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ON THE EXISTENCE OF POSITIVE SOLUTIONS
OF HIGHER ORDER DIFFERENCE EQUATIONS

P. J. Y. Wong — R. P. Agarwal

1. Introduction

Let a, b (b > a) be integers. We shall denote [a, b] = {a, a + 1, . . . , b}.
The notation of all other intervals will carry its standard meaning, e.g. [0,∞)
denotes the set of nonnegative real numbers. Also, the symbol ∆i denotes the
ith forward difference operator with stepsize 1.

In this paper we shall consider the n-th order difference equation

(1.1) ∆ny + Q(k, y,∆y, . . . , ∆n−2y) = P (k, y,∆y, . . . ,∆n−1y), k ∈ [0, N ]

satisfying the boundary conditions

∆iy(0) = 0, 0 ≤ i ≤ n− 3,(1.2)

α∆n−2y(0)− β∆n−1y(0) = 0,(1.3)

γ∆n−2y(N + 1) + δ∆n−1y(N + 1) = 0,(1.4)

where n ≥ 2, N(≥ n− 1) is a fixed positive integer, α, β, γ and δ are constants
so that

(1.5) ρ = αγ(N + 1) + αδ + βγ > 0
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and

(1.6) α > 0, γ > 0, β ≥ 0, δ ≥ γ.

Further, we assume that there exist functions f : [0,∞) → [0,∞) and p, p1,

q, q1 : [0, N ] → < such that

(i) uf(u) 6= 0 for all u 6= 0,

(ii) for u 6= 0,

q(k) ≤ Q(k, u, u1, . . . , un−2)
f(u)

≤ q1(k),

p(k) ≤ P (k, u, u1, . . . , un−1)
f(u)

≤ p1(k),

(iii) p1(k) is not identical to q(k) and p1(k) ≤ q(k), k ∈ [0, N ].

We shall give an existence result for positive solutions of the boundary value
problem (1.1)–(1.4), assuming that f is either superlinear or sublinear. No mono-
tonicity assumption on f is required. To be precise, we introduce the notation

f0 = lim
u→0

f(u)
u

, f∞ = lim
u→∞

f(u)
u

.

Function f is said to be superlinear if f0 = 0, f∞ = ∞, and f is sublinear
provided f0 = ∞, f∞ = 0. By a positive solution y of (1.1)–(1.4), we mean
y : [0, N + n] → <, y satisfies (1.1) on [0, N ], y fulfills (1.2)–(1.4), and y is
nonnegative on [0, N + n], positive on [n− 1, N + n− 2].

The motivation for the present work stems from many recent investigations.
In fact, applications of (1.1)–(1.4) and their continuous version have been made
to singular boundary value problems by Agarwal and Wong [2], [15]. Other
particular cases of (1.1)–(1.4) and their continuous analogs have also been the
subject matter of several recent publications on singular boundary value prob-
lems (e.g. see [1], [5], [10]–[12] and the references cited therein). In the special
case where n = 2, the continuous version of (1.1)–(1.4) arises in applications
involving nonlinear elliptic problems in annular regions, for this we refer to [3],
[4], [9], [14]. In all these applications, it is frequent that only positive solutions
are useful. We are particularly motivated by the work of [6]–[8], and our result
is a generalization and extension of theirs to a discrete case.

The plan of this paper is as follows. In Section 2 we shall state a fixed point
theorem due to Krasnosel’skĭı [13], and present some properties of certain Green’s
function which will be used later. In Section 3, we provide an appropriate Banach
space and a cone so that the fixed point theorem from [13] may be applied to
yield a positive solution for (1.1)–(1.4).
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2. Preliminaries

Theorem 2.1. ([13]) Let B be a Banach space, and let C ⊂ B be a cone
in B. Assume that Ω1,Ω2 are open subsets of B with 0 ∈ Ω1, Ω1 ⊂ Ω2, and let

S : C ∩ (Ω2\Ω1) → C

be a completely continuous operator such that, either

(a) ‖Sy‖ ≤ ‖y‖, y ∈ C ∩ ∂Ω1 and ‖Sy‖ ≥ ‖y‖, y ∈ C ∩ ∂Ω2 or
(b) ‖Sy‖ ≥ ‖y‖, y ∈ C ∩ ∂Ω1 and ‖Sy‖ ≤ ‖y‖, y ∈ C ∩ ∂Ω2.

Then S has a fixed point in C ∩ (Ω2\Ω1).

To apply Theorem 2.1 in Section 3, we need a mapping whose kernel g(i, j)
is the Green’s function of the boundary value problem

−∆ny = 0,

∆iy(0) = 0, 0 ≤ i ≤ n− 3,

α∆n−2y(0)− β∆n−1y(0) = 0,

γ∆n−2y(N + 1) + δ∆n−1y(N + 1) = 0.

It can be verified that

G(i, j) = ∆n−2g(i, j) (w.r.t. i)

is the Green’s function of the boundary value problem

−∆2w = 0,

αw(0)− β∆w(0) = 0,

γw(N + 1) + δ∆w(N + 1) = 0.

Further, we have

(2.1) G(i, j) =
1
ρ

{
[β + α(j + 1)][δ + γ(N + 1− i)] j ∈ [0, i− 1],

(β + αi)[δ + γ(N − j)] j ∈ [i,N ].

We observe that conditions (1.5) and (1.6) imply that G(i, j) is nonnegative on
[0, N + 2]× [0, N ], and positive on [1, N + 1]× [0, N ].

Lemma 2.1. For (i, j) ∈ [1, N ]× [0, N ], we find that

(2.2) G(i, j) ≥ K G(j, j),

where 0 < K < 1 is given by

(2.3) K =
(β + α)(δ + γ)

(β + αN)(δ + γN)
.
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Proof. For j ∈ [0, i− 1], using (2.1), we reduce inequality (2.2) to

(2.4) [β + α(j + 1)][δ + γ(N + 1− i)] ≥ K(β + αj)[δ + γ(N − j)].

For (2.4) to hold true, it is sufficient that K satisfies

min
(i,j)∈[1,N ]×[0,N ]

[β + α(j + 1)][δ + γ(N + 1− i)] ≥ K max
j∈[0,N ]

(β + αj)[δ + γ(N − j)],

which gives

(β + α)[δ + γ(N + 1−N)] ≥ K(β + αN)(δ + γN),

or

(2.5) K ≤ (β + α)(δ + γ)
(β + αN)(δ + γN)

.

For j ∈ [i,N ], inequality (2.2) becomes

(β + αi)[δ + γ(N − j)] ≥ K(β + αj)[δ + γ(N − j)],

or
β + αi ≥ K(β + αj).

Again, it suffices to find K such that

min
i∈[1,N ]

(β + αi) ≥ K max
j∈[0,N ]

(β + αj),

which provides

(2.6) K ≤ β + α

β + αN
.

Taking the intersection of (2.5) and (2.6), we immediately get (2.3). �

Lemma 2.2. For (i, j) ∈ [0, N + 2]× [0, N ], we find that

(2.7) G(i, j) ≤ L G(j, j),

where L > 1 is given by

(2.8) L =

{
(β + α)/β β > 0,

2 β = 0.

Proof. In the case where j ∈ [i, N ], from (2.1) it is clear that we may take
L = 1 in (2.7). For j ∈ [0, i− 1], (2.7) is the same as

(2.9) [β + α(j + 1)][δ + γ(N + 1− i)] ≤ L(β + αj)[δ + γ(N − j)].

For (2.9) to hold true, it is sufficient that L satisfies

(2.10) [β + α(j + 1)][δ + γ(N − j)] ≤ L(β + αj)[δ + γ(N − j)]
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where we have used the fact that 1− i ≤ −j. If β 6= 0, (2.10) leads to

(2.11) L ≥ max
j∈[0,N ]

β + α(j + 1)
β + αj

=
β + α

β
.

If β = 0, (2.10) provides

(2.12) L ≥ max
j∈[1,N ]

(j + 1)/j = 2.

Expression (2.8) follows immediately from (2.11) and (2.12). �

We shall need the following notations in Section 3. For a nonnegative y(∈ B)
which is not identically zero on [0, N ], we denote

θ =
N∑

`=0

G(`, `)[q1(`)− p(`)]f(y(`))

and

Γ =
N∑

`=0

G(`, `)[q(`)− p1(`)]f(y(`)).

In view of (i)–(iii), it is clear that θ ≥ Γ > 0. Further, we define the constant

ξ = KΓ/Lθ.

It is noted that 0 < ξ < 1.

3. Main results

Let
B = {y : [0, N + n] → < | ∆iy(0) = 0, 0 ≤ i ≤ n− 3},

be the Banach space with norm ‖y‖ = maxk∈[0,N+2] |∆n−2y(k)| and let

C =
{
y ∈ B

∣∣ ∆n−2y(k) be nonnegative and is not identically zero

on [0, N + 2]; min
k∈[1,N ]

∆n−2y(k) ≥ ξ‖y‖
}
.

We note that C is a cone in B.

Lemma 3.1. Let y ∈ B. For 0 ≤ i ≤ n− 3, we find that

(3.1) |∆iy(k)| ≤ k(n−2−i)

(n− 2− i)!
‖y‖, k ∈ [0, N + n− i].

In particular,

(3.2) |y(k)| ≤ (N + n)(n−2)

(n− 2)!
‖y‖, k ∈ [0, N + n].
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Proof. For y ∈ B, we see that

∆n−3y(k) =
k−1∑
`=0

∆n−2y(`), k ∈ [0, N + 3],

which implies

(3.3) |∆n−3y(k)| ≤ k‖y‖, k ∈ [0, N + 3].

Next, since

∆n−4y(k) =
k−1∑
`=0

∆n−3y(`), k ∈ [0, N + 4],

on using (3.3) we get

|∆n−4y(k)| ≤
k−1∑
`=0

`‖y‖ =
k(2)

2!
‖y‖, k ∈ [0, N + 4].

Continuing in the same manner we obtain (3.2). �

Lemma 3.2. Let y ∈ C. For 0 ≤ i ≤ n− 3, we find that

(3.4) ∆iy(k) ≥ 0, k ∈ [0, N + n− i],

and

(3.5) ∆iy(k) ≥ (k − 1)(n−2−i)

(n− 2− i)!
ξ‖y‖, k ∈ [1, N + n− 2− i].

In particular,

(3.6) y(k) ≥ ξ‖y‖, k ∈ [n− 1, N + n− 2].

Proof. Inequality (3.4) is obvious because of the fact that

∆iy(k) =
k−1∑
`=0

∆i+1y(`), k ∈ [0, N + n− i], 0 ≤ i ≤ n− 3.

To prove (3.5), we note that

(3.7) ∆n−3y(k) =
k−1∑
`=0

∆n−2y(`) ≥
k−1∑
`=1

ξ‖y‖ = (k − 1)ξ‖y‖, k ∈ [1, N + 1].

Next, using (3.7) we find that

∆n−4y(k) =
k−1∑
`=0

∆n−3y(`) ≥
k−1∑
`=1

(`− 1)ξ‖y‖ =
(k − 1)(2)

2!
ξ‖y‖,

for k ∈ [1, N +2]. Continuing the process we obtain (3.5). Inequality (3.6) follows
immediately from (3.5) when we take i = 0 and substitute k = n− 1 in the right
hand side of (3.5). �
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Remark 3.1. If y ∈ C is a solution of (1.1)–(1.4), then (3.4) and (3.6) imply
that y is a positive solution of (1.1)–(1.4).

To obtain a positive solution of (1.1)–(1.4), we shall seek a fixed point of an
operator S : C → B

(3.8) Sy(k) =
N∑

`=0

g(k, `)[Q(`, y, ∆y, . . . ,∆n−2y)− P (`, y, ∆y, . . . , ∆n−1y)],

for k ∈ [0, N + n] in the cone C. It follows that

∆n−2Sy(k) =
N∑

`=0

G(k, `)[Q(`, y, ∆y, . . . ,∆n−2y)− P (`, y, ∆y, . . . , ∆n−1y)],

for k ∈ [0, N + 2] and, in view of condition (ii), we get for k ∈ [0, N + 2],

N∑
`=0

G(k, `)[q(`)− p1(`)]f(y(`))(3.9)

≤ ∆n−2Sy(k) ≤
N∑

`=0

G(k, `)[q1(`)− p(`)]f(y(`)).

Theorem 3.1. Suppose that (i)–(iii) hold. If

(a) f is superlinear, i.e., f0 = 0, f∞ = ∞ or
(b) f is sublinear, i.e., f0 = ∞, f∞ = 0,

then (1.1)–(1.4) has a solution in C.

Proof. First we shall show that the operator S : C → B defined in (3.8)
maps C into itself. For this, let y ∈ C. Then, from (3.9) and (iii) we find

(3.10) ∆n−2Sy(k) ≥
N∑

`=0

G(k, `)[q(`)− p1(`)]f(y(`)) ≥ 0, k ∈ [0, N + 2].

Further, it follows from (3.9) and Lemma 2.2 that

∆n−2Sy(k) ≤
N∑

`=0

G(k, `)[q1(`)− p(`)]f(y(`))

≤ L
N∑

`=0

G(`, `)[q1(`)− p(`)]f(y(`)),

for k ∈ [0, N + 2]. Therefore,

(3.11) ‖Sy‖ ≤ L
N∑

`=0

G(`, `)[q1(`)− p(`)]f(y(`)) = Lθ.
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Now, using (3.9), Lemma 2.1 and (3.11) we find for k ∈ [1, N ],

∆n−2Sy(k) ≥
N∑

`=0

G(k, `)[q(`)− p1(`)]f(y(`))

≥ K
N∑

`=0

G(`, `)[q(`)− p1(`)]f(y(`)) = KΓ ≥ ξ‖Sy‖.

Hence,

(3.12) min
k∈[1,N ]

∆n−2Sy(k) ≥ ξ‖Sy‖.

It follows from (3.10) and (3.12) that S(C) ⊆ C. Also, standard arguments yield
that S is completely continuous.

(a) Suppose that f is superlinear. Since f0 = 0, we may choose a1 > 0 such
that f(u) ≤ εu for 0 < u ≤ a1, where ε > 0 satisfies

(3.13)
Lε(N + n)(n−2)

(n− 2)!

N∑
`=0

G(`, `)[q1(`)− p(`)] ≤ 1.

Let y ∈ C be such that ‖y‖ = a1(n − 2)!/(N + n)(n−2). Then, from (3.2), we
have |y(k)| ≤ a1, k ∈ [0, N + n]. Hence, applying (3.9), Lemma 2.2, (3.2) and
(3.13) successively gives for k ∈ [0, N + 2],

∆n−2Sy(k) ≤
N∑

`=0

G(k, `)[q1(`)− p(`)]f(y(`))

≤ L
N∑

`=0

G(`, `)[q1(`)− p(`)]f(y(`))

≤ Lε

N∑
`=0

G(`, `)[q1(`)− p(`)]y(`)

≤ Lε
N∑

`=0

G(`, `)[q1(`)− p(`)]
(N + n)(n−2)

(n− 2)!
‖y‖ ≤ ‖y‖.

Consequently,

(3.14) ‖Sy‖ ≤ ‖y‖.

If we set

Ω1 =

{
y ∈ B

∣∣∣∣∣ ‖y‖ <
a1(n− 2)!

(N + n)(n−2)

}
,

then (3.14) holds for y ∈ C ∩ ∂Ω1.
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Next, since f∞ = ∞, we may choose a2 > 0 such that f(u) ≥ Mu for u ≥ a2,

where M > 0 satisfies

(3.15) ξM
N∑

`=n−1

G(n− 1, `)[q(`)− p1(`)] ≥ 1.

Let

a2 = max
{

2
a1(n− 1)!

(N + n)(n−2)
,
1
ξ
a2

}
,

and let y ∈ C be such that ‖y‖ = a2. Then, from (3.6) we have

y(k) ≥ ε‖y‖ ≥ ξ · 1
ξ
a2 = a2, k ∈ [n− 1, N + n− 2].

Hence, f(y(k)) ≥ My(k) for k ∈ [n − 1, N + n − 2]. In view of (3.9), (3.6) and
(3.15), we find

∆n−2Sy(n− 1) ≥
N∑

`=0

G(n− 1, `)[q(`)− p1(`)]f(y(`))

≥
N∑

`=n−1

G(n− 1, `)[q(`)− p1(`)]f(y(`))

≥ M

N∑
`=n−1

G(n− 1, `)[q(`)− p1(`)]y(`)

≥ M

N∑
`=n−1

G(n− 1, `)[q(`)− p1(`)]ξ‖y‖ ≥ ‖y‖.

Therefore,

(3.16) ‖Sy‖ ≥ ‖y‖.

If we set
Ω2 =

{
y ∈ B

∣∣ ‖y‖ < a2

}
,

then (3.16) holds for y ∈ C ∩ ∂Ω2.

In view of (3.14) and (3.16), it follows from Theorem 2.1 that S has fixed
point y ∈ C ∩ (Ω2 \ Ω1) such that

a1(n− 2)!
(N + n)(n−2)

≤ ‖y‖ ≤ a2.

This y is a positive solution of (1.1)–(1.4).
(b) Suppose that f is sublinear. Since f0 = ∞, there exists a3 > 0 such that

f(u) ≥ Mu for 0 < u ≤ a3, where M > 0 satisfies

(3.17) ξM

N∑
`=n−1

G(n− 1, `)[q(`)− p1(`)] ≥ 1.



348 P. J. Y. Wong — R. P. Agarwal

Let y ∈ C be such that ‖y‖ = a3(n − 2)!/(N + n)(n−2). Then, from (3.2), we
have |y(k)| ≤ a3, k ∈ [0, N +n]. Hence, using (3.9), (3.6) and (3.17) successively,
we get

∆n−2Sy(n− 1) ≥
N∑

`=0

G(n− 1, `)[q(`)− p1(`)]f(y(`))

≥
N∑

`=n−1

G(n− 1, `)[q(`)− p1(`)]f(y(`))

≥ M
N∑

`=n−1

G(n− 1, `)[q(`)− p1(`)]y(`)

≥ M
N∑

`=n−1

G(n− 1, `)[q(`)− p1(`)]ξ‖y‖ ≥ ‖y‖,

from which inequality (3.16) follows immediately. If we set

Ω1 =

{
y ∈ B

∣∣∣∣∣ ‖y‖ <
a3(n− 2)!

(N + n)(n−2)

}
,

then (3.16) holds for y ∈ C ∩ ∂Ω1. Next, in view of f∞ = 0, we may choose
a4 > 0 such that f(u) ≤ ε u for u ≥ a4, where ε > 0 satisfies

(3.18)
Lε(N + n)(n−2)

(n− 2)!

N∑
`=0

G(`, `)[q1(`)− p(`)] ≤ 1.

There are two cases to consider, namely, f is bounded and f is unbounded.
Case 1. Suppose that f is bounded, i.e., f(u) ≤ R, u ∈ [0,∞) for some

R > 0. Let

a4 = max

{
2a3,

LR(N + n)(n−2)

(n− 2)!

N∑
`=0

G(`, `)[q1(`)− p(`)]

}
,

and let y ∈ C be such that ‖y‖ = a4(n − 2)!/(N + n)(n−2). For k ∈ [0, N + 2],
from (3.9) and Lemma 2.2 we find

∆n−2Sy(k) ≤
N∑

`=0

G(k, `)[q1(`)− p(`)]f(y(`)) ≤ R

N∑
`=0

G(k, `)[q1(`)− p(`)]

≤ LR
N∑

`=0

G(`, `)[q1(`)− p(`)] ≤ a4(n− 2)!
(N + n)(n−2)

= ‖y‖.

Hence, (3.14) holds.
Case 2. Suppose that f is unbounded, i.e., there exists

a4 > max
{

2
a3(n− 2)!

(N + n)(n−2)
, a4

}
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such that f(u) ≤ f(a4) for 0 < u ≤ a4. Let y ∈ C be such that ‖y‖ = a4(n −
2)!/(N + n)(n−2). Then, from (3.2) we have |y(k)| ≤ a4, k ∈ [0, N + n]. Hence,
applying (3.9), we successively get from Lemma 2.2 and (3.18) for k ∈ [0, N +2],

∆n−2Sy(k) ≤
N∑

`=0

G(k, `)[q1(`)− p(`)]f(y(`)) ≤ L
N∑

`=0

G(`, `)[q1(`)− p(`)]f(y(`))

≤ L
N∑

`=0

G(`, `)[q1(`)− p(`)]f(a4) ≤ L
N∑

`=0

G(`, `)[q1(`)− p(`)]εa4

≤ a4(n− 2)!
(N + n)(n−2)

= ‖y‖,

from which (3.14) follows immediately.
In both Cases 1 and 2, if we set

Ω2 =

{
y ∈ B

∣∣∣∣∣ ‖y‖ <
a4(n− 2)!

(N + n)(n−2)

}
,

then (3.14) holds for y ∈ C ∩∂Ω2. Now that we have obtained (3.14) and (3.16),
it follows from Theorem 2.1 that S has a fixed point y ∈ C ∩ (Ω2\Ω1) such that

a3(n− 2)!
(N + n)(n−2)

≤ ‖y‖ ≤ a4(n− 2)!
(N + n)(n−2)

.

This y is a positive solution of (1.1)–(1.4). The proof of the theorem is com-
plete. �

The following two examples illustrate Theorem 3.1.

Example 3.1. We consider the boundary value problem

∆2y +
2

[k(13− k) + 1]r
yr = 0, k ∈ [0, 11],

12y(0)−∆y(0) = 0,

12y(12) + 13∆y(12) = 0,

where r 6= 1. Taking f(y) = yr (which is superlinear if r > 1, and sublinear if
r < 1), we find

Q(k, y)
f(y)

=
2

[k(13− k) + 1]r
and

P (k, y,∆y)
f(y)

= 0.

Hence, we may choose

q(k) =
1

[k(13− k) + 1]r
, q1(k) =

2
[k(13− k) + 1]r

,

and
p(k) = p1(k) = 0.

All conditions of Theorem 3.1 are fulfilled and therefore the boundary value
problem has a positive solution. One such solution is given by y(k) = k(13−k)+1.
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Example 3.2. We consider the boundary value problem

∆3y +
24k

[k(5000− (k − 1)(k − 6)(k + 1)) + 1]r
(y + 1)r = 0, k ∈ [0, 10],

y(0) = 0,

3∆y(0)− 625∆2y(0) = 0,

162∆y(11) + 163∆2y(11) = 0,

where r < 1. Taking f(y) = (y + 1)r (which is sublinear if r < 1), we find

Q(k, y,∆y)
f(y)

=
24k

[k(5000− (k − 1)(k − 6)(k + 1)) + 1]r
,

and
P (k, y,∆y, ∆2y)

f(y)
= 0.

Hence, we may take

q(k) =
k

[k(5000− (k − 1)(k − 6)(k + 1)) + 1]r
,

q1(k) =
24k

[k(5000− (k − 1)(k − 6)(k + 1)) + 1]r

and
p(k) = p1(k) = 0.

Again, all conditions of Theorem 3.1 are satisfied and so the boundary value
problem has a positive solution. Indeed, y(k) = k[5000− (k − 1)(k − 6)(k + 1)]
is one such solution.
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