t ∈ [0, ξ].

Combining (3.46) and (3.47) yields

(3.48) 0 ≤ y′(t) ≤ max{N0, b} ≡ V for t ∈ [0, n].

Theorem 1.1 implies that (3.9)m
1 (and consequently (3.2)m) has a solution ym

with

(3.49) 1/m ≤ ym(t) ≤ b and 0 ≤ y′m(t) ≤ V for t ∈ [0, n].

Next assumption (3.42) implies there is a function ψb,V (t) with f(t, y, p) ≥
ψb,V (t) for (t, y, p) ∈ (0,∞)× (0, b]× [0, V ]. Thus

(3.50) −y′′m(t) ≥ q(t)ψb,V (t)[A(y′m(t))r +B] for t ∈ (0, n).

Case (i): r = 1. Integrating (3.50), with r = 1, from t to n yields

y′m(t) ≥ Aq(t)ψb,V (t)
∫ n

t

y′m(x) dx

so
y′m(t) ≥ Aq(t)ψb,V (t)[b− ym(t)].

Integration from 0 to t now yields

(3.51) ym(t) ≥ b− b exp
(
−A

∫ t

0

q(x)ψb,V (x) dx
)
≡ Φ1(t), t ∈ [0, n].

Remark. Note that Φ1(t) → b as t→∞.

Case (ii): 1 < r < 2. We know either y′m > 0 on [0, n] or there exists δ ≤ n

with y′m > 0 on [0, δ) and y′m = 0 on [δ, n]. Multiply (3.50) by (y′m)1−r and
integrate from t to n if y′m > 0 on [0, n] whereas integrate from t (t < δ) to δ if
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y′m > 0 on [0, δ) and y′m(δ) = 0, to obtain (using the fact that q and ψb,V are
nondecreasing on (0,∞))

y′m(t) ≥ (A(2− r)q(t)ψb,V (t)[b− ym(t)])1/(2−r).

Hence
[b− ym(t)]−1/(2−r)y′m(t) ≥ (A(2− r)q(t)ψb,V (t))1/(2−r).

Integrate from 0 to t to obtain

[b−ym(t)](1−r)/(2−r) ≥ b(1−r)/(2−r)+
(

2− r

1− r

)∫ t

0

(A(2−r)q(x)ψb,V (x))1/(2−r) dx.

Thus on [0, n] we have

(3.52) ym(t)

≥ b− b

(1 + b(r−1)/(2−r)( 2−r
r−1 )

∫ t

0
(A(2− r)q(x)ψb,V (x))1/(2−r) dx)(r−1)/(2−r)

≡ Φr(t).

Remark. Note that Φr(t) → b as t→∞.

Let

Ωr(t) =

{
Φr(1)t, 0 ≤ t ≤ 1,

Φr(t), t ≥ 1.
As in Theorem 2.1 we have

(3.53) Ωr(t) ≤ ym(t) ≤ b and 0 ≤ y′m(t) ≤ V for t ∈ [0, n].

Remark. Note that Ωr(t) → b as t→∞.

Finally, for t ∈ (0, n) we have

−y′′m(t) ≤ q(t)g(Ωr(t))
(

1 +
h(b)
g(b)

)
max
[0,V ]

µ(p).

Essentially the same reasoning as in Theorem 2.1 now implies that (3.3) has a
solution. �

The argument in Theorem 3.2 immediately implies the following result.

Theorem 3.5. Suppose (2.4) and (3.36)–(3.42) are satisfied. Then (3.28)
and (3.29) have a solution y ∈ C1[0,∞) ∩ C2(0,∞).

Consider the boundary value problem

(3.54)


−y′′ = q(t)f(t, y, y′), 0 < t <∞,

y(0) = 0,

limt→∞ y(t) = b > 0.
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Theorem 3.6. Suppose (2.4) and (3.36)–(3.42) are satisfied. Then (3.54)
has a solution y ∈ C1[0,∞) ∩ C2(0,∞).

Proof. Theorem 3.5 guarantees a solution y ∈ C1[0,∞)∩C2(0,∞) to (3.28)
with Ωr(t) ≤ y(t) ≤ b for t ∈ [0,∞). Now since Ωr(t) → b as t → ∞ the result
follows. �

Example. The boundary value problem

(3.55)


−y′′ = 2ty′y−1/2, 0 < t <∞,

y(0) = 0,

limt→∞ y(t) = 1,

has a solution.
Let q(t) = 2t, f(t, y, p) = py−1/2, g(y) = y−1/2, h(y) = 0, µ(p) = |p|+ 1 and

b = 1. Notice that (2.4), (3.36)–(3.40), (3.41) since∫ ∞

0

x

µ(x)
dx =

∫ ∞

0

x

x+ 1
dx = ∞,

and (3.42), with ψH,K = H−1/2, A = 1, r = 1, B = 0, are satisfied. Existence of
a solution to (3.55) is guaranteed by Theorem 3.6.
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