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M-PERIODIC PROBLEM OF ORDER 2k

DARIUSZ IDCZAK

1. Introduction

In monograph [2] the Du Bois—Reymond lemma (fundamental lemma) for
periodic functions of order 1 is proved. Next, using the variational method, the
authors prove an existence theorem for the periodic problem

I~H
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=
I

VF(t,u(t), tel0,T]ae.,
u(0) = u(T), u(0) = u(T),
in the case when a coercivity condition for the average of F' is satisfied and the
nonlinearity VF' is bounded by an integrable function.
In our paper we prove a generalization of the fundamental lemma and then,

using the variational method, we give sufficient conditions for the existence of a
solution to the following M-periodic problem (matrix-periodic problem)

d d(d _

1991 Mathematics Subject Classification. 34C25, 49J45.

Key words and phrases. Fundamental lemma, periodic problem, variational method.

This research was supported by the grants 2P03A05910, 8T11A01109 of the Polish State
Committee for Scientific Research.

©1998 Juliusz Schauder Center for Nonlinear Studies

169



170 D. Inpczak

u(0) u(T)
u'(0 u' (T
o |_, |
u(k—l)(o) u(k—l)(T)
r u(k)|t:0 7
iu(k) —F,
dt o t=0

L 1o+
d
) R
u e
=B d d(d ,,
—( ... (=(=u® -F, F, '
(dt< (dt(dtu “>+ “)
k—1 times
+...+ (—1)’“—2&2) + (—1)’“‘1Fu1>

t=T "~

where F : [0, T] x (R 3 (t,ug, us, ..., up—1) — F(t,ug,u,...,up_1) ER, A=
[@ii]ii=o... k—1 is a nonsingular matrix such that A=! = A’ (A’ — transposed
matrix) and

k—1,k—1 —ak—2k-1 - (1) lagi_y
—Qk—1,k—2 ag—ak—2 - (=DFagr_2
B =
(D" tag-10 (=D*ar—20 ... 0.0

If k = 3, then equation (1.1) and boundary conditions (1.2) have the form

4 (5 (G0 = Pt 0,070 ) + P (tu(0. 0,07
— Fy (tu(t),u'(t),u"(t)) =0, t€][0,T] ae.,
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In the case of A = I and F not depending on uy,...,u—1 (i.e. F' = F(t,u)),

t=T

the above boundary conditions and equation (1.1) are reduced to the periodic
problem of type

uPR () + (~1)*VE(t,u(t)) =0, te[0,T]ae.,
u®(0) = (1), i=0,...,2k—1.

When A = -1 and F = F(t,u), we obtain the antiperiodic problem

uPR () + (~1)*VE(t,u(t)) =0, te[0,T]ae.,
u(0) = —u(T), i=0,....2—1.

Moreover, in the case of k = 1 and A = I, the results obtained are reduced
to those proved in [2].

2. Fundamental lemma

Let n > 1, kK > 2 be some fixed positive integers, A — a k X k-dimensional
nonsingular real matrix with A=' = A’, T > 0 — a fixed positive number and
I =[0,T]. We define

H(]f’" ={h:I—R" h" is absolutely continuous on I

and KD (0) = h(T)=0for 0 <i <k —1, h® e L2(I,R")},
HY" ={h: 1 —R" h" is absolutely continuous on I

for 1 <i<k—1, [A(0),n(0),...,h k=D (0))

= Ao[h(1),h(1),....,A* D)), ™ e L2(1,R")}.

In the proof of the fundamental lemma we shall use the following classical
result concerning a moments problem (see, for example [3, Section 5.8]).

LEMMA 2.1. If ag,a1,...,ax_1 € R™, then there exists a function | €
L?(I,R") such that

/1 () dt = ap, /(T—t)l(t) it =ay, ... /(T—t)k—lz(t) dt = a1,

I I I

We have
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THEOREM 2.1 (the fundamental lemma). If v € L*(I,R), w € L'(I,R),
Qag,...,a_1 € R and

(2.1) /v(t)h(’“)(t) dt = (—1)k/

k—1
w(t)h(t)dt + Y (=1)F a1 hO(T)
4 4 =0

for any h € Hﬁ’l, then there exist constants cg,...,cx_1 € R such that

t oty tp—1
(2.2) v(t) = / / / w(s)dsdty_q...dty + e tF T L et + oo,
0 Jo 0

fort €I a.e. and (after identifying v with the above right-hand side)

1}(0) U(T) — Qo
v'(0) B V(T) —aq
o 0) WD) — g

where B = [b; 1]i.1=0,... k-1, big = (_1)l+iak—1—i,k—1~

PROOF. The form (2.2) of v follows immediately from the fact that H(’f e
Hf{l and from the generalization of the Du Bois—Reymond lemma to the case of
derivatives of order k and the Dirichlet boundary conditions, proved in [4] (cf.
also [1]). So, let us identify v with the function

t  pt1 tr—1
IBtH// / w(s)dsdty_y...dty +cxg_1t" 1+ L+ ert + e
0 JO 0

Integrating by parts, we obtain

/1 o (O (t) dt =v(t)h* D )I=T / o (ORED () dt
—o(OhED BT — o (DT + / o () (1) di
= = oA WET — o (RED ([T

o (DY@ R@)EE + (—1)k/v(k)(t)h(t) dt.
I
In view of the above, from assumption (2.1) we have
vOAPTV @S5 — ' (R (@)=

+o+ (GO @R@IEST = Y (-1 g h (D),
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for any h € HZ’17 ie.

(2.3) (0(T) — ag)h*=(T) — v(0)hF =1 (0)
— [ (T) = a)h*=2(T) — ' (0)R =2 (0)]
+o A+ EDMHEET) = ag)W(T) = 0T (0)(0)] = 0,

for any h € Hff"l.
Now, let us fix i € {0,...,k — 1} and define

t  pt1 th—1 1 .
hiZ[O,T]BtH/ / / l(S)detkfl...dtl—‘r_f'tZ
o Jo 0 2

where | € L?(I,R) is such that

/1 . l(t)dt:ai,k,l,

I

/(T — t)l(t) dt = i k—2,

I

/ (T — O)F210(8) dt = as g (k — 2 — i)\,
I

/(T — @) dt = (a; — 1) (k—1—14)),
I
/(T — k() dt = (am-l — f) (k—i)!,

I

- P _ g)k—i N 1
hE )(t):/o ((k_)i)!l(s)ds+z(zl)~...~2i!t,
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. t _ \k—1—i
hg”(t):/ T8 Z(S)dsﬂ'!%',
O .

(k—1—14)!
(i+1) _ t (T _ S)k727i
RV (1) = /0 ml(s)ds,

W20 = [ - o)
R () = /Otl(s) ds.

Consequently, b (0) = 0 for j € {0,...,k—1}, j # 4, h{?(0) = 1 and B9 (T) =
a;; for j € {0,...,k—1}.
This implies, in view of I = Ao A’, that h; € Hfl’l.
Now, let us observe that from (2.3) we have

(D RO ) = cuma—) = KOO 0)

= S U @) - ) — OO D(0)),
l;é(z)
for any h € HZ’17 ie.

k—1
h(i)(()),u(k—i—l) Z l+zh(l) ( (k—l—l)(T) _ ak—l—l)

~
(=)

k—

,_.

l—H (k—l—l) (0)

)

FI M

for any h € Hf"l. Substituting h; in the above equality, we have

E

—1
v(k—i—1)(0) _ (_1)l+iai’l(v(k—1—1)(T) —Qp_1-1)-

N
I
=

Finally, from the arbitrariness of i € {0,1,...,k — 1} we get

k-1
U(z) (0) — (_1)l+k717iak_1_i7l(,kalfl(T) _ ak—l—l)

=0
k—1 )

— Z(_1)kflfl+kflfza}k_1_i,k_1_l(U(k717k+1+l) (T) _ ak—l—k+1+l)
=0
k—1 ) k—1

=Y ()" ap 11— (0(T) — ) =Y b (v (T) — au),
=0 =0

fori=0,1,...,k — 1. The proof is completed.
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From the above theorem we immediately obtain the following

COROLLARY 2.1. If v = (v1,...,v,) € L*(I,R"), w = (wy,...,w,) €
LYIL,LR"), ap = (o, af),..yap—1 = (ah_q,...,af_ ;) € R™ and equality
(2.1) holds for any h € Hfl’", then there exist constants cg,c1,...,cx—1 € R"

such that formula (2.2) holds for t € I a.e. and (after identifying v with the
right-hand side of (2.2))

v1(0) v2(0) )
v (0) vh(0) ... v, (0)
el (1) I Sl (1) BRIl (1)
v1(T) — o vo(T) — o . v (T) — aff
s v} (T) — of vh(T) — a2 . ol (T) — af
k1) k1) /e =) n
oM —al VM) -0, WM -0,

where the matriz B is as in theorem (2.1).
PROOF. It suffices to consider the functions h € H%5™ of the form h =
(0,...,0,h;,0,...,0) with h; € Hf,’l and use the previous theorem. O
3. Some properties of the space HZ’”

Let us define the following inner product in the space HZ’”

(g,h) = /g(t)h(t) dt+/g'(t)h'(t) dt+...+/g(’“>(t)h<k>(t) dt.

I I I

The norm generated by this product is as follows:

(3.1) A = (/I|h(t)|2dt+/lh’(t)|2dt+...+/1h(’“)(t)2dt)1/2.

In the same way as in [2, Proposition 1.1] one can obtain

LEMMA 3.1. Foranyi € {0,...,k—1}, there exists a constant e; such that
(a) if he HY™ then

RO @) < e;llh
tgg§]| (®)] < eillhll,

(b) if he HY™ and [, hD(t)dt = 0, then

RO (1)) < el ]| pagran).
tgg§]l ()] < e 221, rn)

From (b) of the above lemma we immediately get
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LEMMA 3.2. For any i € {0,...,k — 1}, there exists a constant d; such that
ifhe HY™ and [, h)(t)dt =0, then

/ |RD ()2 dt < d; / |RGHD (1)]2 dt.
I I
This lemma implies

LEMMA 3.3. There exists a constant d such that if h € HX™ and [, RO (t) dt
=0fori=0,...,k—1, then, foranyi=0,...,k—1

/|h<i>(t)|2dt < d/|h(’“)(t)|2dt.
I I
Moreover, we have

LEMMA 3.4. The space Hf"n with norm (3.1) is complete.

PROOF. Let (hy)nen be a Cauchy sequence in Hf"". From the completeness
of L?(I,R™) it follows that, for any i € {0,...,k}, there exists a function l; €
L?(I,R") such that

Y —— 1, € L*(I,R").

n—oo

Moreover, for any ¢ € {0,...,k —1} and 0 < s <t < T, n € N, we have

n

(32)  [pP(0) —hP(s)] < /t A+ (1) dr

1/2

t
< <t—s>1/2< [ o par

< (t =) 2R 2 rny < Mi(t = 5)'/2,

where M; is such that ||h£1i+l)HL2(I7]Rn) < M; for n € N. This means that the
sequence (hﬁf ))neN is equi-uniformly continuous.

From Lemma 3.1(a) we get

max, D (1)) < esllhnll.
This means, in view of the boundedness of the sequence (hy,)nen in Hﬁ’", that
the sequence (hgf))neN is equi-bounded.

So, from the Arzela—Ascoli theorem it follows that s subsequence of (hgf ))nGN
is uniformly convergent to a continuous function. The uniqueness of the limit in
L?(I,R™) implies that this continuous limit is /;. It is easy to see that the se-
quence (hgf ))neN converges uniformly to l; (it suffices to contradict this assertion
and repeat the above reasoning).
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Thus, for any ¢ € {0,...,k — 1}, hg) ——=1; uniformly on I and I; is con-
tinuous on I. From this fact it follows that
lo(0) lo(T)
11(0) L(T)
(3.3) . =Ao )
1k—1(0) le—1(T)

Now, let us observe that, for any t € I,
t
WEE) = [ HO(s) ds+ B0, n=12,
0

and
hED () —— hoa (), hFD(0) —— 15-1(0),

n
n—o0 n— o0

t

t(k)ss:t(k)s—ss tss—> s))ds
/Ohnud /0<hn<> zk<)>d+/ozk<>d li(s)) d

n—oo 0

(the last convergence follows from the estimates

t T
\ [ 006 = wsas| < [ )~ i)l ds < ||h£ﬁ>—zk||Lzu,Rn>T%)-
0 0

So, for t € I,

t
lr—1(t) = lim ¥~V () = lim </ (h{F)(s) ds+h£ﬁ—1>(o))
n—oo n—oo 0

= / lk(s) ds + lkfl(O).
0

In an analogous way, for any ¢ =0,...,k — 2,
t
ll(t) = / li+1(8) ds + 11(0) fortel.
0
This means that function [y is such that l(()i) is absolutely continuous on I for

i=20,...,k—1, and l(()i) =; for i = 0,...,k. Consequently, l(()k) € L*(I,R"™)
and, in view of equality (3.3),

1o(0) lo(T)
6o |, | 0
#-9(0) =)

So, I € Hﬁ’" and, of course, h, — lp in Hf"n. The proof is completed. [
n—oo
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LEMMA 3.5. If h,, —— hgy weakly in Hf"", then hg) — hgi) uniformly

on I for anyie€{0,...,k—1}.

PROOF. Let a sequence (hy)nen be weakly convergent to hg in Hf"n. So, it is
bounded in Hff"". Let us fix any number ¢ € {0,...,k—1}. From Lemma 3.1(a)
it follows that (hﬁf ))neN is equi-bounded on I. In an analogous way as in the
proof of Lemma 3.4 (see inequality (3.2)) one can show that this sequence is equi-
uniformly continuous on I. Then, from the Arzela—Ascoli theorem it follows that
a subsequence (hﬁf,ﬂ)keN of (h%))neN is uniformly convergent on I to some con-
tinuous function hi%) Of course, hgf,z Thig weakly in the space of continuous

— 00
functions on I. On the other hand, since h,,, T ho weakly in HZ’", Lemma
—00
3.1(a) holds and the linear continuous operator preserves a weak convergence,
therefore hSQ f hél) weakly in the space of continuous functions on I.

E (W) —

Thus h(()i) = hié on I and, consequently, hy, ——= héi) uniformly on I. To

k—o0

assert that hgf ) — h(()i) uniformly on I, it suffices to contradict this assertion
n—oo

and repeat the above reasoning. The proof is completed. O

4. Existence of a solution to M-periodic problem of order 2k

Let us consider the following functional
(4.1) o:HY" 50— /f(t,u(t),u’(t),...,u(k)(t))dt.
I

Using the same method as in [2, Theorem 1.4], one can prove

THEOREM 4.1. Let f : I x (R")* > (t,up,...,ur) — f(t,uo,...,ux) €
R be measurable in t for each u = (ug,...,u;) € (R")** and continuously
differentiable in u = (ug,...,u;) for t € I a.e. If there exist a € C(R{,RY),
be LYI,RY) and c € L*(I,RY), such that, for t € I a.e., u = (ug,...,ux) €
(R™)*+1 one has

|f(tuo, .. ue)| < al|(uo, - - . ur—1)])(b(E) + |uk|?),
| fu, (t o, - -y ur)| < al|(uo, ... yup—1)])(B(t) + Juxl?), i=0,...,k—1,
|fuk(t7u07 .. .,Uk)‘ < a(\(uo, s ,Uk_l)D(C(t) + ‘Uk-D,

then the functional ¢ given by (4.1) is continuously differentiable on HZ‘", and

k
(¢ (u),h) = / > futu®), ' (1), ., uF ()R (&) dt for u,h € HY™.
Ii=o
Now, let f: I x (R")**! — R be defined by

1
(42> f(t,UO,U/l,...,’LLk) = §|uk|2 +F(t,UQ,U1,- ..7’11/]@,1),
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and let the following assumption be satisfied
(A) F : I x (R")* — R is measurable in t for (ug,...,ux_1) € (R™)F,
continuously differentiable in (ug,...,ur—1) for ¢t € I a.e. and satisfies
the conditions
F(tyuo, . k1| < all(uo, ., 1) (D),
|Fy, (E,u0, -y up—1)] < a(](uo, - - -y uk—1)])b(t),
for t € I ae., (up,...,up—1) € (R*)* and an a € C(RJ,R), b €
LYI,RY).

It is easy to see that function (4.2) satisfies the assumptions of Theorem 4.1.

i=0,...,k—1,

Consequently, the functional
1
(43) o: HY" 3w / <2|u(’“)(t)|2 + F(t,u(t),u' (t),. .. ,u(k_l)(t))> dt € R,
I

is continuously differentiable on Hf{", and, for u,h € Hz’”,

(@' (u), h) = /I (zk: Fy, (tut), ' (t), ..., u* D @)D (t) + u® (£)h*) (t)) dt,
i=0
Moreover, since the functional
HY" 50 /1 %|u(k)(t)|2dt €R,
being convex and continuous, is weakly l.s.c. and the functional
HE 5 0 /IF(t,u(t),u’(t), L aD(@)dt e R,
being weakly continuous (see Lemma 3.5), is weakly l.s.c., therefore the func-

tional ¢ given by (4.3) is weakly l.s.c.
THEOREM 4.2. If F satisfies (A) and
(B) there exists g € L'(I, R:{) such that
‘Ful(ta Uugy - - - 7uk*1)| < g(t)v

fortel ae,ueR" i=0,...,k—1,
(C) [ Ft,W(t),W'(t),..., WkED(t))dt — oo as S| — oo with
W(t) =co+ cit+ ...+ Ck_ltkil,

then the functional ¢ given by (4.3) is coercive, i.e.

p(u) = oo as [luf| — oc.

Proor. It is easy to check that any function u € Hf"” can be represented

in the form

u(t) =a(t) +a(t) = u(t) e 1t* P Fep ot P4 Fette, tel,
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with ¢g,...,ck_1 € R™ and
/a(t) dt =0, /ﬂ’(t) =0, ..., /ﬂ(’f—”(t) dt = 0.
I I I
Indeed, it suffices to choose the vectors cg,...,cr_1 € R™ for which

/(Ckfltk_l +...+ct+ Co) dt = /u(t) dt,
I I

/I((k:— Dew 152 4 4 o) dt = /Iu’(t) dt,

/((k —1)...2cp 1t + (k= 2)lep_o) dt = /u<k*2>(t) dt,
I I
/(k —Dlep_y dt = /u@*l)(t) dt.

I I

Now, let us notice that
k—1
(4.4) Jul = 00 =" lei| + / [u® (£)[2 dt — oo,
i=0 1

Indeed, if we denote w(t) = cp_1t*~1 4 ... + c1t + co, we have

k—1
= 3 [ WO P e+ [P
i=0 /1 I
k—1 ) ]
= Z/W(z)(t)+ﬂ(’)(t)|2dt+/\u(k)(t)\2dt
i=0 /1 I
k—1 ) k—1 )
=y / )P dt+2) / (6@ (t) dt
i=0 71 i=0 71
k—1 )
+Z/|@<l>(t)\2dt+/|u<k>(t)|2dt.
i=0 /1 I

From Lemma 3.3 we have

k—1
Z/|a<i>(t)|2dtg k-d/|a<k>(t)|2dt: k-d/\u(k)(t)PdL
im0 /1 I I
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Z/Iu dt<z/|a<> | [ (1) dt
=0
k—1 4 1/2
< 3™ max [7) (¢ )|T1/2(/|17(”(t)2dt>
Pt tel
k—1 /2
<TY?. max|u d1/2(/|u (t)|? dt)
el
1/2 k-1 _
:Tl/Z-dW( / |u(k)(t)|2dt> 3" max [@® (1)
I el
1/2
<T1/2.d1/2(/|u<k>(t)|2dt>
I
k—1 k—1
{(k = Dlmax{T°,..., 7" 1} )" |cj|}
i=0 j=0

k—1 1/2
:T1/2-d1/2-k!maX{TO,...,Tk_l}Z|ci</|u(k)(t)2dt> ,
=0 4
k-1 2
O (1)|2 dt < O 1)))?2 < —(i)
/|u t)|° dt T r?ea;(|u _T(gr‘?&xm (t))
k-1 k-1 2
gT(Z [(k — 1)!maX{TO,...,Tk_1}Z|cj|]>
i=0 §=0
k—1 2
:T(k!maX{TO,...,Tk1}Z|cj|)
=T(k)*(max{T°,..., T*1})2 (Zm)
So,
lul|> <k- d/|u t)|? dt
1/2

k—1
+9.7Y2. d1/2k!111ax{T07 e ,Tk_l} Z |ci (/ |U(k)(t)|2 dt)
: I

T (kD2 (max{T°,..., Tk 1})2 <Z|q>2.

The above means that (4.4) is true. Now, we have

o(u) :/I%|u(k)(t)|2dt+/1F(t,u(t),...,u(k’l)(t))dt
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_ [ Lumppe - ak=1)
_/12| )] dt+/IF(t, @), a* =D (1) dt
- /[F(t,u(t), CuFTY@)) = B, ..., at ()] de
I

1
:/I§|u(’“)(t)|2dt+/IF(t,ﬂ(t),...,ﬂ(k_l)(t))dt
1 k-1

(t,w su(t), ... a1 sut=D ) a® s
+ /I /0 ;Fm(t, (t) +su(t),. .., (t) + N (t) ds dt
= /I%|u(k)(t)|2dt+/IF(t,ﬂ(t),...,ﬂ(k_l)(t))

k—1 1
@ NeRT st o gD s(k=1) <
+ ZX;/I (t)l) F, (t7 (t) + (t)), , (t) + (t))d )dt
N O R O I OF
k—1
- Lm0 € 13 / o(t) dt

Lu® e - )
Z/ﬂ' )] dt+/IF(t, ), @ D)) de

- (fzéei)mn [ sty
> [SuO@P s [P, a* Do)

I I

() efrors)” fone

where e is the constant from Lemma 3.1(a), d is the constant from Lemma 3.3

and cg,...,cr_1 are such that
u(t) = u(t) + cpe_1t" 1.+ et + o,

with

Consequently, using (4.4) we assert that
p(u) = 00 as [Jull = oo.
The proof is concluded. O

From the above theorem it follows that any minimizing sequence of ¢ is
bounded. This means, in view of the reflexivity of H%™ and the weak lower
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semicontinuity of ¢, that ¢ has its minimum on HZ’”. Let us denote the min-
imum point of ¢ on Hfl’" as u,. The differentiability of ¢ on Hz’" implies, for
H,]Z’na <()0/(u*)7h> = Oa Le.

k—1
/ui’“) AP (t) dt + / 37 P (tun(t),ul(2), .. ul D (0)nD () dt = 0,
1 Ii=o
for h € HZ’". Integrating by parts we obtain
/Fu (t,us(t), 0. (8), ..., uF D @) RED (1) dt
I

- /1 ( / tFukl(s,u*(s),u;(s),...,ui’“1>(s))ds)/h<’f—1>(t) dt

t=T

t=0

- s, ua(8), 2. (8), ..., ul"V(s)) ds | ®
/[(/0 Fuk_l( ) (), *( )7 ) ())d)h (t)dt
:/Fukfl(tyu*(t),ul*(t),...,ufkk_l)(t))dth(kfl)(T)

I

—1[(%fF@HA&uA$MAGL~wU9Dﬁﬂdgh“Nﬂdt

0
t
:/fwﬂwm@muanwﬁ*%»%M“Wﬂ
0
t

and analogously,

t
/Fuk*Qh(kiz) = /Eik2h(k2)(T)/</ Fuk2>h(k1)(T)
1 I 1 \Jo
t t1
(L[ o
I 0 0

/IFuoh: /IFuoh(T) - (/OtFuo)h’(T)
+...+(—1)’€1/}(/;/;1.../%_2 Fu0>h(k1)(T)
+(—1)k/1(/0t /Otl.../tleu())h(k)(t)dt.

So, using Corollary (2.1), we assert that there exist constants co,...,cx—1 € R™
such that

& t t t1 t t1 te—1
(4.5) u£>(t)—/ Fu—s—// Fuk_2+...+(—1)k// / F.,
0 0 JO 0 JO 0

=co+cit+...+ Ck_ltk_l,
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for t € I a.e. and (after identifying (t) = u'™(t) — fot Fu, , + fot Otl Fy,_, +
c R (=D)F fot Otl . .ft’“’l F,, with the above right-hand side)

0
$(0)
' (0)
(4.6) :
v(=2(0)
Y (0)
(o) = (ORI o J  Fuo) = Sy (o Jo e J ) T

Fo ()R Fu]
o @ = GO (e S R Fua) e (LR R

where B is as in Theorem (2.1).

As usual, we say that an integrable function ! : [0,7] — R”™ has a weak de-
rivative if [ possesses an absolutely continuous representant (in the sense of the
measure theory) that is differentiable a.e. on [0, T] with the derivative integrable
on [0,T]. This derivative is called a weak derivative of I and denoted as %l.

In the case when an integrable function [ : [0,7] — R™ has a continuous
representant, we write l|;—g, I|t—r for the values of this representant at 0, T,
respectively.

So, from formula (4.5) it follows that the function u, satisfies equation (1.1)
a.e. on [0,7] and from (4.6) it follows that w. satisfies the boundary condi-
tions (1.2).

On the account of the above identifying of an integrable function with their
absolutely continuous representant we say that u, is a weak solution of problem
(1.1)—(1.2). We have thus proved,

THEOREM 4.3. If a function F : I x (R™")* — R satisfies conditions (A)—(C),
then there exists a function u € HIIZ’” being a weak solution of equation (1.1) and
satisfying boundary conditions (1.2).
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