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FIXED POINT THEORY
AND GENERALIZED LERAY–SCHAUDER ALTERNATIVES

FOR APPROXIMABLE MAPS
IN TOPOLOGICAL VECTOR SPACES

Ravi P. Agarwal — Donal O’Regan — Radu Precup

Abstract. Some new fixed point theorems for approximable maps are
obtained in this paper. Homotopy results, via essential maps, are also

presented for approximable maps.

1. Introduction

This paper presents new fixed point and homotopy results for approximable
maps. Our theory extends and complements results in [3], [4], [6], [7] and relies
only on Brouwer’s fixed point theorem.

For the remainder of this section we present some preliminaries which will
be needed in this paper. Let X and Y be subsets of Hausdorff topological vector
spaces E1 and E2 respectively and F :X → K(Y ); here K(Y ) denotes the family
of nonempty compact subsets of Y .

Given two open neighbourhoods U and V of the origins in E1 and E2 respec-
tively, a (U, V )-approximative continuous selection ([4], [5]) of F :X → K(Y ) is
a continuous function s:X → Y satisfying

s(x) ∈ (F [(x + U) ∩X] + V ) ∩ Y for every x ∈ X.
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We say F :X → K(Y ) is approachable if it has a (U, V )-approximative contin-
uous selection for every open neighbourhood U and V of the origins in E1 and
E2 respectively. We let A0(X, Y ) denote the class of approachable maps. We
say F :X → K(Y ) is approximable if its restriction F |Ω to any compact subset Ω
of X admits a (U, V )-approximative continuous selection for every open neigh-
bourhood U and V of the origins in E1 and E2 respectively. We let A(X, Y )
denote the class of approximable maps.

The following elementary result was established in [3] using Schauder pro-
jections.

Theorem 1.1. Let E be a Hausdorff locally convex topological vector space,
X ⊆ E and F :X → K(E) a compact map. Assume F ∈ A0(X, E) takes its
values in a convex compact subset K of E. Then F ∈ A0(X, K).

A nonempty subset X of a Hausdorff topological vector space E is said to
be admissible if for every compact subset Ω of X and every neighbourhood V

of 0, there exists a continuous map h: Ω → X with x − h(x) ∈ V for all x ∈ Ω
and h(Ω) is contained in a finite dimensional subspace of E. X is said to be
q-admissible if any nonempty compact, convex subset Ω of X is admissible.

2. Fixed point theory

This section presents new fixed point results for approximable maps. All our
results rely on Brouwer’s fixed point theorem. In addition in this section we
present an essential map theory for approximable maps .

Fixed point theory for approachable maps defined on topological vector
spaces was first discussed in [4]. The following fixed point result can be found
in [4, Corollary 7.3].

Theorem 2.1. Let X be a convex subset of a (Hausdorff ) locally convex
topological vector space E and let F ∈ A0(X, X) be a upper semicontinuous
compact map. Then F has a fixed point.

Theorem 2.1 automatically leads to a fixed point result for approximable
maps (an alternate proof will be provided using Brouwer’s fixed point theory
later in this section; see Remark 2.6(a)).

Theorem 2.2. Let X be a convex subset of a (Hausdorff ) complete locally
convex topological vector space E and let F ∈ A(X, X) be a closed compact map.
Then F has a fixed point.

Proof. Let Ω = co (F (X)) ⊆ X. Note [10, p. 67] guarantees that Ω is com-
pact (and of course convex). Note also that F (Ω) ⊆ Ω. In addition guarantees
that F |Ω is upper semicontinuous (see [2, p. 465]). Now since Ω is compact we
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have F |Ω ∈ A0(Ω, X), so in particular F |Ω ∈ A0(Ω, E). Theorem 1.1 guarantees
that F |Ω ∈ A0(Ω,Ω). The result now follows from Theorem 2.1. �

Remark 2.3. In Theorem 2.2, F ∈ A(X, X) could be replaced by F :X →
2X (here 2X denotes the family of nonempty subsets of X) with F ∈ A(X, E).

Remark 2.4. It is possible to consider a more general space E in Theo-
rem 2.2 if one works in a larger class of maps (see [8], [9]).

Recently in [6] another type of fixed point result for approximable maps
defined on Hausdorff topological vector spaces was presented. One of the main
reasons for examining this approximable type map was that the proof of the
fixed point result is elementary and just relies on Brouwer’s fixed point theorem.
For completeness we present the proof here.

Theorem 2.5. Let X be an admissible convex set in a Hausdorff topological
vector space E and suppose F :X → 2X is a closed compact map with F ∈
A(X, F (X)). Then F has a fixed point.

Proof. Let N be a fundamental system of neighbourhoods of the origin 0
in E and V ∈ N . Let C = F (X). Now there exists a continuous function
h:C → X and a finite dimensional subspace L of E with

(2.1) y − h(y) ∈ V for all y ∈ C and h(C) ⊆ L.

Let M = h(C) and Ω = co(M). Since M is a compact subset of L∩X it follows
that Ω is a compact convex subset of L∩X. Since F |Ω: Ω → 2C admits a (U, V )-
approximative continuous selection, there exists a continuous function s: Ω → C

with

(2.2) s(x) ∈ (F [(x + V ) ∩ Ω] + V ) ∩ C for all x ∈ Ω.

Lets look at h ◦ s: Ω → Ω. Brouwer’s fixed point theorem implies there exists
xV ∈ Ω with h ◦ s(xV ) = xV . Let yV = s(xV ). Now (2.1) and (2.2) imply

yV − h(s(xV )) = yV − h(yV ) ∈ V

and s(xV )− wV ∈ V for some wV ∈ F (zV ) such that zV ∈ (xV + V ) ∩ Ω.

Since Ω is compact we may suppose h(s(xV )) = xV → x for some x ∈ Ω. Thus
zV → x and s(xV ) = yV → x and so wV → x. Since F is closed and wV ∈ F (zV )
we have x ∈ F (x). �

Remark 2.6. (a) In Theorem 2.3 if X is compact then F ∈ A(X, F (X))
could be replaced by F ∈ A(X, X). This is immediate since we can take C = X

in the proof of Theorem 2.5 and notice (2.2) is true since F ∈ A(X, X).
(b) Suppose E is a (Hausdorff) locally convex topological vector space and

X a convex subset of E. Also suppose F ∈ A(X, X) is a closed compact map.
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Notice X is admissible. Now let C = coF (X) in the proof of Theorem 2.5 and
notice (2.2) is true from Theorem 1.1 (note F ∈ A(X, X)). As a result we
have a proof of Theorem 2.2 using Brouwer’s fixed point theorem. Similarly the
proof of Remark 2.3 follows if F ∈ A(X, X) is replaced by F :X → 2X with
F ∈ A(X, E).

Our next result removes the compactness assumption on the map F in The-
orem 2.2.

Theorem 2.7. Let X be a closed convex subset of a (Hausdorff ) complete
locally convex topological vector space E with x0 ∈ X. Suppose F ∈ A(X, X) is
a closed map with the following condition holding:

(2.3) A ⊆ X, A = co({x0} ∪ F (A)) implies A is compact.

Then F has a fixed point.

Proof. Consider F the family of all closed, convex subsets C of X with
x0 ∈ C and F (x) ⊆ C for all x ∈ C. Note F 6= ∅ since X ∈ F . Let

C0 =
⋂

C∈F
C.

Notice C0 is nonempty, closed and convex and F :C0 → 2C0 since if x ∈ C0 then
F (x) ⊆ C for all C ∈ F . Let

(2.4) C1 = co({x0} ∪ F (C0)).

Notice F :C0 → 2C0 together with C0 closed and convex implies C1 ⊆ C0. Also
F (C1) ⊆ F (C0) ⊆ C1 from (2.4). Thus C1 is closed and convex with F (C1) ⊆ C1.
As a result C1 ∈ F , so C0 ⊆ C1. Consequently

(2.5) C0 = co({x0} ∪ F (C0)).

Now (2.3) implies C0 is compact and notice (2.5) implies F (C0) ⊆ C0. Also
[2, p. 465] guarantees that F |C0 is upper semicontinuous and in addition we
have (note C0 is compact) that F |C0 : C0 → 2C0 is a compact map. Now since
C0 is compact we have F |C0 ∈ A0(C0, X), so in particular F |C0 ∈ A0(C0, E).
Theorem 1.1 guarantees that F |C0 ∈ A0(C0, C0) and the result follows from
Theorem 2.1. �

Remark 2.8. Theorem 2.7 extends Theorem 6 in [7]. It is also possible to
consider a more general space E in Theorem 2.7 (see [1]) if one works in a larger
class of maps.

Remark 2.9. In Theorem 2.7, F ∈ A(X, X) could be replaced by F :X →
2X with F ∈ A(X, E).
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It is also possible to obtain a result in the Hausdorff topological vector space
setting using Theorem 2.5.

Theorem 2.10. Let X be a q-admissible closed convex set in a Hausdorff
topological vector space E with x0 ∈ X. Suppose F :X → 2X is a closed map
with (2.3) holding. Also assume F |Ω ∈ A(Ω, F (Ω)) for any convex compact set Ω
of X with F (Ω) ⊆ Ω. Then F has a fixed point.

Proof. Let C0 be as in Theorem 2.7. Notice C0 is convex and compact
with F (C0) ⊆ C0. Also since X is q-admissible we have that C0 is admissi-
ble. In addition F |C0 ∈ A(C0, F (C0)) and F |C0 is a closed map. Now apply
Theorem 2.5. �

Next we present an essential map approach for compact approximable maps.
Assume E is a Hausdorff topological vector space, C a closed convex admissible
subset of E and U an open subset of C with 0 ∈ U .

Definition 2.11. We say F ∈ GA(U,C) if F :U → K(C) is a closed com-
pact map with F ∈ A(U,F (U)); here U denotes the closure of U in C.

Definition 2.12. We say F ∈ GA∂U (U,C) if F ∈ GA(U,C) with x /∈ F (x)
for x ∈ ∂U ; here ∂U denotes the boundary of U in C.

Definition 2.13. A map F ∈ GA∂U (U,C) is essential in GA∂U (U,C) if for
every G ∈ GA∂U (U,C) with G|∂U = F |∂U there exists x ∈ U with x ∈ G(x).

Theorem 2.14. Let E be a Hausdorff topological vector space, C a closed
convex admissible subset of E and U an open subset of C with 0 ∈ U . Then the
zero map is essential in GA∂U (U,C).

Proof. Let θ ∈ GA∂U (U,C) with θ|∂U = {0}. We must show there exists
x ∈ U with x ∈ θ(x). Let

J(x) =

{
θ(x) for x ∈ U,

{0} for x ∈ C\U.

Clearly J :C → K(C) is a closed compact map. We next show J ∈ A(C, J(C)).
By the definition of J it suffices to show for any compact set Ω of U that J |Ω: Ω →
K(J(C)) is approachable. Let U1 and V1 be two open neighbourhoods of the
origin and let s: Ω → θ(U) be a (U1, V1) approximative continuous selection of
θ|Ω i.e. s(x) ∈ θ(U) and

s(x) ∈ θ[(x + U1) ∩ Ω] + V1 = J [(x + U1) ∩ Ω] + V1 for all x ∈ Ω.

Now for x ∈ Ω we have

s(x) ∈ {y : y ∈ θ(x) and x ∈ U} = J(C),
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so J |Ω: Ω → K(J(C)) is approachable. Theorem 2.5 guarantees that there exists
x ∈ C with x ∈ J(x). Note x ∈ U since 0 ∈ U . Thus x ∈ θ(x) and we are
finished. �

We now present a generalized Leray–Schauder alternative.

Theorem 2.15. Let E be a Hausdorff topological vector space, C a closed
convex admissible subset of E and U an open subset of C with 0 ∈ U . Suppose
F ∈ GA(U,C) with

(2.6) x /∈ λFx for every x ∈ ∂U and λ ∈ (0, 1].

Then F is essential in GA∂U (U,C) (in particular F has a fixed point in U).

Proof. Let H ∈ GA∂U (U,C) with H|∂U = F |∂U . We must show H has
a fixed point in U . Consider

B = {x ∈ U : x ∈ λH(x) for some λ ∈ [0, 1]}.

Now B 6= ∅ since 0 ∈ U . Also B is closed (in C) and in fact compact since H

is a closed compact map (note U is closed in C). In addition B ∩ ∂U = ∅ since
(2.6) holds and H|∂U = F |∂U and 0 ∈ U . Since C is a subset of a Hausdorff
topological vector spaces it is completely regular and so there exists a continuous
function µ:U → [0, 1] with µ(∂U) = 0 and µ(B) = 1. Define a map Rµ by
Rµ(x) = µ(x)H(x). Now Rµ:U → K(C) is closed and compact. In fact Rµ ∈
A(U,Rµ(U)). To see this let U1 and V1 be two open neighbourhoods of the origin
and without loss of generality assume V1 is balanced. Let Ω be a compact subset
of U and let s: Ω → H(U) be a (U1, V1) approximative continuous selection of
H|Ω i.e. s(x) ∈ H(U) and

s(x) ∈ H[(x + U1) ∩ Ω] + V1 for each x ∈ Ω.

Notice for each x ∈ Ω that

µ(x)s(x) ∈ µ(x)(H[(x + U1) ∩ Ω] + V1) ⊆ Rµ[(x + U1) ∩ Ω] + V1

since µ(x) ∈ µ([x + U1] ∩ Ω) and V1 is balanced. As a result

Rµ(x) = µ(x)s(x) ∈ Rµ[(x + U1) ∩ Ω] + V1 for x ∈ Ω

and also we have for x ∈ Ω that

Rµ(x) = µ(x)s(x) ∈ {µ(x)y : y ∈ H(x) and x ∈ U} = Rµ(U).

As a result Rµ: Ω → K(Rµ(U)) is approachable, so Rµ ∈ A(U,Rµ(U)). Thus
Rµ ∈ GA(U,C) with Rµ|∂U = {0}. This together with Theorem 2.14 implies
that there exists x ∈ U with x ∈ Rµ(x). Thus x ∈ B and so µ(x) = 1, i.e.
x ∈ H(x). �
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For our next results we assume E is a complete locally convex topological
vector space, C a closed convex subset of E and U an open subset of C with
0 ∈ U .

Definition 2.16. We say F ∈ GAA(U,C) if F :U → K(C) is a upper semi-
continuous map with F ∈ A(U,E) and which satisfies the following condition:

A ⊆ U, A ⊆ co({0} ∪ F (A)) implies A is compact.

Remark 2.17. In the theory below, F ∈ A(U,E) in Definition 2.16 could
be replaced by F ∈ A(U,C).

Definition 2.18. We say F ∈ GAA∂U (U,C) if F ∈ GAA(U,C) with x /∈
F (x) for x ∈ ∂U .

Definition 2.19. A map F ∈ GAA∂U (U,C) is essential in GAA∂U (U,C)
if for every G ∈ GAA∂U (U,C) with G|∂U = F |∂U there exists x ∈ U with
x ∈ G(x).

Theorem 2.20. Let E be a complete locally convex topological vector space,
C a closed convex subset of E and U an open subset of C with 0 ∈ U . Then the
zero map is essential in GAA∂U (U,C).

Proof. Let θ ∈ GAA∂U (U,C) with θ|∂U = {0}. Let J be as in The-
orem 2.14. Clearly J :C → K(C) is a upper semicontinuous map with J ∈
A(C,E). Next we claim the following holds:

(2.7) if A ⊆ C with A = co({0} ∪ J(A)) then A is compact.

If (2.7) holds then Theorem 2.7 (with Remark 2.9) guarantees that there exists
x ∈ C with x ∈ Jx. As in Theorem 2.14 we have x ∈ U and we are finished.

It remains to show (2.7). To see this let A ⊆ C with A = co({0} ∪ J(A)).
Then

(2.8) A ⊆ co({0} ∪ θ(A ∩ U))

and so

A ∩ U ⊆ co({0} ∪ θ(A ∩ U)).

Since θ ∈ GAA(U,C) we have that A ∩ U is compact, and since θ is upper
semicontinuous we deduce that θ(A ∩ U) is compact (see [2, p. 464]). This
together with [10, p. 67] implies co({0} ∪ θ(A ∩ U) is compact, so (2.8) implies
A(= A) is compact. Thus (2.7) holds. �

Next we obtain a generalized Leray–Schauder alternative.



200 R. P. Agarwal — D. O’Regan — R. Precup

Theorem 2.21. Let E be a complete locally convex topological vector space,
C a closed convex subset of E and U an open subset of C with 0 ∈ U . Suppose
F ∈ GAA(U,C) with (2.6) holding. Then F is essential in GAA∂U (U,C).

Proof. Let H ∈ GAA∂U (U,C) with H|∂U = F |∂U , and let B be as in
Theorem 2.15. Notice B 6= ∅ is closed and in fact compact (since B ⊆ co({0} ∪
H(B))). Next let Rµ be as in Theorem 2.15. It is immediate that Rµ:U → K(C)
is an upper semicontinuous map with Rµ ∈ A(U,E). We now claim

(2.9) Rµ ∈ GAA(U,C).

If (2.9) is true then Rµ|∂U = {0} together with Theorem 2.20 implies that there
exists x ∈ U with x ∈ Rµ(x). Thus x ∈ B so µ(x) = 1 and we are finished.

It remains to show (2.9). Suppose A ⊆ U with A ⊆ co({0} ∪ Rµ(A)). Then
Rµ(A) ⊆ co({0} ∪H(A)) together with {0} ∪ co({0} ∪H(A)) = co({0} ∪H(A))
yields

A ⊆ co({0} ∪Rµ(A)) ⊆ co(co({0} ∪H(A))) = co({0} ∪H(A)).

Since H ∈ GAA(U,C) we know A is compact, so (2.9) is true. �

Next we present a Leray–Schauder alternative for noncompact maps defined
on Hausdorff topological vector spaces. One could derive a theory (similar to the
one above) using Theorem 2.10. However here we present a different approach.

Theorem 2.22. Let E be a Hausdorff topological vector space, C a closed
convex subset of E and U an open subset of C with 0 ∈ U . Suppose F :U →
K(C) is a upper semicontinuous map with F ∈ A(U,F (U)). Let C0 =

⋂
D∈F D

where F is the family of all closed, convex subsets D of X with 0 ∈ D and
F (D ∩ U) ⊆ D. Assume the following conditions hold:

A ⊆ E,A = co({0} ∪ F (A ∩ U)) implies A ∩ U is compact,(2.10)

C0 is admissible,(2.11)

x /∈ λFx for every x ∈ ∂C0(intC0(C0 ∩ U)) and λ ∈ (0, 1].(2.12)

Then F has a fixed point.

Proof. Consider F the family of all closed, convex subsets D of X with
0 ∈ D and F (D ∩ U) ⊆ D. Let C0 =

⋂
D∈F D and

(2.13) C1 = co({0} ∪ F (C0 ∩ U)).

Notice C0 is closed and convex, 0 ∈ C0 and F (C0 ∩ U) ⊆ F (D ∩ U) ⊆ D

for all D ∈ F . Thus C0 ∈ F and so C1 ⊆ C0 since F (C0 ∩ U) ⊆ C0. Also
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F (C1 ∩ U) ⊆ F (C0 ∩ U) ⊆ co({0} ∪ F (C0 ∩ U)) = C1 so C1 ∈ F . As a result
C0 ⊆ C1 so

(2.14) C0 = co({0} ∪ F (C0 ∩ U)).

Now (2.10) implies

(2.15) C0 ∩ U is compact and F (C0 ∩ U) ⊆ C0.

Also notice since F ∈ A(U,F (U)) that F |C0∩U :C0∩U → K(F (U)) is approach-
able. Consider the set

B = {x ∈ C0 ∩ U : x ∈ λFx for some λ ∈ [0, 1]}.

Note C0 ∩ U is compact so B 6= ∅ is a compact convex subset of C0. For later,
notice since F is upper semicontinuous we have [2, p. 464] that F (C0 ∩ U) is
compact. Also we have B ∩ ∂C0(intC0(C0 ∩U)) = ∅, so there exists a continuous
function µ:C0 → [0, 1] with µ(∂C0(intC0(C0 ∩ U))) = 0 and µ(B) = 1. Notice
intC0(C0 ∩U) = C0 ∩ intC0(U). Let S:C0 → K(C0) (note (2.14) implies F (C0 ∩
U) ⊆ C0) be defined by

S(x) =

{
µ(x)F (x) for x ∈ C0 ∩ intC0(U) = intC0(C0 ∩ U),

{0} for x ∈ C0 \ intC0(C0 ∩ U).

Since F (C0 ∩ U) is compact we have that S is a closed compact map. We now
show S ∈ A(C0, S(C0)). Note intC0(C0 ∩ U)C0 = C0 ∩U . By the definition of S

it suffices to show that S|C0∩U :C0 ∩U → K(S(C0)) is approachable. Now since

F |C0∩U :C0 ∩U → K(F (U)) is approachable then essentially the same reasoning
as in Theorem 2.15 guarantees that S|C0∩U :C0∩U → K(S(C0)) is approachable.
As a result S ∈ A(C0, S(C0)). Now Theorem 2.5 (see (2.11)) guarantees that
S has a fixed point x0 ∈ C0. It is immediate that x0 ∈ intC0(C0 ∩ U) so
x0 ∈ µ(x0)F (x0). Thus x0 ∈ B so µ(x0) = 1, i.e. x0 ∈ F (x0). �

Remark 2.23. If (2.10) is changed to

(2.16) A ⊆ E,A = co({0} ∪ F (A ∩ U)) implies F (A ∩ U) is compact,

then it is easy to see that F upper semicontinuous in Theorem 2.21 can be
replaced by F a closed map.
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