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MORSE THEORY FOR RIEMANNIAN GEODESICS
WITHOUT NONDEGENERACY ASSUMPTIONS

Anna Germinario — Fabio Giannoni

1. Introduction

Let f ∈ C2(M,R) be a functional defined on a Hilbert manifold M. It
is well known that if f is a Morse functional (i.e. every critical point of f is
nondegenerate) and f satisfies the so called Palais–Smale condition, the Morse
relations hold. More precisely, let x ∈ M be a critical point of f , and m(x, f)
denote the Morse index at x (i.e. the maximal dimension of the subspaces of
TxM where the hessian at x is negative definite). The polynomial defined by

mλ(f) =
∑

x∈Kf

λm(x,f),

(here Kf is the set of critical points f), is called Morse polynomial of f . Morse
relations link the Morse polynomial of f with the Poincaré polynomial of M
and, in particular, they state that

mλ(f) = Pλ(M) + (1 + λ)Qλ,

where Pλ(M) is the Poincaré polynomial of M and Qλ is a formal series with
coefficients in N ∪ {∞}.

In this paper we present a Morse theory for functionals of class C2 whose cri-
tical points are not necessarily nondegenerate. We shall see that also in this case
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we can write some “generalized” Morse relations, which in the nondegenerate
case coincide with the classical ones.

This kind of problems has already been studied in [1], for a wide class of C1

functionals, using an approximation technique: roughly speaking, the generalized
Morse polynomial of f is the limit of the Morse polynomials of suitable Morse
functionals which coincide with f far from its critical points. In the C2 case,
the approximating functionals can be chosen in a more natural class: for any
approximating (in the C2 norm) functional hn and for any k = 0, . . . , n the
number of critical points of hn with the Morse index equal to k is required to be
greater than or equal to the number of critical points of f with the Morse index
equal to k. By a modification of the approximation technique developed in [7],
we show that such a class is not empty (assuming that the linear form associated
with the hessian is a Fredholm map). We shall take a kind of lim inf on the class
of such approximating functionals.

We wish to point out that, as in [1], the limit procedure used here allows us
to get Morse relations between a topological invariant (the Poincaré polynomial)
and a differential invariant (the generalized Morse index).

In the second part of the paper we shall apply the abstract theory to the case
of geodesics on a Riemannian manifold. For any x0, x1 ∈M, we shall study the
functional

f(x) =
1
2

∫ 1

0

〈ẋ, ẋ〉 ds,

defined on the Sobolev manifold

Ω1(x0, x1,M) = {x ∈ H1,2([0, 1],RN ) | ∀s ∈ [0, 1],

x(s) ∈M, x(0) = x0, x(1) = x1}.

In this case imposing that all the critical points of f are nondegenerate means
that x0 and x1 are not conjugate along every geodesic from x0 to x1. In Section 5,
we shall write Morse relations without the assumption that x0, and x1 are not
conjugate.

Moreover, in Section 6, we shall give a geometrical interpretation of the
generalized Morse index. In particular, we shall prove that the Morse index
of any critical point xε of small perturbations of f used in the approximating
scheme is equal to the number of conjugate points along xε. This makes it
possible to generalize Morse relations to the degenerate case using the geometric
index.

In [4] the ideas and the results developed here have been applied to obtain
Morse relations for light rays on a Lorentzian manifold, without nondegeneration
assumptions. They can be applied to the mathematical interpretation of the
gravitational lens effect (see [5], [13], [14]).
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2. Preliminaries

In this section we give some preliminary results. They will be useful in the
sequel, in proving some perturbation theorems. We omit the proofs that can be
found in [7] or in standard functional analysis texts.

In the sequel, we shall assume that M be a Riemannian manifold modelled
on a Hilbert space H and f ∈ C2(M,R) is a functional on M. For x ∈ M,
TxM denotes the tangent space at x and df(x) the differential map of f at x.
We recall that x ∈ M is a critical point of f if df(x) = 0 and a ∈ R is a critical
value of f if there exists a critical point x ∈M such that f(x) = a. Otherwise a
is said regular value. To any critical point x ∈M of f it is associated a bilinear
form, the Hessian of f at x defined as

Hf (x)[ξ, ξ] =
d2f(γ(r))

dr2

∣∣∣∣
r=0

where γ = γ(r) : ]−σ, σ[ →M is such that γ(0) = x, ∂rγ(0) = ξ. Hf (x) is well
defined and it does not depend on the linear connection given on M. For details
see [8].

If X,Y are Banach spaces, we shall denote by L(X,Y ) the space of linear
continuous maps fromX to Y . As TxM is a Hilbert space, by the Riesz Represen-
tation Theorem, there exists a linear continuous operator Hx ∈ L(TxM, TxM)
such that, for all v, v′ ∈ TxM

Hf (x)[v, v′] = 〈Hxv, v
′〉x ,

where 〈 · , · 〉x is the scalar product on TxM. From now on, we shall refer indif-
ferently to properties of Hf (x) as properties of the linear operator associated to
it and we shall denote Hx by the same symbol used for the hessian.

Definition 2.1. A critical point x ∈ M of f is called nondegenerate if Hx

is invertible, otherwise x is called degenerate.

Note that, as a consequence of the Local Inversion Theorem, every nonde-
generate critical point of f is isolated.

Definition 2.2. Let x be a critical point of f . The Morse index of x, m(x, f)
is the maximal dimension of a subspace V of TxM on which the restriction of
Hf (x) is negative definite. The large Morse index is

m∗(x, f) = m(x, f) + dim kerHf (x).

We shall apply the Morse theory to C2-functionals whose hessian at a critical
point belongs to the class of the Fredholm maps of index 0 (see [2]).
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Remark 2.3. It is well known that, if L is a selfadjoint, Fredholm map
of index 0 on a Hilbert space (H, 〈 · , · 〉), there exist H−, H0, H+ orthogonal
eigenspaces of L, such that

H = H− ⊕H0 ⊕H+,

where H0 = kerL, L is negative definite on H− and positive definite on H+. If
dimH− <∞, it is possible to introduce a new scalar product 〈 · , · 〉1 on H such
that

(2.1) 〈Lu, v〉 = 〈L1u, v〉1 ∀u, v ∈ H,

where L1 is a compact perturbation of the identity. Indeed, if λ ∈ R− is the
smallest negative eigenvalue of L, we find that

〈Lv−, v−〉 ≥ λ〈v−, v−〉 ∀v− ∈ H−.

Moreover, there exists m > 0, such that

〈Lv+, v+〉 ≥ m〈v+, v+〉 ∀v+ ∈ H+.

Taking c = min{−λ,m} we can write L = T +K where

T = L− 2λI|H− + cI|H0 , K = 2λI|H− − cI|H0 ,

and I|H− (respectively I|H0) is the linear selfadjoint operator on H equal to the
identity on H− (respectively on H0) and equal 0 otherwise. T is a positive
operator: indeed if we take take v ∈ H, v = v− + v0 + v+, with v− ∈ H−,
v0 ∈ H0, v+ ∈ H+, then

〈Tv, v〉 = 〈Lv−, v−〉+ 〈Lv+, v+〉 − 2λ〈v−, v−〉+ c〈v0, v0〉
≥ −λ〈v−, v−〉+m〈v+, v+〉+ c〈v0, v0〉 ≥ c〈v, v〉.

Moreover, as dimH− <∞, dimH0 <∞, K is compact. Then, if we set

〈 · , · 〉1 = 〈T · , · 〉,

we get (2.1) with L1 = I + T−1K.

For the sake of simplicity, some proofs in the paper will be supplied only
considering the case where the hessian at the critical points is a compact per-
turbation of the identity. In this way we do not lose generality.

Definition 2.4. We say that F ∈ C1(X,Y ) is F0 at x ∈ X if dF (x) : X → Y

is a Fredholm map of index 0.

If, for some x ∈ M, Hf (x) is a Fredholm map of index 0, this property is
preserved when we compose f with a diffeomorphism. More precisely, we have
the following
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Lemma 2.5. Let us assume that f ∈ C2(M,R) and let Ω be an open subset
of M. Let W be an open subset of another Riemannian manifold M′ and φ :
W → Ω be a C2 diffeomorphism. We take x1 ∈W and suppose φ(x1) = x0 ∈ Ω.
Then

(i) x0 is a critical point of f if and only if x1 is a critical point of f ◦ φ,
(ii) x0 is a nondegenerate critical point of f if and only if x1 is a nonde-

generate critical point of f ◦ φ and m(x0, f) = m(x1, f ◦ φ),
(iii) df is F0 at x0 if and only if d(f ◦ φ) is F0 at x1.

Proof. Easy calculations show that

d(f◦φ)(x1) = df(x0)◦dφ(x1) = 0 and H(f◦φ)(x1) = dφ(x1)∗◦Hf (x0)◦dφ(x1),

where dφ(x1)∗ is the operator adjoint to dφ(x1). Therefore, since dφ(x1)∗ and
dφ(x1) are isomorphisms, (i), (ii), (iii) are true. �

Now we introduce a condition useful in proving that small perturbations of
functionals whose differential map is F0 in some open set Ω preserve the same
property.

Definition 2.6. A linear operator L ∈ L(X,Y ), where X and Y are Banach
spaces is said to be proper inX if for all compact setsK ⊂ Y , L−1(K) is compact.

Definition 2.7. Let X,Y be Banach spaces. Let Ω be an open subset of
X and A ∈ C1(Ω, Y ). We say that A satisfies condition (S) in Ω, if there exists
ε = ε(A,Ω) > 0 such that every B ∈ C1(Ω, Y ) with

‖dB(x)− dA(x)‖ ≤ ε ∀x ∈ Ω,

is F0 in Ω and proper in every closed subset of Ω.

Note that, if A satisfies condition (S), A is F0 in Ω and proper in every closed
subset of Ω. A sufficient condition for condition (S) to be satisfied is given by
the following Lemma whose proof can be found in [7].

Lemma 2.8. Let X,Y be Banach spaces, Ω an open subset of X and A ∈
C2(Ω, Y ). Let x0 ∈ Ω be such that dA(x0) is F0. Then there exists U , a neigh-
bourhood of x0, such that A satisfies condition (S) in U .

Clearly, if A,B ∈ C1(Ω, Y ) are such that

(i) A satisfies condition (S) in U ⊂ Ω;
(ii) there exists ε ∈ ]0, ε(A,U)[ sufficiently small, such that for all x ∈ U

‖dA(x)− dB(x)‖ ≤ ε,
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then also B satisfies condition (S) in U .
In critical points theorems, the well known Palais–Smale condition is used.

Let M be a Riemannian manifold and f ∈ C2(M,R). We set for a, b ∈ R, a < b

fa = {x ∈M | f(x) ≤ a},
f b

a = {x ∈M | a ≤ f(x) ≤ b},
Kf = {x ∈M | df(x) = 0}.

Definition 2.9. We say that f satisfies Palais–Smale condition (P.S.), if
every sequence (xn)n∈N such that (f(xn))n∈N is bounded and df(xn) → 0 admits
a converging subsequence to x ∈M.

It is easy to prove that, if f satisfies (P.S.), Kf ∩ fa
b is compact for all

a, b ∈ R. Then, if f is bounded from below and f satisfies (P.S.), Kf ∩ fa is
compact. Moreover, if df is proper in U ⊂M, it is easy to show that f satisfies
(P.S.) in U .

To end this section, we shall characterize the Morse index of a functional
whose hessian at a critical point is a compact perturbation of the identity in
terms of the negative eigenvalues of the Hessian. To this end, it is useful to
state the well known Poincaré principle (for the proof see for example [3]) which
will be also used in the next sections to study the properties of the generalized
geometrical index.

Theorem 2.10. Let H be a Hilbert space and T ∈ L(H,H) be compact and
selfadjoint. Then the eigenvalues of T are a decreasing sequence (µn)n∈N, such
that

(2.2) µn = max
dim V =n

{ min
v∈V, v 6=0

〈Tv, v〉/‖v‖2},

where V is a subspace of H and 〈 · , · 〉 is the scalar product of H.

Then, as a consequence of the previous Theorem, for any critical point x of
a functional f such that Hf (x) = I − K, where I is the identity and K is a
compact selfadjoint operator, the Morse index of x is equal to the number of
negative eigenvalues of I −K.

3. Some perturbation results

In this section we prove some perturbation Lemmas which make possible the
approximation of a functional f with a sequence of functionals without degener-
ate critical points. This technique has already been used in [7], but in our case
we shall require something more: we choose a finite number of critical points
of f and we construct an approximating functional for which these points are
nondegenerate critical points and keep the same index. This property allows
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us to define a generalized Morse index for f and write the Morse relations in
a different way which seems more natural for the C2 case with respect to the
approach used in [1] for the C1 case. The most important step in doing this is
the following Lemma. Let (H, ( · , · )) be a Hilbert space. We set, for R > 0,
x0 ∈ H

BR(x0) = {x ∈ H | ‖x− x0‖ < R},
and for δ > 0, A ⊂ H

Nδ(A) = {x ∈ H | d(x,A) < δ},

where d is the distance of H.

Lemma 3.1. Let U be an open subset of H, f ∈ C2(U,R) and x0 ∈ U . Let’s
suppose that

(1) there exists R2 > 0 such that BR2(x0) ⊂ U and df satisfies condition
(S) in BR2(x0),

(2) x0 is a critical point of f with Hf (x0) = I −K where K ∈ L(H,H) is
a compact selfadjoint operator.

Let R1 < R2 and take ε, δ > 0 sufficiently small. Then there exists g ∈ C2(U,R)
with the following properties

(i) g(x) = f(x) if x ∈ U\BR2(x0), ‖g − f‖C2(U) ≤ ε,
(ii) Kg ⊂ Nδ(Kf ),
(iii) there exists ρ > 0, such that x0 is the only critical point of g in Bρ(x0),

x0 is nondegenerate and m(x0, g) = m(x0, f),
(iv) dg satisfies condition (S) in BR2(x0) .

if f satisfies (P.S.) condition, the same is true for g.

Proof. We can assume that x0 = 0 and denote BRi
= BRi

(0) for i = 1, 2.
Let ω1 ∈ C∞(U,R) be such that

ω1(x) =

{
1 x ∈ BR1 ,

0 x ∈ U \BR2 .

To construct ω1, we can choose a function ω̃ ∈ C∞(R,R) such that

ω̃(t) =

{
1 |t| < R1,

0 |t| > R2,

and set ω1(x) = ω̃(‖x‖2). Obviously ω1 is C∞ and has bounded derivatives.
Defining for σ > 0, x ∈ U

gσ(x) = f(x) + σ‖x‖2ω1(x)/2,

we have, for all x ∈ U

dgσ(x) = df(x) + σω1(x)(x, · ) + σ‖x‖2dω1(x)/2,
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therefore

(3.1) ‖dgσ(x)‖ ≥ ‖df(x)‖ − σ
[
‖x‖|ω1(x)|+ ‖x‖2‖dω1(x)‖/2

]
.

By (1), df is proper in BR2 , then there exists m > 0 such that

(3.2) ‖df(x)‖ ≥ m ∀x ∈ BR2 \Nδ(Kf ).

As ω1 has bounded derivatives, if σ is small

(3.3) σ
[
‖x‖|ω1(x)|+ ‖x‖2‖dω1(x)‖/2

]
≤ m/2,

then, from (3.3), (3.2), (3.1) we infer that

(3.4) ‖dgσ(x)‖ ≥ m/2 ∀x ∈ BR2 \Nδ(Kf ).

Now observe that

(3.5) gσ(x) = f(x) ∀x ∈ U \BR2 ,

and, for x ∈ BR1

gσ(x) = f(x) + σ/2 ‖x‖2,
dgσ(x) = df(x) + σ(x, · ),(3.6)

Hgσ (x) = Hf (x) + σI,

from which we get that 0 is still a critical point of gσ. Moreover, if we denote by
µ an eigenvalue of Hgσ (0), from (3.6) we get µ = λ+ σ where λ is an eigenvalue
of Hf (0). Therefore, we have

λ > 0 ⇒ µ > 0, λ = 0 ⇒ µ > 0,

and if σ is sufficiently small, we get also λ < 0 ⇒ µ < 0. Then, according to
hypothesis 2., 0 is a nondegenerate critical point of gσ and

m(0, gσ) = m(0, f).

As 0 is nondegenerate, it is isolated. Then there exists ρ > 0 such thatB2ρ ⊂ BR1

and 0 is the only critical point of gσ in Bρ. If σ is suitably chosen, gσ verifies
(i)–(iv). Indeed, as ω1 has bounded derivatives, we can take σ so small that

‖gσ − f‖C2(U) ≤ ε,

and if ε is sufficiently small dgσ is still F0 in BR2 (as the set of the Fredholm
maps is open). The other properties are obviuosly verified. It remains to prove
that if f satisfies (P.S.), the same is true for gσ. We take a sequence (xn)n∈N ⊂ U

such that gσ(xn) is bounded and dgσ(xn) → 0. If there exists n ∈ N such that
for n ≥ n, xn 6∈ BR2 , then gσ(xn) = f(xn) and (P.S.) holds. If for all n ∈ N
there exists kn ∈ N with kn → ∞, such that xkn

∈ BR2 , thanks to (iv), dgσ is
proper in BR2 , then, also in this case, there exists a converging subsequence. �
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Now we need to extend the previous Lemma to the case of Riemannian
manifolds. To this end, we shall use the following Lemma whose proof can be
found in [7].

Lemma 3.2. LetM be a Riemannian manifold of class C2 on a Banach space
X and Z be a compact subset of M. Then there exists a sequence (Wα, ψα)α∈A,
with a finite set A, such that

(i) for all α ∈ A, (Wα, ψα) is a local chart,
(ii) Z ⊂

⋃
α∈AWα,

(iii) for all α, β ∈ A with Wα ∩ Wβ 6= ∅, ψα ◦ ψ−1
β : ψβ(Wα ∩ Wβ) →

ψα(Wα ∩Wβ) has bounded derivatives.

Now we can define a perturbation of a functional f on a Riemannian mani-
fold M.

Theorem 3.3. Let f ∈ C2(M,R) be a functional bounded from below and
satisfying (P.S.) condition. Let x1, . . . , xm ∈M be m distinct critical points of f ,
such that Hf (xi) = I−Ki, for all i = 1, . . . ,m, where Ki is a compact selfadjoint
operator. We take ε, δ > 0, sufficiently small. Then there exist A1, . . . , Am ⊂M
open disjoint neighbourhoods of x1, . . . , xm respectively, such that

m⋃
i=1

Ai ⊂ Nδ(Kf ),

and there exists g ∈ C2(M,R) such that

(i) g(x) = f(x) for d(x,Kf ) ≥ δ, ‖g − f‖C2(U) ≤ ε,
(ii) Kg ⊂ Nδ(Kf ),
(iii) for all i = 1, . . . ,m xi is the only critical point of g in Ai, it is nonde-

generate and m(xi, g) = m(xi, f),
(iv) g satisfies (P.S.) condition.

Proof. We only give an outline of the proof which is similar to the one
given in [7], thanks to Lemma 3.1. We take a ∈ R such that for all i = 1, . . . ,m

xi ∈ fa and d(xi, ∂f
a) > δ.

We shall modify f in fa. Since (P.S.) holds, and f is bounded from below,
fa ∩ Kf is compact. Hence, applying Lemma 3.2, we find that there exists a
finite sequence of charts (Wα, ψα)α∈A such that

Kf ∩ fa ⊂
⋃

α∈A
Wα,

and the other properties of that Lemma hold. Then for all i = 1, . . . ,m there
exists αi ∈ A with xi ∈Wαi

. As xi are distinct, it is possible to choose m open
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disjoint neighborhoods U1, . . . , Um of x1, . . . , xm in M such that, Ui ⊂Wαi
and

(3.7)
m⋃

i=1

Ui ⊂ Nδ(Kf ).

We define now ϕi = ψαi|Ui
, Vi = ϕi(Ui) and yi = ϕi(xi) where Vi is an open

subset of H and consider f̃1 = f ◦ ϕ−1
1 : V1 → R. By Lemma 2.5, y1 is a critical

point of f̃1 and df̃1(y1) is F0, then, by Lemma 2.8, there exists R′′1 > 0 such that
BR′′

1
(y1) ⊂ V1 and df̃1 satisfies condition (S) in BR′′

1
(y1). We take R′1 > 0, with

R′1 < R′′1 , ε1 < ε/m and δ1 so small that

(3.8) ϕ−1
1 (Nδ1(K ef1

)) ⊂ Nδ(Kf ).

Now we can apply Lemma 3.1 to f̃1, V1, BR′′
1
(y1), BR′

1
(y1) and ε1, δ1. We denote

by g̃1 the perturbation of f̃1 given by that Lemma and define

f1(x) =

{
(g̃1 ◦ ϕ1)(x) x ∈ U1,

f(x) x 6∈ U1.

With the same technique we can modify f1 in U2 and get a functional f2 with
the previous properties. We repeat this operation m times. At the end we shall
get a functional fm = g that satisfies (i)–(iv). For any i = 1, . . . ,m, if ρi is as
in (iii) of Lemma 3.1, the set Ai is given by Ai = ϕ−1

i (Bρi
(yi)). Obviously, we

set g(x) = f(x) in x 6∈ fa. �

Remark 3.4. Notice that, since f is bounded from below and (i) of the
previous theorem holds, also g is bounded from below.

Using Theorem 3.3, we get a small perturbation g of our functional which has
a fixed number of critical points of f as nondegenerate critical points keeping
the same Morse index. But, at this point, other critical points of g may be
degenerate. As our aim is to apply the classical Morse relations to the perturbed
functional, we need a Morse functional. Then we shall use the method used by
Marino and Prodi in [7]. In that paper the following Lemma was proved.

Lemma 3.5. Let V , V ′, V ′′ be open subsets of a Riemannian manifold M
on a Hilbert space H such that (V, ϕ) is a local chart with bounded derivatives.
We set ϕ(V ) = U , ϕ(V ′) = U ′, ϕ(V ′′) = U ′′ and suppose that U ′, U ′′ are open
balls in H with the same centre and U ′′ ⊂ U , U ′ ⊂ U ′′. We take f ∈ C2(M,R)
such that d(f ◦ ϕ−1) verifies condition (S) in U and ε, δ > 0 sufficiently small.
Then, for all h ∈ C2(M,R) such that

(3.9) ‖h− f‖C2 ≤ ε,

and Kh ⊂ Nδ(Kf ), there exists l ∈ C2(M,R) such that

(i) l(x) = h(x) for x ∈M \ U ′′, ‖l − h‖C2(U) ≤ ε,
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(ii) the critical points of l in V ′ are nondegenerate and their number is
finite,

(iii) Kl ⊂ Nδ(Kf ),
(iv) let A be a subset of M such that in A all the critical points of h are

nondegenerate and their number is finite, then the same property holds
for l,

(v) if h satisfies (P.S.) condition, the same holds for l.

Remark 3.6. Differently from Marino–Prodi in [7], we do not suppose that
our functional f is such that Kf is compact, but only that Kf ∩ fa is compact,
for all a ∈ R. This fact obliges us to work in a sublevel or in a strip to define
the perturbed functional.

Theorem 3.7. Let f ∈ C2(M,R), x1, . . . xm as in Theorem 3.3. We fix
ε, δ > 0. Then there exists h ∈ C2(M,R) such that

(1) h(x) = f(x) for d(x,Kf ) ≥ δ, ‖h− f‖C2(U) ≤ ε,
(2) for all i = 1, . . . ,m, xi is a nondegenerate critical point of h and

m(xi, h) = m(xi, f),

(3) all the critical points of h are nondegenerate,
(4) h satisfies (P.S.) condition.

Proof. We consider a, Ai, x1, . . . , xm as in Theorem 3.3 and the func-
tional g given by the same Theorem. Thanks to Remark 3.4, the set

(Kg ∩ ga) \
m⋃

i=1

Ai

is compact. Hence, using again Lemma 3.2 and seeing that dg is F0 in Kg, with
the same method as used in Theorem 3.3, we can construct a finite sequence of
open subsets of M

V1, . . . , Vk V ′1 , . . . , V
′
k V ′′1 , . . . , V

′′
k ,

such that

(a) Vi is the domain of a chart ϕi : Vi → ϕi(Vi) = Ui and ϕi(V ′i ) = U ′i ,
ϕi(V ′′i ) = U ′′i where U ′i , U

′′
i are open balls in H with the same centre

and U ′i ⊂ U ′′i , U ′′i ⊂ Ui,
(b) ϕi ◦ ϕ−1

j has bounded derivatives,
(c) xi 6∈

⋃k
i=1 Vi for all i = 1, . . . ,m,

(Kg ∩ ga) \
m⋃

i=1

Ai ⊂
k⋃

i=1

V ′i ,
k⋃

i=1

V ′′i ⊂ Nδ(Kf ),

(d) if fi = f ◦ ϕ−1
i , dfi verifies condition (S) in Ui.
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We can apply Lemma 3.5 k times to Vi, V
′
i , V

′′
i with εi, δi > 0 suitably chosen.

Notice that, as in each V i the functional to be modified has only nondegenerate
critical points, from (iv) of Lemma 3.5, the same property holds for the new
functional. We denote by h the last modification which is defined in ga+η for
some η > 0. As the critical points of each perturbation belong to

⋃k
i=1 V

′
i , h is a

Morse functional and, as an easy consequence of Lemma 3.5, h satisfies (1)–(4).
The last step is to define h on M. To this end we take a sequence (an)n∈N ⊂ R
such that limn→∞ an = ∞ and a0 = a. We consider the set

ga1
a0+η ∩Kg.

As (P.S.) condition holds for g, this set is compact. Then we can apply Lemma 3.5
a finite number of times modifying g also in ga1

a0+η and obtaining a functional
defined on ga1+η1

a0+η , for some η1 > 0, still satisfying (1)–(4). We can use these
arguments in every gan

an−1+ηn−1
getting a functional defined on M. �

4. The generalized Morse relations

The results proved in previous sections allow us to define a generalized Morse
index and write generalized Morse relations for a C2 functional whose critical
points are not necessarily nondegenerate. Before doing this, let’s recall some well
known facts of the classical theory.

Deffinition 4.1. Let X be a topological space, A a subspace of X and F

a field. For any k ∈ N we denote by Hk(X,A;F ) the singular homology groups
of the couple (X,A). The polynomial defined by

Pλ(X,A,F ) =
∞∑

k=0

dimHk(X,A;F )λk,

is called Poincaré polynomial of the couple (X,A).

It is well known that the homology groups are topological invariants. The
classical Morse relations link the Poincaré polynomial to the Morse polynomial
of the critical points of a smooth functional. Indeed, the following result holds:

Theorem 4.2. Let’s consider a functional f ∈ C2(M, R) where M is a
complete Riemannian manifold. We take a < b, two regular values for f , and
assume that f satisfies (P.S.) condition and every critical point of f in f b

a is
nondegenerate. Then the following relation holds:

(4.1)
∑

p∈Kf∩fb
a

λm(x,f) = Pλ(f b, fa;F ) + (1 + λ)Qλ,

where Q is a polynomial with positive integer coefficients.
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Under the same hypothesis of Theorem 4.2 and if f is bounded from below,
it is possible to send b to ∞ and obtain

(4.2)
∑

p∈Kf

λm(x,f) = Pλ(M;F ) + (1 + λ)Qλ,

where Pλ(M;F ) = Pλ(M, ∅;F ) and Qλ is a formal series. For the proofs of
(4.1) and (4.2) see for example [9].

Remark 4.3. The left hand side of (4.1) and (4.2) is the Morse polynomial
of f and will be denoted by mλ(f). It can be written in the following form:

(4.3) mλ(f) =
∞∑

k=0

ak(f)λk,

where ak(f) denotes the number of critical points of f having Morse index equal
to k.

Remark 4.4. As it is known, we can not expect to find relation (4.2) in the
degenerate case. For example, we take M = S1×S1 and for P = (a, b, x, y) ∈M
set

f(P ) = (1− a)y + (1− x)b.

Easy calculations show that f has the following critical points:

A = (1, 0, 1, 0), B =
(
− 1

2
,

√
3

2
,−1

2
,

√
3

2

)
, C =

(
− 1

2
,−
√

3
2
,−1

2
,−
√

3
2

)
,

and A is degenerate. Moreover,

Pλ(M) = Pλ(S1)Pλ(S1) = (1 + λ)(1 + λ) = λ2 + 2λ+ 1,

then, if (4.2) holds, we should obtain

a0(f) ≥ 1, a1(f) ≥ 2, a2(f) ≥ 1,

a contradiction. However, a limit process, based on the results of Section 3,
allows us to generalize (4.2) to the degenerate case in order to have, once again,
a relation between the differential structure and the topological structure of
the manifold.

We take a functional f ∈ C2(M, R) that satisfies (P.S.) condition, bounded
from below and whose hessian at a critical point is a Fredholm map of index 0.
Then we take n ∈ N and for k = 0, . . . n consider ak(f). If ak(f) < ∞, we
fix all the critical points of f having Morse index k. As we do not suppose
that the critical points of f are nondegenerate it could happen that ak(f) = ∞.
In this case, we can arbitrarily choose n critical points with index k. In this
way we consider a finite number of critical points of f , which we can denote by
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x1, . . . , xm. Using the perturbation Theorem 3.7 and taking ε = δ = 1/n, for n
sufficiently large, we find that there exists a C2 functional h such that

(i) h(x) = f(x) for d(x,Kf ) ≥ 1/n,
(ii) ‖h− f‖C2 ≤ 1/n,
(iii) every critical point of h is nondegenerate,
(iv) h satisfies (P.S.) condition,
(v) for k = 1, . . . , n

ak(f) <∞⇒ ak(h) ≥ ak(f), ak(f) = ∞⇒ ak(h) ≥ n.

Remark 4.5. Property (v) is a consequence of (2) of Theorem 3.7 and means
that, even if f is not a Morse functional in the classical sense, it can be approx-
imated by Morse functionals whose critical points are “as close and minimal as
possible” to that of f .

Now, for all n ∈ N we define the class Fn of the C2 functionals on a Rie-
mannian manifold M, satisfying (i)–(v). By Theorem 3.7, for all n ∈ N, Fn 6= ∅.
Using the class Fn we can define a generalized Morse index. To this end it is
useful to recall some definitions about formal series. Let’s denote by S the family
of the formal series in one variable λ with coefficients in N∪{∞}. For P ∈ S we
set

ck(P) = ak ⇔ P =
∞∑

k=0

akλ
k.

We can consider the following total order relation on S:
∞∑

k=0

akλ
k <

∞∑
k=0

bkλ
k ⇔ ∃n ∈ N such that ak = bk for k ≤ n− 1 and an < bn.

Moreover, on S the notion of limit is defined in the following way:

P = lim
n→∞

Pn ⇔ lim
n→∞

ck(Pn) = ck(P) ∀k ∈ N.

With the topology induced by the above convergence, S is compact (see [1]). If
A ⊂ S, we shall denote by A the closure of A i.e.

A =
{
P ∈ S

∣∣∣∣ ∃(Pn)n∈N ⊂ A : P = lim
n→∞

Pn

}
.

Now we can define the infimum as follows:

Definition 4.6. If A ⊂ S, we set R = inf A if and only if R = minA.

About the existence of the infimum you can see [1], Theorem 1.11. We just
point out that, if we set, by induction

b0 = min{c0(P) | P ∈ A}, B0 = {P ∈ A | c0(P) = b0},
bn = min{cn(P) | P ∈ Bn−1}, Bn = {P ∈ Bn−1 | cn(P) = bn},
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we find that
∞⋂

n=0

Bn 6= ∅ and R ∈
∞⋂

n=0

Bn,

is minA. Now we can give the following notion of the generalized Morse index.

Definition 4.7. Let f ∈ C2(M,R) be bounded from below, satisfying the
(P.S.) condition and for any x ∈ Kf , Hf (x) be a Fredholm map of index 0. We
define

Af =
{
P ∈ S

∣∣∣∣ ∃hn ∈ Fn ∀n ∈ N : lim
n→∞

mλ(hn) = P
}
.

The formal series defined by iλ(f) = inf Af is called the generalized Morse index
of f .

Remark 4.8. If f is a Morse functional (i.e. all its critical points are non-
degenerate), taking into account Definition 4.7, it is not difficult to prove that
the generalized Morse index coincides with the Morse polynomial (4.2).

Of course, iλ has been defined in such a way that the Morse relations are
still valid. Indeed the following theorem holds:

Theorem 4.9. Let f ∈ C2(M,R) be a functional on a complete Riemannian
manifold M, satisfying (P.S.) condition, whose hessian at each critical point is a
Fredholm map of index 0 and is bounded from below. Then there exists a formal
series Qλ with integer positive coefficients such that

(4.4) iλ(f) = Pλ(M) + (1 + λ)Qλ.

Proof. From the definition of iλ(f), there exists a sequence hn ∈ Fn such
that

(4.5) lim
n→∞

mλ(hn) = iλ(f).

For all n ∈ N, hn satisfies the classical Morse relation, i.e.

(4.6) mλ(hn) = Pλ(M) + (1 + λ)Qn
λ,

where Qn
λ is a formal series. As the first term of the right hand side of (4.6) is

constant with respect to n, by (4.5), there exists a formal series Qλ such that

lim
n→∞

Qn
λ = Qλ.

Then, taking the limit in (4.6), we complete our proof. �
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5. Application to geodesics

Now we shall study the application of the theory developed in the previous
sections to the case of geodesics with fixed extreme points. In particular, we shall
investigate a geometrical meaning of the Morse index and we shall write the gen-
eralized Morse relations. At first, we recall some basic notions of Riemannian
geometry. Let (M, 〈 · , · 〉) be a finite dimensional, complete Riemannian mani-
fold of class C∞. By virtue of the well known Nash theorem,M can be embedded
in the Euclidean space RN , for sufficiently large N > 0. The Riemannian struc-
ture at x ∈M is given by the restriction of the Euclidean scalar product of RN

to TxM.

Definition 5.1. We say that a smooth curve x ∈ C2([0, 1],M) is a geodesic
if x satisfies the equation

Dsẋ(s) = 0,

where by Ds we denote the covariant derivative of ẋ with respect to the Rie-
mannian structure of M.

Remark 5.2. Thanks to the embedding ofM in RN , the vector field Dsẋ(s)
can be seen as the projection of ẍ(s) on the tangent space Tx(s)M.

The problem of finding geodesics with fixed extreme points admits a vari-
ational formulation. More precisely, we consider x0, x1 ∈ M and define the
space

Ω1(x0, x1,M) = {x ∈ H1,2([0, 1],RN ) | ∀s ∈ [0, 1],

x(s) ∈M, x(0) = x0, x(1) = x1}.

Ω1(x0, x1,M) is a Hilbert manifold modelled on H1
0 ([0, 1],RN ), whose tangent

space at x ∈ Ω1(x0, x1,M) is given by

TxΩ1(x0, x1,M) = {ξ ∈ H1,2([0, 1],RN ) | ξ(s) ∈ Tx(s)M ξ(0) = 0 = ξ(1)}.

Later on, we shall need to know how local charts can be defined in

Ω1(x0, x1,M).

To this end, we recall that for x ∈M we can define the exponential map expx :
TxM → M in the following way expxv = γ(1), where γ : [0, 1] → M is the
geodesic such that γ(0) = x and γ̇(0) = v. Since M is smooth, also expxv

is smooth and is a local diffeomorphism. Then, we fix σ ∈ Ω1(x0, x1,M) and
for U , a suitably chosen neighbourhood of σ in Ω1(x0, x1,M), set ϕσ : U →
TσΩ1(x0, x1,M) such that

(5.1) ϕσ(λ)(t) = exp−1
σ(t)λ(t).

It can be proved that (see e.g. [12]) the map ϕσ is smooth and is a local chart.
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For x ∈ Ω1(x0, x1,M) we consider a functional

(5.2) f(x) =
1
2

∫ 1

0

〈ẋ, ẋ〉 ds.

It is well known that f is a smooth functional and for x ∈ Ω1(x0, x1,M) and
ξ ∈ TxΩ1(x0, x1,M)

(5.3) df(x)[ξ] =
∫ 1

0

〈ẋ,Dsξ〉 ds.

Using (5.3), we get that every critical point of f is smooth and integrating by
parts in (5.3), we find that x is a critical point of f if and only if x is a geodesic
joining x0 and x1. For the proofs see e.g. [8], [10].

We denote by Hf (x) the hessian of f at x, i.e. for any x ∈ Ω1(x0, x1,M)
and ξ ∈ TxΩ1(x0, x1,M)

Hf (x)[ξ, ξ′] =
d2f(α(r, · ))

dr2

∣∣∣∣
r=0

,

where α(r, s) : ]−σ, σ[× [0, 1] →M is a smooth map satisfying

α(0, s) = x(s), ∂rα(0, s) = ξ(s), α(r, 0) = x0, α(r, 1) = x1.

Let x be a geodesic joining x0 and x1. For all ξ, ξ′ ∈ TxΩ1(x0, x1,M) we have

(5.4) Hf (x)[ξ, ξ′] =
∫ 1

0

[〈Dsξ,Dsξ
′〉 − 〈R(ξ, ẋ)ẋ, ξ′〉] ds,

where R is the Riemann curvature tensor of M, (see e.g. [8] and also (6.16)).
Moreover, by regularity results, ξ ∈ kerHf (x) if and only if ξ satisfies the ordi-
nary differential equation

(5.5)

{
D2

sξ +R(ξ, ẋ)ẋ = 0,

ξ(0) = 0 = ξ(1).

Every ξ satisfying (5.5) is called Jacobi field.

Remark 5.3. By the definition of the tangent space, the scalar product on
TxΩ1(x0, x1,M) is given by

〈ξ, ξ′〉1 =
∫
〈ξ, ξ′〉 ds+

∫ 1

0

〈ξ̇, ξ̇′〉 ds.

It can be proved (see [8]) that

〈ξ, ξ′〉0 =
∫ 1

0

〈Dsξ,Dsξ
′〉 ds,

is a scalar product on TxΩ1(x0, x1,M) equivalent to 〈 · , · 〉1.
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As a consequence of the previous Remark and the Sobolev embedding theo-
rems, the hessian defined by (5.4) is given by

(5.6) Hf (x)[ξ, ξ] = 〈(I −K(x))ξ, ξ〉0,

whereK(x) is a compact perturbation of the identity. Moreover, f satisfies (P.S.)
condition (see [8], Proposition 2.11.4). Then, as f verifies all the hypothesis of
Theorem 4.9, we can write the Morse relations.

Theorem 5.4. Let (M, 〈 · , · 〉) be a complete, finite dimensional, smooth
Riemannian manifold, x0, x1 ∈ M and f the functional defined by (5.2). Then
there exists a formal series Qλ such that

(5.7) iλ(f) = Pλ(Ω1(x0, x1,M)) + (1 + λ)Qλ,

where iλ(f) is the generalized Morse index of f .

6. The Index Theorem

In this section we shall study the geometrical meaning of the Morse index.
We shall see that the Morse polynomial can be written using an index defined
by means of the hessian of the perturbed functional. Moreover, we shall prove
an extension to the perturbed functional of the Index Theorem that is valid
for f . Before doing that, it is necessary to state some properties of the small
perturbations of f defined in Section 3. Let x0, x1 ∈ M and f be defined as
in (5.2). Considering a functional hε ∈ C2(Ω1(x0, x1,M),R) given by Theorem
3.7, we have

(6.1) hε(x) = f(x) + gε(x),

with

(6.2) ‖gε‖C2 ≤ ε,

for some ε > 0 as small as we want. To prove the Index Theorem, we need some
regularity results about the critical points of hε. From the definition of local
charts in Ω1(x0, x1,M), taking into account the construction of hε we made
Section 3, and fixing an open sublevel

f b = {x ∈ Ω1(x0, x1,M) | f(x) < b},

we can write hε in the following form:

(6.3) hε(x) = f(x) + ω1

( ∫ 1

0

〈
˙︷ ︸︸ ︷

E0(s, x(s)),
˙︷ ︸︸ ︷

E0(s, x(s))〉 ds
)

+
p∑

i=1

ω2,i

( ∫ 1

0

〈
˙︷ ︸︸ ︷

Ei(s, x(s)),
˙︷ ︸︸ ︷

Ei(s, x(s))〉 ds
) ∫ 1

0

〈
˙︷ ︸︸ ︷

Ei(s, x(s)), ζ̇i(s)〉 ds,
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where p ∈ N depends only on b and

Ei(s, x(s)) = exp−1
σi(s)

x(s) ∀i = 0, . . . , p,

for some σi ∈ Ω1(x0, x1,M), where ζi are smooth curves in H1
0 ([0, 1],RN ) and

ω1, ω2,i ∈ C∞(R,R). To avoid further technical complications, we can study the
case p = 1. Evaluating the derivatives of Ei, we can write hε as follows

hε(x) = f(x) + ω1,ε(g1(x) + g2(x) + g3(x))(6.4)

· ω2,ε(l1(x) + l2(x) + l3(x))(I1(x) + I2(x)),

where

g1(x) =
∫ 1

0

φ1(s, x) ds, g2(x) =
∫ 1

0

〈φ2(s, x), ẋ〉 ds,

g3(x) =
∫ 1

0

〈φ3(s, x)ẋ, ẋ〉 ds,

l1(x) =
∫ 1

0

ϕ1(s, x) ds, l2(x) =
∫ 1

0

〈ϕ2(s, x), ẋ〉 ds,

l3(x) =
∫ 1

0

〈ϕ3(s, x)ẋ, ẋ〉 ds,

I1(x) =
∫ 1

0

ψ1(s, x) ds, I2(x) =
∫ 1

0

〈ψ2(s, x), ẋ〉 ds,

where φi, ϕi, ψi are smooth functions or vector fields on M. Now we can state
the following regularity result.

Theorem 6.1. If xε ∈ Ω1(x0, x1,M) is a critical point of hε, xε is a smooth
curve.

Proof. As xε is a critical point of hε, for all ξ ∈ Txε
Ω1(x0, x1,M) we have

dhε(xε)[ξ] = 0.

Then taking a smooth map α = α(r, s) : [0, 1]× [0, 1] →M such that

(6.5) α(0, s) = xε(s), ∂rα(0, s) = ξ(s), α(r, 0) = x0, α(r, 1) = x1,

we find that

(6.6)
dhε(α(r, · ))

dr

∣∣∣∣
r=0

= 0.

Taking into account (6.4) and evaluating (6.6) we find that xε solves the following
equation

(6.7)
∫ 1

0

〈ẋε, Dsξ〉 ds+ ε1

∫ 1

0

〈A(s, xε), ξ〉 ds+ ε2

∫ 1

0

〈B(s, xε)ẋε, ξ〉 ds

+ε3
∫ 1

0

〈C(s, xε), Dsξ〉 ds+ε4
∫ 1

0

〈F (s, xε)ẋε, Dsξ〉 ds = 0,
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for all ξ ∈ Txε
Ω1(x0, x1,M). We notice that A,B,C, F are smooth functions or

vector fields on M and, thanks to (6.2), the constants εi are as small as we want
and they depend only on xε. Now we can complete the proof using a boot-strap
argument. Taking v ∈ C∞0 ([0, 1],RN ), we can write

(6.8) v = P (xε)v +Q(xε)v,

where P (x) is the projection on TxM and Q(x) is the projection on TxM⊥.
Setting ξ = P (xε)v ∈ Txε

Ω1(x0, x1,M) and differentiating (6.8) we find that

(6.9) Dsξ = Dsv − P (xε) ◦ dQ(xε)[ẋε]v = Dsv − L(xε, ẋε)v.

Then, from (6.8) and (6.9), substituting in (6.7) we get∫ 1

0

〈(I + ε4F (s, xε))ẋε + ε3C(s, xε), v̇〉 ds

−
∫ 1

0

〈(I + ε4F (s, xε))ẋε + ε3C(s, xε), L(xε, ẋε)v〉 ds

+ ε1

∫ 1

0

〈A(s, xε), v〉 ds+ ε2

∫ 1

0

〈B(s, xε)ẋε, v〉 ds = 0.

Hence we get

(6.10)
∫ 1

0

〈(I + ε4F (s, xε))ẋε + ε3C(s, xε), v̇〉 ds =
∫ 1

0

〈h, v〉 ds,

where

h =L(xε, ẋε)∗ ◦ (I + ε4F (s, xε))ẋε − ε1A(s, xε)

− ε2B(s, xε)ẋε + ε3L(xε, ẋε)∗ ◦ C(s, xε).

Now we see that h ∈ L1([0, 1],RN ), hence

H(s) = −
∫ s

0

h(τ)d τ,

is absolutely continuous and H ′ = −h. Integrating the right hand side of (6.10)
by parts, we get∫ 1

0

〈(I + ε4F (s, xε))ẋε + ε3C(s, xε), v̇〉 ds =
∫ 1

0

〈H, v̇〉 ds,

then, as v is arbitrary, there exists c ∈ RN such that

(6.11) (I + ε4F (s, xε))ẋε + ε3C(s, xε) = H + c.

Because operator I + ε4F (s, xε) is invertible (it is a small perturbation of the
identity), then from (6.11)

(6.12) ẋε = (I + ε4F (s, xε))−1H1,
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where H1 is a continuous function. From the definition of I + ε4F (s, xε) and
(6.12), also ẋε is continuous, that is xε is C1. Then h is continuous and H is
C1. Also H1 is C1, then from (6.12) xε is C2. Repeating this argument, we get
that xε is smooth. �

Now we need to study the hessian of hε at a critical point. Let

xε ∈ Ω1(x0, x1,M)

be a critical point of hε. It is well known that if ξ ∈ Txε
Ω1(x0, x1,M)

Hhε(xε)[ξ, ξ] =
d2hε(α(r, · ))

dr2

∣∣∣∣
r=0

,

where α = α(r, s) : [0, 1]×[0, 1] →M is a smooth map satisfying (6.5). Moreover,
Hhε(xε)[ξ, ξ] does not depend on the choice of α. Hence, we can take α solving
the following Cauchy problem, for all s ∈ [0, 1]

(6.13)


Dr∂rα(r, s) = 0,

α(0, s) = xε(s),

∂rα(0, s) = ξ(s).

It can be proved (see [11]) that

(6.14) Dr∂sα(r, s) = Ds∂rα(r, s),

and if Y is a vector field along xε

(6.15) DrDsY −DsDrY = R(∂rα, ∂sα)Y.

Then using (6.13)–(6.15) we can evaluate

df(α(r, · ))
dr

=
∫ 1

0

〈Dr∂sα, ∂sα〉 ds =
∫ 1

0

〈Ds∂rα, ∂sα〉 ds

and

d2f(α(r, · ))
dr2

=
∫ 1

0

〈DrDs∂rα, ∂sα〉 ds+
∫ 1

0

〈Ds∂rα,Dr∂sα〉 ds

=
∫ 1

0

〈DsDr∂rα, ∂sα〉 ds+
∫ 1

0

〈R(∂rα, ∂sα)∂rα, ∂sα〉

+
∫ 1

0

〈Ds∂rα,Ds∂rα〉 ds

=
∫ 1

0

〈R(∂rα, ∂sα)∂rα, ∂sα〉 ds+
∫ 1

0

〈Ds∂rα,Ds∂rα〉 ds,

from which we get, using the well known properties of R

(6.16)
d2f(α(r, · ))

dr2

∣∣∣∣
r=0

=
∫ 1

0

〈Dsξ,Dsξ〉 − 〈R(ξ, ẋε)ẋε, ξ〉 ds.
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As xε is a critical point of hε, also d2hε(α(r, · ))/dr2|r=0 is well defined so, from
(6.1), d2gε(α(r, · ))/dr2|r=0 = Hgε(xε)[ξ, ξ] is well defined. Then, choosing the
map α as in (6.13), we can write for all ξ, ξ′ ∈ Txε

Ω1(x0, x1,M)

(6.17) Hhε(xε)[ξ, ξ′] =
∫ 1

0

〈Dsξ,Dsξ
′〉 − 〈R(ξ, ẋε)ẋε, ξ

′〉 ds+Hgε(xε)[ξ, ξ′].

Using the Riesz Representation Theorem, as Hgε(xε) is a bilinear form on
Txε

Ω1(x0, x1,M), there exists A(xε) ∈ L(Txε
Ω1(x0, x1,M), Txε

Ω1(x0, x1,M))
such that

Hgε(xε)[ξ, ξ′] = 〈A(xε)ξ, ξ′〉0,

then

(6.18) Hhε(xε)[ξ, ξ′]

=
∫ 1

0

[〈Dsξ,Dsξ
′〉 − 〈R(ξ, ẋε)ẋε, ξ

′〉+ 〈Ds(A(xε)ξ), Dsξ
′〉] ds,

and from (6.2)

(6.19) ‖A(xε)‖ ≤ ε.

Taking into account the expression of hε given by (6.3) with p = 1 and integrating
by parts where it is possible we can write the hessian at a critical point xε of hε.
For any ξ, ξ′ ∈ TxεΩ

1(x0, x1,M), we have

(6.20) Hhε(xε)[ξ, ξ′] =
∫ 1

0

(〈Dsξ,Dsξ
′〉 − 〈R(ξ, ẋε)ẋε, ξ

′〉) ds

+ η1

∫ 1

0

〈A1(s)ξ, ξ′〉 ds+ η2

∫ 1

0

〈A2(s)ξ,Dsξ
′〉 ds

+ η3

∫ 1

0

〈A3(s)Dsξ, ξ
′〉 ds+ η4

∫ 1

0

〈A4(s)Dsξ,Dsξ
′〉 ds

+
3∑

i=1

εi

∫ 1

0

〈Fi(s), ξ〉 ds
∫ 1

0

〈Gi(s), ξ′〉 ds

+
3∑

i=1

εi

∫ 1

0

〈Fi(s), ξ′〉 ds
∫ 1

0

〈Gi(s), ξ〉 ds,

where ηi and εi are positive constants less or equal ε, depending only on xε, and
Ai, Bi, Ci, Fi, Gi are smooth functions.

Remark 6.2. Changing the scalar product on TxεΩ
1(x0, x1,M) we find that

Hhε(xε) = I −Kε,

whereKε is a compact selfadjoint operator. Then, m(xε, hε) is given by the num-
ber of negative eigenvalues of I−Kε. Indeed, thanks to the previous calculations
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and (5.6) we see that

Hhε(xε)[ξ, ξ] = 〈(I −K(xε))ξ, ξ〉0 + 〈A(xε)ξ, ξ〉0.

By (6.19) and the continuity of A(xε),

〈 · , · 〉ε = 〈(I +A(xε)) · , · 〉0

is a scalar product equivalent to 〈 · , · 〉0 and (I+A(xε)) is a selfadjoint invertible
operator. With respect to the new scalar product we find that

Hhε(xε) = I − (I +A(xε))−1K(xε).

Easy calculations show thatKε = (I+A(xε))−1K(xε) is compact and selfadjoint.

Now we can introduce the definition of conjugate points as a generalization
of that usually given for geodesics. We take x ∈ Ω1(x0, x1,M) and σ ∈ ]0, 1].
Let us define the subspace of TxΩ1(x0, x1,M) given by

TxΩ1
σ = {ξ ∈ TxΩ1(x0, x1,M) | ξ(s) = 0 ∀s ∈ [σ, 1]}.

Definition 6.3. We consider h ∈ C2(Ω1(x0, x1,M),R) and choose x a
critical point of h. Take σ ∈ ]0, 1]. We say that x(σ) is conjugate to x0 along x
if Hh(x)|TxΩ1

σ
is degenerate, that is

Mσ = kerHh(x)|TxΩ1
σ
6= {0}.

The multiplicity of x(σ) is the dimension of Mσ.

Remark 6.4. If Hh(x) is a Fredholm map of index 0 and x(σ) is conjugate
to x0, x(σ) has finite multiplicity.

Definition 6.5. Let x and h be the same as in Definition (6.3). The geo-
metric index of x, µ(x, h) is the number of conjugate points along x, counted
with their multiplicity.

Remark 6.6. If x is a nondegenerate critical point of h, x1 = x(1) is not
conjugate to x0 along x.

Remark 6.7. Let hε be a perturbation of f defined in (6.1), given by The-
orem 3.7. Then x1 is not conjugate to x0 along any xε critical point of hε.

We take xε such that Hhε(xε) = I −Kε, where I is the identity and Kε is
the compact selfadjoint operator of Remark 6.2. Then

Hhε(xε)|TxεΩ1
σ

= I −Kσ
ε ,

where Kσ
ε = Kε|TxεΩ1

σ
is still a compact selfadjoint operator. From the theory

of this kind of operators, the eigenvalues of Kσ
ε have finite multiplicity and are

a decreasing sequence that we shall denote by

(6.21) λε
1(σ) ≥ . . . ≥ λε

k(σ) ≥ . . .
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Each eigenvalue is repeated according to its multiplicity. It is obvious that xε(σ)
is conjugate to x0 along xε with multiplicity m if and only if there exists k ∈ N
such that

λε
k+1(σ) = . . . = λε

k+m(σ) = 1.

Remark 6.8. We see that ξ ∈ ker(λε
k(σ)I −Kσ

ε ) for some k, if and only if ξ
satisfies the following equation

(6.22) λε
k(σ)

∫ σ

0

〈Ds(ξ +A(xε)ξ), Dsξ
′〉 ds−

∫ σ

0

〈R(ξ, ẋε)ẋε, ξ
′〉 ds,

for all ξ′ ∈ TxεΩ
1
σ.

Remark 6.9. In the following Theorem, the regularity of ξ can be proved
using a general theorem about regularity (see [6], Theorem 1.1’), since in one
variable the situation is simpler. However, we prefer to give a direct proof.

We find the following

Theorem 6.10. If ξ ∈ ker(λε
k(σ)I −Kσ

ε ) for some k, ξ is smooth.

Proof. Taking into account (6.22) and (6.20) (where, for the sake of sim-
plicity we suppose that i = 1), for all ξ′ ∈ TxεΩ

1
σ, we find that ξ satisfies the

following equation

(6.23) λε
k(σ)

[ ∫ σ

0

〈ξ̇, Dsξ
′〉 ds+ η1

∫ σ

0

〈A1(s)ξ, ξ′〉 ds

+ η2

∫ σ

0

〈A2(s)ξ,Dsξ
′〉 ds+ η3

∫ σ

0

〈A3(s)Dsξ, ξ
′〉 ds

+ η4

∫ σ

0

〈A4(s)Dsξ,Dsξ
′〉 ds+ ε1

∫ σ

0

〈F (s), ξ〉 ds
∫ σ

0

〈G(s), ξ′〉 ds

+ ε1

∫ σ

0

〈G(s), ξ〉 ds
∫ σ

0

〈F (s), ξ′〉 ds
]
−

∫ σ

0

〈R(ξ, ẋε)ẋε, ξ
′〉 ds = 0,

where F and G are smooth. For x ∈ M, we denote by P (x) and Q(x) the
projection on TxM and TxM⊥ respectively and see that, as ξ(s) ∈ Txε(s)M for
all s ∈ [0, σ],

(6.24) Q(xε)ξ = 0.

Differentiating (6.24), we get dQ(xε)[ẋε]ξ +Q(xε)ξ̇ = 0, then

(6.25) ξ̇ = Dsξ +Q(xε)ξ̇ = Dsξ − dQ(xε)[ẋε]ξ.

By (6.25), it is sufficient to prove that ξ0 = Dsξ is smooth. We can write (6.23)
as

(6.26) λε
k(σ)

∫ σ

0

〈(I + η4A4(s))ξ0, ξ̇′〉 ds

+ η2 λ
ε
k(σ)

∫ σ

0

〈A2(s)ξ, ξ̇′〉 ds+
∫ σ

0

〈T (s)ξ, ξ′〉 ds = 0,
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where

T (s)ξ =λε
k(σ)

[
η1A1(s)ξ + η3A3(s)Dsξ + ε1

∫ σ

0

〈F (s), ξ〉 dsG

+ ε1

∫ σ

0

〈G(s), ξ〉 dsF
]
−R(ξ, ẋε)ẋε.

Now we take v ∈ C∞0 ([0, 1],RN ). As v = P (xε)v +Q(xε)v, we set

ξ′ = P (xε)v = v −Q(xε)v ∈ Txε
Ω1(x0, x1,M),

then

ξ̇′ = v̇ − dQ(xε)[ẋε]v −Q(xε)v̇.

Now, substituting ξ′ and ξ̇′ in (6.26), using a boot-strap argument and (6.25),
we infer that the proof is completely analogous to that of Theorem 6.1. �

In proving the Index Theorem we need the following two Lemmas.

Lemma 6.11. We take ε > 0 small and a ∈ R. Let hε be the perturbation of
f defined in (6.1) and xε be a critical point of hε such that

hε(xε) ≤ a.

For σ > 0, let ξε be an eigenfunction of Kσ
ε (for some eigenvalue λε

k(σ) of the
sequence (6.21)) such that

(6.27) ‖ξε‖H1
0 ([0,1],RN ) = 1.

Then there exists (εn)n∈N converging to 0, a geodesic x ∈ Ω1(x0, x1,M) and
ξ ∈ TxΩ1

σ with

(6.28) ξ ∈ ker(λ(σ)I −Kσ(x)),

where Kσ(x) = K(x)|TxΩ1
σ

and λ(σ) is an eigenvalue of Kσ, such that

lim
n→∞

xεn = x in C2([0, 1],RN ) and lim
n→∞

ξεn = ξ in C2([0, σ],RN ).

Proof. Thanks to Theorem 6.1 and Theorem 6.10, we see that xε and ξε

are smooth. From the definition of hε, and (6.2) we get that f(xε) is bounded.
Moreover, as xε is a critical point of hε,

‖df(xε)‖ = ‖dgε(xε)‖ ≤ ε.

Then as the (P.S.) condition holds for f , there exists a sequence (εn)n∈N con-
verging to 0 and a geodesic x ∈ Ω1(x0, x1,M) such that

lim
n→∞

xεn = x,
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inH1
0 ([0, 1],RN ). Thanks to the regularity of xεn

, taking the limit in the equation
satisfied by xεn as a critical point of hεn , we have the C2 convergence. We con-
sider ξεn

now. From (6.27), up to a subsequence, there exists ξ ∈ H1
0 ([0, 1],RN )

such that
lim

n→∞
ξεn

= ξ,

weakly in H1
0 ([0, 1],RN ) and uniformly. As for all s ∈ [0, 1], ξεn

(s) ∈ Txεn (s)M,
ξ(s) ∈ Tx(s)M, then ξ ∈ TxΩ1

σ. For all n ∈ N, ξεn
satisfies the following

differential equation in [0, σ]:

(6.29) λεn
(σ)

[
D2

sξεn
+ η1,nA1(s)ξεn

+ η2,nA2(s)Dsξεn

+ η3,nA3(s)D2
sξεn

+
3∑

i=1

εi,n

∫ σ

0

〈Fi(s), ξεn
〉 dsGi

+
3∑

i=1

εi,n

∫ σ

0

〈Gi(s), ξεn
〉 ds Fi

]
+R(ξεn

, ẋεn
)ẋεn

= 0,

where limn→∞ ηi,n = 0 and limn→∞ εi,n = 0. Multiplying (6.29) by ξεn
and

integrating we get that λk
εn

(σ) is bounded with respect to n, then up to a sub-
sequence, there exists λ(σ) ∈ R such that

lim
n→∞

λk
εn

(σ) = λ(σ).

Then taking the limit in (6.29), we get that ξεn
converges in C2([0, σ],RN ) and

ξ satisfies the equation

(6.30) λ(σ)D2
sξ +R(ξ, ẋ)ẋ = 0,

that is, (6.28) holds true. �

Lemma 6.12. There exists ε0 > 0, such that for all ε ∈ ]0, ε0[ , if xε is a
critical point of hε, σ, τ ∈ [0, 1] with σ < τ and ξε ∈ Txε

Ω1
σ with

(6.31) ‖ξε‖H1
0 ([0,1],RN ) = 1,

then ξε 6∈ ker(λε
k(τ)I −Kτ

ε ), for all k ∈ N.

Proof. We notice that σ < τ implies Txε
Ω1

σ ⊂ Txε
Ω1

τ , then ξε ∈ Txε
Ω1

τ . If,
by contradiction, ξε ∈ ker(λε

k(τ)I − Kτ
ε ), for some k ∈ N, as ξε ∈ Txε

Ω1
σ and

from the regularity of ξε in [0, τ ], we get

(6.32) ξε(σ) = 0 ξ̇ε(σ) = 0.

But, as we stated in Lemma 6.11, xε and ξε converge respectively to a geodesic
x and to ξ ∈ TxΩ1

τ . Then, from (6.32),

(6.33) ξ(σ) = 0 and ξ̇(σ) = 0,
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so we get ξ = 0, recalling the regularity of the solutions of the equation (6.30).
This is in contradiction with (6.31), using the uniform convergence. �

Now we can state the Index Theorem. We adapt to our case the proofs
used in [9] and [8] respectively for Hamiltonian systems and for geodesics on
Lorentzian manifolds.

Theorem 6.13. We take hε ∈ C2(M,R), and the perturbation of f defined
in (6.1). Let xε be a critical point of hε. Then we have

m(xε, hε) = µ(xε, hε).

Proof. We divide the proof into several steps.
Step 1. The eigenvalues λε

k(σ) defined in (6.21) are continuous functions
of σ.

It is an easy consequence of the variational characterization of eigenvalues
given by Theorem 2.10, which holds for λε

k(σ).
Step 2. If σ is small, Hhε(xε)|TxεΩ1

σ
is positive definite.

We see that, from the definition of Txε
Ω1

σ and (6.18), we have for all ξ ∈
TxεΩ

1
σ

Hhε(xε)[ξ, ξ] =
∫ σ

0

[〈Dsξ,Dsξ〉 − 〈R(ξ, ẋε)ẋε, ξ〉 ds(6.34)

+ 〈Ds(A(xε)ξ), Dsξ〉] ds.

From the continuity of R it follows that, there exists c > 0 such that

(6.35)
∫ σ

0

〈R(ξ, ẋε)ẋε, ξ〉 ds ≤ c

∫ σ

0

〈ξ, ξ〉 ds.

We take s ∈ [0, σ] and, using Hölder inequality, we get

(6.36) 〈ξ(s), ξ(s)〉 =
∫ s

0

d

dτ
〈ξ, ξ〉 dτ = 2

∫ s

0

〈Dτξ, ξ〉 dτ ≤ 2
∫ s

0

|Dτξ||ξ| dτ

≤ 2
(∫ σ

0

〈Dτξ,Dτξ〉 dτ
)1/2 (∫ σ

0

〈ξ, ξ〉 dτ
)1/2

.

Integrating (6.36) on [0, σ] we find that∫ σ

0

〈ξ, ξ〉 ds ≤ 2σ
(∫ σ

0

〈Dsξ,Dsξ〉 ds
)1/2 (∫ σ

0

〈ξ, ξ〉 ds
)1/2

,

from which

(6.37)
∫ σ

0

〈ξ, ξ〉 ds ≤ 4σ2

∫ σ

0

〈Dsξ,Dsξ〉 ds.

Moreover, from (6.19) we get

(6.38)
∣∣∣∣∫ σ

0

〈Ds(A(xε)ξ), Dsξ〉 ds
∣∣∣∣ ≤ ε

∫ σ

0

〈Dsξ,Dsξ〉 ds.
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Hence, from (6.35), (6.37), (6.38), substituting in (6.34), we conclude that there
exists M > 0 such that, for all ξ ∈ TxεΩ

1
σ

Hhε(xε)[ξ, ξ] ≥ (1−Mσ2 − ε)
∫ σ

0

〈Dsξ,Dsξ〉 ds.

Now, taking ε and σ sufficiently small we complete the proof.
Step 3. The eigenvalues of Hhε(xε)|TxεΩ1

σ
are decreasing with respect to σ.

It is sufficient to prove that λε
k(σ) is increasing with respect to σ. We fix

σ, τ ∈ ]0, 1], with σ ≤ τ and notice that Txε
Ω1

σ ⊂ Txε
Ω1

τ . As the variational
characterization holds, there exists a subspace V ⊂ Txε

Ω1
σ, dimV = k, such that

λε
k(σ) = min

ξ∈V
‖ξ‖ε=1

〈Kσ
ε ξ, ξ〉ε = min

ξ∈V
‖ξ‖ε=1

〈Kτ
ε ξ, ξ〉ε ≤ λε

k(τ).

Step 4. The eigenvalues of Hhε(xε)|TxεΩ1
σ

are strictly decreasing with respect
to σ.

As in the previous step we can prove that λε
k(σ) is strictly increasing with

respect to σ. We fix σ, τ ∈ ]0, 1], with σ < τ . As in Step 3, suppose that

λε
k(σ) = min

ξ∈V
‖ξ‖ε=1

〈Kσ
ε ξ, ξ〉ε,

where V is a subspace of Txε
Ω1

σ with dimV = k. From the previous step we
know that

(6.39) λε
k(σ) ≤ λε

k(τ),

then, if λε
k(σ) is not an eigenvalue of Kτ

ε the proof is complete. Now we suppose
now that λε

k(σ) = λ is an eigenvalue of Kτ
ε . Then, from the spectral properties

of Kτ
ε , we conclude that

(6.40) Txε
Ω1

τ = H1 ⊕H2 ⊕H3,

where H1 is the maximal subspace where λI − Kτ
ε is positive definite, H2 =

ker(λI −Kτ
ε ), H3 is the maximal subspace where λI −Kτ

ε is negative definite.
Let us prove that

(6.41) V ∩ (H1 ⊕H2) = {0}.

We take ξ ∈ V ∩ (H1 ⊕H2), ξ = ξ1 + ξ2, ξ1 ∈ H1, ξ2 ∈ H2. If, by contradiction,
ξ1 6= 0, then also ξ 6= 0, and〈

Kσ
ε

ξ

‖ξ‖ε
,
ξ

‖ξ‖ε

〉
ε

=
〈
Kτ

ε

ξ

‖ξ‖ε
,
ξ

‖ξ‖ε

〉
ε

=
〈
Kτ

ε

ξ1
‖ξ‖ε

,
ξ1
‖ξ‖ε

〉
ε

+
〈
Kτ

ε

ξ2
‖ξ‖ε

,
ξ2
‖ξ‖ε

〉
ε
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=
〈
Kτ

ε

ξ1
‖ξ‖ε

,
ξ1
‖ξ‖ε

〉
ε

+ λ

〈
ξ2
‖ξ‖ε

,
ξ2
‖ξ‖ε

〉
ε

< λ

〈
ξ1
‖ξ‖ε

,
ξ1
‖ξ‖ε

〉
ε

+ λ

〈
ξ2
‖ξ‖ε

,
ξ2
‖ξ‖ε

〉
ε

= λ = λε
k(σ),

from which λε
k(σ) < λε

k(σ), a contradiction. Then ξ1 = 0 and ξ = ξ2 ∈ ker(λI −
Kτ

ε ). We consider now η = ξ/‖ξ‖H1
0
. We have η ∈ V ⊂ Txε

Ω1
σ and η ∈

ker(λI − Kτ
ε ), in contradiction with Lemma 6.12. Then ξ = 0. By (6.40) and

(6.41), we have V ⊂ H3, then k = dimV ≤ dimH3. So, let’s take a subspace H
of H3, with dimH = k, for example V . We have

λε
k(σ) = λ < min

ξ∈H
‖ξ‖ε=1

〈Kτ
ε ξ, ξ〉ε ≤ λε

k(τ).

Step 5. Let’s denote by m(σ) the maximal dimension of a subspace of Txε
Ω1

σ

where Hhε(xε)|TxεΩ1
σ

is negative definite. As m(σ) is given by the number of
negative eigenvalues of I − Kσ

ε , by Step 2, if σ is small, m(σ) = 0, that is, all
the eigenvalues are positive. By Steps 1, 3, 4, when σ becames greater, if x(σ) is
conjugate with multiplicity m for some σ, there are m eigenvalues equal 0 that
became negative. Hence, m(xε, hε) = m(1) is exactly the number of conjugate
points counted with their multiplicity, that is µ(xε, hε). �

Remark 6.14. Theorem 6.13 shows that for all n ∈ N, there exists a not
empty class F ′n ⊂ Fn where the Index Theorem holds. From now on we shall
only consider functionals in F ′n.

As an immediate consequence of the Index Theorem we have the following.

Corollary 6.15. Let hε be defined as in Theorem 6.13 and xε be a critical
point of hε. Then µ(xε, hε) is finite.

Proof. From Theorem 6.14, m(xε, hε) = µ(xε, hε). We see that m(xε, hε)
is finite as Hhε(xε) = I −Kε, where Kε is a compact operator. Then there are
only a finite number of negative eigenvalues of Hhε(xε). �

Another Corollary of the Index Theorem is a result already known for geo-
desics. Indeed, it has been proved that conjugate points along a geodesic are
isolated. The same holds for the small perturbations of f we are considering.

Corollary 6.16. Let hε be defined as in Theorem 6.13 and xε be a critical
point of hε. Then every conjugate point xε(σ) to x0 along xε is isolated.

Proof. Take a conjugate point xε(σ). If, by contradiction, there exists a
sequence (σn)n∈N ⊂ [0, 1] such that

lim
n→∞

σn = σ,
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and xε(σn) is conjugate to x0 along xε we should have µ(xε, hε) = ∞, in con-
tradiction with Corollary 6.16. �

The following follows immediately from Corollary 6.16.

Corollary 6.17. Let hε be defined as in Theorem 6.13 and xε be a critical
point of hε. Then the number of conjugate points along xε is finite.

Using Theorem 6.13, we can write the generalized Morse relations using the
geometric index. Let f be the functional defined in (5.2). Let F ′n be the class
of functionals defined in Remark 6.14. For h ∈ F ′n we can consider the following
polynomial

µλ(h) =
∑

x∈Kh

λµ(x,h).

From the Index Theorem

(6.42) µλ(h) = mλ(h),

where mλ(h) is the Morse polynomial of h. Then we can formulate the following

Definition 6.18. Let f be the functional defined in (5.2) and

A′f = {P ∈ S | ∃hn ∈ F ′n ∀n ∈ N lim
n→∞

µλ(hn) = P}.

The formal series iλ(f) = inf A′f is called the generalized geometric Morse index
of f .

As in Section 4, the generalized Morse index is well defined and obviously
Morse relations are still valid. Indeed the following theorem holds.

Theorem 6.19. Under the same assumptions as for Theorem 4.9, there
exists a polynomial Qλ with integer positive coefficients such that

iλ(f) = Pλ(Ω1(x0, x1,M)) + (1 + λ)Qλ.

Proof. In exactly the same way as for the proof of Theorem 4.9, seeing
that for every perturbation h in the class F ′n classical Morse relations hold, then
using (6.42) we can write

µλ(h) = Pλ(Ω1(x0, x1,M)) + (1 + λ)Qh
λ,

where Qh
λ is a formal series. �
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