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CONNECTED SIMPLE SYSTEMS
AND THE CONLEY FUNCTOR

Tomasz Kaczyński — Marian Mrozek

1. Introduction

The Conley index is a topological tool used in the qualitative theory of dif-
ferential equations and dynamical systems (see [1], [10], [4]). In the simplest
setting it takes the form of an object of a certain category (homotopy cate-
gory of metric spaces, category of graded moduli etc.), which is known up to an
isomorphism. This lack of precision is caused by the fact that there are many
so called index pairs used in the construction of the index but up to an isomor-
phism one can extract some common information from them, which is by the
definition the index. In a more subtle approach to the Conley index, essential
in many applications, one shows that the isomorphisms are not quite arbitrary
but form a connected simple system, i.e. a small category with the property that
there is exactly one morphism between any two objects. The first proof of this
fact, in case of flows, comes form Kurland [2] (see also [10], [9], [11]). All these
proofs require writing down explicit and complicated formulas for the isomor-
phisms. Paradoxically, the proof is the only place, where the formulas seem to
be necessary.

The aim of this paper is to propose an elementary proof of the fact that the
Conley index is a connected simple system, which avoids writing down explicit
formulas for the isomorphisms. Actually, it turns out that the inclusion relations
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between index pairs fully determine the structure of the Conley index as a con-
nected simple system. In particular this means that there is no alternative way of
making the Conley index a connected simple system, a fact intuitively expected
but never proved.
As a by-product of our construction, we obtain the fact that the Conley

index is actually a functor. This generalizes the result for flows by McCord [3] to
the case of discrete dynamical systems. (The Conley index for flows is actually
a special case of the Conley index for discrete semidynamical systems — see
[6, Theorem 1]).
The organization of the paper is as follows. Section 2 contains preliminaries.

Our main theorem on construction of connected simple systems comes in Sec-
tion 3. Section 4 presents the construction of the Conley functor for isolating ne-
ighbourhoods and the last section such a construction for isolated invariant sets.

2. Preliminaries

We denote the sets of integers by Z. Topological pairs are usually denoted
by a capital letter and the corresponding two elements of the pair are marked
by subscripts 1 and 2. Thus if P is a topological pair then P = (P1, P2). The
standard set theoretic notation is carried over in the obvious way to topological
pairs. Thus if P,Q are topological pairs then P ⊂ Qmeans P1 ⊂ Q1 and P2 ⊂ Q2.
Similarly, P ∩Q stands for the pair P1 ∩Q1, P2 ∩Q2.
Given a category A, the notation Obj(A),Mor(A), Iso(A) will be used re-

spectively for the class of objects of A, the class of morphisms in A and the class
of isomorphisms in A. Given A,B ∈ Obj(A), the set of morphisms from A to
B will be denoted by A(A,B). To simplify notation, we will often write A ∈ A
instead of A ∈ Obj(A).
The category of endomorphisms of A, denoted by Endo(A), is defined as

follows. The objects of Endo(A) are pairs (A, a), where A ∈ A and a ∈ A(A,A)
is a distinguished endomorphism of A. The set of morphisms from (A, a) ∈
Endo(A) to (B, b) ∈ Endo(A) is the subset of A(A,B) consisting of exactly
those morphisms ϕ ∈ A(A,B) for which bϕ = ϕa. We write ϕ : (A, a) → (B, b)
to denote that ϕ is a morphism from (A, a) to (B, b) in Endo(A). We define the
category of automorphisms of A as the full subcategory of Endo(A) consisting
of pairs (A, a) ∈ Endo(A) such that a ∈ A(A,A) is an automorphism, i.e., both
an endomorphism and an isomorphism in A. The category of automorphisms of
A will be denoted by Auto(A). There is a functorial embedding

A 3 A→ (A, idA) ∈ Auto(A),(1)

A(A,B) 3 ϕ→ ϕ ∈ Auto(A)(A,B),(2)

hence we can consider the category A as a subcategory of Auto(A).
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Assume C is a full subcategory of Endo(A) and F : C → Auto(A) is a functor.
Let (A, a) ∈ C. Then F (A, a) = (A′, a′) is an object of Auto(A). Obviously
a : (A, a) → (A, a) is a morphism in Endo(A) and since C is a full subcategory
of Endo(A) it is also a morphism in C. Hence F (a) : F (A, a)→ F (A, a) is a well
defined morphism in Auto(A). However, it need not be F (a) = a′ in general.
We say that F : C → Auto(A) is normal, if for each (A, a) ∈ C the morphism
F (a) is equal to the automorphism distinguished in F (A, a). Examples of normal
functors may be found in [7], [8], [12].

3. Connected simple systems

Let C be a category and E its small subcategory. We will say that E is
a pre-connected simple system (pre-CSS) in C if the following three conditions
are satisfied.

Mor(E) ⊂ Iso(C),(3)

∀E1, E2 ∈ E card E(E1, E2) ≤ 1,(4)

∀E1, E2 ∈ E ∃E3 ∈ E : E(E3, E1) 6= ∅ 6= E(E3, E2).(5)

If E1, E2 ∈ E and E(E1, E2) 6= ∅ then the unique element of E(E1, E2) will be
denoted by EE2E1 .
We will say that E is a connected simple system (CSS) in C if for any two

objects E1, E2 ∈ E there exists exactly one morphism in E(E1, E2). Obviously
every CSS is also a pre-CSS.

Theorem 3.1. For any E, a pre-CSS in C, there exists a unique CSS E in C
such that

Obj(E) = Obj(E),(6)

Mor(E) ⊂ Mor(E).(7)

Proof. We will show uniqueness first. Assume E is another such category.
All we need to prove is Mor(E) ⊂ Mor(E), because then the symmetric proof
implies Mor(E) = Mor(E). Thus let EE2E1 be a morphism in E . Using properties
(6) and (5) choose E3 ∈ E such that E(E3, E1) 6= ∅ 6= E(E3, E2). We have by (7)

EE2E1 = EE2E3E−1E1E3 = EE2E3E
−1
E1E3

= EE2E3E−1E1E3 = EE2E1

which means that EE2E1 ∈ E(E1, E2). Thus uniqueness is proved.
In order to construct E satisfying (6) and (7) put

Obj(E) := Obj(E)

and define the unique element of E(E1, E2) by

(8) EE2,E1 := EE2E3E−1E1E3 ,
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where E3 is chosen so that E(E3, E1) 6= ∅ 6= E(E3, E2). We need to show that the
definition (8) does not depend on the choice of E3. Thus let E4 be another object
in E such that E(E4, E1) 6= ∅ 6= E(E4, E2). Choose E5 such that E(E5, E3) 6= ∅ 6=
E(E5, E4). We have then the following commutative diagram in E

E3

↙
x ↘

E1 ←− E5 −→ E2

↖
y ↗

E4

which implies that

EE2E3E−1E1E3 = EE2E5E
−1
E1E5

= EE2E4E−1E1E4 .

Thus the definition (8) is correct.
If E(E1, E2) 6= ∅ then EE2E1 = EE2E1E−1E1E1 = EE2E1 , which shows that (7) is

satisfied. We need to prove that E is a category. Obviously EE1E1 = EE1E1 = idE1 .
To show that for any E1, E2, E3 ∈ Obj(E) we have EE3E1 = EE3E2EE2E1 choose
E4, E5, E6 ∈ E such that

E(E4, E1) 6= ∅ 6= E(E4, E2),
E(E5, E2) 6= ∅ 6= E(E5, E3),
E(E6, E4) 6= ∅ 6= E(E6, E5),

and consider the following commutative diagram in E

E6

↙ ↘
E4 E5

↙ ↘ ↙ ↘
E1 E2 E3

y
which implies

(9) EE3E2EE2E1 = EE3E5E−1E2E5EE4E2E
−1
E4E1

= EE3E5EE5E6E−1E4E6E
−1
E1E4

= EE3E6E−1E4E6 = EE3E1 . �

We define the category of connected simple systems over C, denoted CSS(C),
as follows. We take all connected simple systems in C as objects of this category.
If E and F are two connected simple systems in C then by a morphism from E
to F we mean any collection

ϕ := {ϕFE ∈ C(E,F ) | E ∈ E , F ∈ F}
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of morphisms in C which satisfy

ϕF ′E′ = EF ′FϕFEEEE′

for any E,E′ ∈ E , F, F ′ ∈ F . The elements of ϕ will be called representants
of ϕ.
If ψ := {ψGF ∈ C(F,G) | F ∈ F , G ∈ G} is a morphism from F to G ∈

CSS(C) then it is straightforward to verify that for given objects E ∈ E , G ∈ G
the composition ψGFϕFE does not depend on the choice of an object F ∈ F .
Thus the morphism (ψϕ)FE := ψGFϕFE is well defined and we can set

ψϕ := {(ψϕ)GE | E ∈ E , G ∈ G}.

The commutativity of the diagram

E
ϕFE−−−−→ F

ψGF−−−−→ Gy y y
E′ −−−−→

ϕF ′E′
F ′ −−−−→

ψG′F ′
G′

implies that ψφ is a well defined composition of morphisms. It is now straight-
forward to verify that {EE′E | E,E′ ∈ Obj(E)} is the identity morphism in E .
Thus we have proved

Theorem 3.2. CSS(E) is a category.

The following proposition is an easy exercise.

Proposition 3.3. A morphism of connected simple systems is an isomor-
phism if and only if all its representants are isomorphisms or equivalently if it
admits at least one representant which is an isomorphism.

Assume E ,F ∈ CSS(C) and E ∈ E , F ∈ F . If κ ∈ C(E,F ) then one can
easily verify that

κFE := {κF ′E′ | E′ ∈ E , F ′ ∈ F},
where

κF ′E′ := EFF ′κEEE′ for E′ ∈ E , F ′ ∈ F ,
defines a morphism in CSS(C)(E ,F).
The following proposition is straightforward.

Proposition 3.4. Assume E,E′ ∈ E , F, F ′ ∈ F and κ ∈ C(E,F ), λ ∈
C(E′, F ′). Then κFE = λFE iff the following diagram commutes

E
κ−−−−→ F

EEE′
y yEFF ′
E′ −−−−→

λ
F ′
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4. Isolating neighbourhoods

The category of discrete semidynamical systems DS (briefly: the category of
dynamical systems) is defined as follows. Its objects are pairs of the form (X, f),
whereX is a locally compact metric space and f : X → X is a continuous map. If
(X, f), (Y, g) ∈ DS then ϕ : (X, f)→ (Y, g) is a morphism in DS if ϕ : X → Y is
a partial continuous map such that ϕf(x) = gϕ(x) for x ∈ domϕ∩ f−1(domϕ).
Given (X, f) ∈ DS and N , a compact subset of X, we define the invariant

part of N with respect to f as follows

(10) Inv(N, f) := InvN := {x ∈ N | ∃σ : Z→ N, σ(0) = x

and ∀i ∈ Z f(σ(i)) = σ(i+ 1)}.

We say that N is an isolating neighbourhood if InvN ⊂ intN .

Proposition 4.1. If ϕ : (X, f)→ (Y, g) is a morphism in DS and M is an
isolating neighbourhood with respect to g then ϕ−1(M) is an isolating neighbo-
urhood with respect to f .

Proof. Inv(ϕ−1(M), f) ⊂ ϕ−1(Inv(M, g)) ⊂ ϕ−1(intM) ⊂
∫
ϕ−1(M). �

The category of isolating neighbourhoods, denoted IN, is defined as follows.
The objects of IN are triples (X, f,N), where (X, f) ∈ DS and N is an iso-
lating neighbourhood with respect to f . If (X, f,N), (Y, g,M) ∈ IN then ϕ :
(X, f,N) → (Y, g,M) is a morphism in IN if ϕ : (X, f) → (Y, g) is a morphism
in DS such that domϕ ⊃ N and ϕ−1(M) = N . It is an easy exercise to verify
that IN is indeed a category.

The pair P = (P1, P2) of compact subsets of N is called an index pair in N
(with respect to f) if the following three conditions are satisfied.

Pi ∩ f−1(N) ⊂ f−1(Pi) for i = 1, 2,(11)

P1\P2 ⊂ f−1(N),(12)

InvN ⊂ int(P1\P2).(13)

The collection of all index pairs in N with respect to f will be denoted by
IP(X, f,N).

The following theorem may be found in [8], [9], [5].

Theorem 4.2. If (X, f) ∈ DS and N is an isolating neighbourhood with
respect to f then for any U , an open neighbourhood of InvN , there exists an index
pair P in N such that P1\P2 ⊂ U . In particular IP(X, f,N) 6= ∅.

The following proposition is an easy exercise.
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Proposition 4.3. If P,Q are index pairs in N , then also P ∩ Q := (P1 ∩
Q1, P2 ∩Q2) is an index pair in N .

Let P1/P2 denote the quotient space. We will consider it as an object in
Comp∗, the category of pointed metric compact spaces, by assuming that the
point distinguished in P1/P2 is P2 collapsed to a point. We will denote this point
by [P2].
It follows easily from the definition of the index pair that the map f induces

a continuous map fP : P1/P2 → P1/P2 given by

fP (x) :=

{
[f(x)] if x ∈ P2,
[P2] otherwise.

It is called the index map. Thus we have (P, fP ) ∈ Endo(Comp∗). We will write
briefly Pf := (P, fP ).
The proof of the following proposition is left to the reader as an easy exercise.

Proposition 4.4. Assume (X, f,N), (Y, g,M) ∈ IN and P ∈ IP(X, f,N),
Q ∈ IP(Y, g,M). If ϕ : (X, f,N) → (Y, g,M) is a morphism in IN such that
ϕ(P ) ⊂ Q, then

ϕPQ : P1/P2 3 [x]→ [ϕ(x)] ∈ Q1/Q2
is a well defined, continuous map such that the following diagram commutes

P1/P2
fP−−−−→ P1/P2

ϕPQ

y yϕPQ
Q1/Q2 −−−−→

gQ
Q1/Q2

Assume now that K : Comp∗ → A is a given co- or contra-variant func-
tor, which is homotopy invariant. It extends in a natural way to a functor
K : Endo(Comp∗) → Endo(A) denoted with the same letter. Assume also
that C ⊂ Endo(Comp∗) is a subcategory such that K(Endo(Comp∗)) ⊂ C.
Let L : C → Auto(A) be a given normal functor. Then the composite func-
tor LK := L ◦K : Endo(Comp∗)→ Auto(A) is defined.

Theorem 4.5 ([8, Theorem 6.3]). Assume N is an isolating neighbourhood
with respect to f , P ⊂ Q are two index pairs in N and ιPQ is the corresponding
inclusion map. Then ιPQ ∈ Endo(Comp∗)(Pf , Qf ) and LK(ιPQ) is an isomor-
phism in Auto(A).

We define the category ConK,L(X, f,N) as follows.

Obj(ConK,L(X, f,N)) := LK(Pf ) | P ∈ IP(X, f,N),(14)

(15) ConK,L(X, f,N)(LK(Pf ), LK(Qf )) :=

{
LK(ιPQ) if P ⊂ Q,
∅ otherwise.
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Since the functors K,L are fixed, we will drop subscripts K,L in the sequel.
The following proposition follows easily from Proposition 4.3

Proposition 4.6. Con(X, f,N) is a pre-CSS.

Thus, by Theorem 3.1, Con(X, f,N) extends in a unique way to a CSS, called
the Conley index of f in N . We will denote this CSS again by Con(X, f,N).
In order to turn Con into a functor we need the following proposition.

Proposition 4.7. Assume (X, f,N), (Y, g,M) are two objects in IN and ϕ :
(X, f,N)→ (Y, g,M) is a morphism in IN. If Q ∈ IP(Y, g,M), then ϕ−1(Q) :=
(ϕ−1(Q1), ϕ−1(Q2)) ∈ IP(X, f,N).

Proof. Assume x ∈ ϕ−1(Qi) ∩ f−1(N). Then ϕ(x) ∈ Qi and g(ϕ(x)) ∈
M . It follows from (11) that ϕ(f(x)) = g(ϕ(x)) ∈ Qi, i.e. f(x) ∈ ϕ−1(Qi).
This proves (11) for ϕ−1(Q). Assume in turn that x ∈ ϕ−1(Q1)\ϕ−1(Q2). Then
ϕ(x) ∈ Q1\Q2 ⊂ g−1(M), i.e. x ∈ ϕ−1(g−1(M)) = f−1(N). This proves (12).
Finally observe that

Inv(ϕ−1(M), f) ⊂ ϕ−1(Inv(M, g))

⊂ ϕ−1(int(Q1\Q2)) ⊂ int(ϕ−1(Q1)\ϕ−1(Q2)),

which proves (13). �

Assume now that (X, f,N), (Y, g,M) ∈ IN and ϕ : (X, f,N) → (Y, g,M) is
a morphism in IN. Let Q ∈ IP(Y, g,M). Then, by Proposition 4.7, ϕ−1(Q) ∈
IP(X, f,N) and since ϕ(ϕ−1(Q)) ⊂ Q, we have a well defined morphism ϕQ :=
ϕϕ−1(Q)Q : ϕ−1(Q)f → Qg. This morphism in turn gives rise to the mor-
phism LK(ϕQ)Con(X,f,N),Con(Y,g,M) : Con(X, f,N) → Con(Y, g,M). We will
show that this morphism is independent of the choice of the index pair Q. Let
P ∈ IP(Y, g,M) be another index pair. Assume first that P ⊂ Q. Then one
easily verifies that the following diagram commutes

ϕ−1(P )f
ϕP−−−−→ Pg

ιϕ−1(P )ϕ−1(Q)

y yιPQ
ϕ−1(Q)f −−−−→

ϕQ
Qg

Applying the functor LK to the above diagram we obtain a commutative diagram
in Auto(A) which shows, by Proposition 3.4 that

LK(ϕQ)Con(X,f,N),Con(Y,g,M) = LK(ϕP )Con(X,f,N),Con(Y,g,M).

If P 6⊂ Q then R := P ∩ Q is an index pair contained both in P and Q and
consequently

LK(ϕQ)Con(X,f,N),Con(Y,g,M) = LK(ϕR)Con(X,f,N),Con(Y,g,M)(16)

= LK(ϕP )Con(X,f,N),Con(Y,g,M).
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Thus we can put

Con(ϕ) := LK(ϕQ)Con(X,f,N),Con(Y,g,M),

where Q is any index pair for g in M . It is now an elementary task to verify the
following theorem

Theorem 4.8. Con : IN→ Auto(A) is a well defined functor.

We will call it the Conley functor.

5. Isolated invariant sets

The set S ⊂ X is said to be invariant if f(S) = S. This is easily seen
to be equivalent to S = Inv(S, f). S is called an isolated invariant set, if it
admits a compact neighbourhood N such that S = InvN . The neighbourhood
N is then called an isolating neighbourhood of S. The family of all isolating
neighbourhoods for S will be denoted by IN(X, f, S).
The following proposition is straightforward.

Proposition 5.1. If N,M ∈ IN(X, f, S) then N ∩M ∈ IN(X, f, S).

The category of isolated invariant sets, denoted IIS is defined as follows.
The objects of IIS are triples (X, f, S), where (X, f) ∈ DS and S is an isolated
invariant set with respect to f . If (X, f, S), (Y, g, T ) are two objects in IIS then
ϕ : (X, f, S)→ (Y, g, T ) is a morphism in IIS if ϕ : (X, f)→ (Y, g) is a morphism
in DS and ϕ−1(T ) = S. It is an easy exercise to verify that IIS is indeed a
category.
Note that unlike the case of an isolating neighbourhood, the inverse image of

an isolated invariant set need not be an isolated invariant set. Nevertheless we
have the following proposition.

Proposition 5.2. Assume ϕ : (X, f, S) → (Y, g, T ) is a morphism in IIS
and M is an isolating neighbourhood for T . Then ϕ−1(M) is an isolating neigh-
bourhood for S.

Proof. Since S = ϕ−1(T ) ⊂ ϕ−1(M), we have

S = Inv(S, f) ⊂ Inv(ϕ−1(M), f) ⊂ ϕ−1(Inv(M, g)) = ϕ−1(T ) = S.

Thus S = Inv(ϕ−1(M), f). �

Assume now that N,M ∈ IN(X, f, S) are two isolating neighbourhoods such
that M ⊂ N . Then the inclusion ι : M → N induces a map ι : (X, f,M) →
(X, f,N) and consequently we have a morphism

LK(ι) : Con(X, f,M)→ Con(X, f,N).
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Select an index pair Q ∈ IP(X, f,N) such that Q1\Q2 ⊂ intM (such a choice
is possible by Theorem 4.2). Put P := ι−1(Q). It is straightforward to verify
that ιPQ : P1/P2 → Q1/Q2 is a homeomorphism. It follows that LK(ιPQ) is an
isomorphism and by Proposition 3.3 also

LK(ι)Con(X,f,M)Con(X,f,N) : Con(X, f,M)→ Con(X, f,N)

is an isomorphism.
We define the category Con(X, f, S) as follows.

Obj(Con(X, f, S)) := {Con(X, f,N) | N ∈ IN(X, f, S)},
Con(X, f, S)(Con(X, f,M),Con(X, f,N))

:=

{
LK(ι)Con(X,f,M)Con(X,f,N) if M ⊂ N ,
∅ otherwise.

The following proposition follows easily from Proposition 5.1.

Proposition 5.3. Con(X, f, S) is a pre-CSS.

Thus, by Theorem 3.1, Con(X, f, S) extends in a unique way to a CSS,
called the Conley index of S with respect to f . We will denote this CSS again
by Con(X, f, S).
Now assume that ϕ : (X, f, S) → (Y, g, T ) is a morphism in IIS and choose

M ∈ IN(Y, g, T ). By Proposition 4.1 N := ϕ−1(M) ∈ IN(X, f, S), hence we
have a morphism LK(ϕ)Con(X,f,N)Con(Y,g,M). Proceeding similarly to the case of
isolating neighbourhood we conclude that this morphism does not depend of the
choice of the isolating neighbourhood M . Thus we may put

Con(ϕ) :=
(
LK(ϕ)Con(X,f,N)Con(Y,g,M)

)
Con(X,f,S)Con(Y,g,T ).

A routine verifications leads to the following theorem

Theorem 5.4. Con : IIS→ Auto(A) is a well defined functor.

Thus we again obtain a Conley functor, this time for isolated invariant sets.
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