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A NOTE ON BOUNDED SOLUTIONS OF SECOND
ORDER DIFFERENTIAL EQUATIONS AT RESONANCE

Wioletta Karpińska

Dedicated to the memory of Juliusz P. Schauder

Abstract. In the paper we study the existence of bounded solutions for

differential equations of the form: x′′ − Ax = f(t, x), where A ∈ L(H),
f : R × H → H (H — a Hilbert space) is a continuous mapping. Using

a perturbation of the equation, the Leray–Schauder topological degree and
fixed point theory, we overcome the difficulty that the linear problem is

non-Fredholm in any resonable Banach space.

1. Introduction

The first papers on nonlinear boundary value problems at resonance appeared
nearly thirty years ago. Since that time, nonlinear techniques have been very
successful in proving the existence of bounded solutions for nonlinear differential
equations at resonance. In this paper we employ two techniques: fixed point
theory and Leray–Schauder degree theory (compare [15], [13], [6]). We consider a
nonlinear operator on a Banach space, which is completely continuous and maps
some ball into itself in the first case, and we create a homotopy between a solvable
linear problem and the nonlinear problem in the second one (compare [11]).

Consider the abstract functional equation of the form:

(1.1) Lx = N(x),
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where L is a linear Fredholm operator of index 0 and N — a superposition
operator in appropriate function spaces. We have no problem if the kernel of the
linear part of this equation contains only zero because then L is surjective. It can
be reduced to the fixed point problem for L−1N , which is usually compact (or
contractive or monotone or A-proper or . . . ) mapping and a suitable topological
degree theory works and gives a large number of results (compare [13], [4]–
[6], [14], [23], [12]). But, if kernel L is nontrivial, it has a finite dimension
equal to the codimension of its image L(Y ). Then the equation (1.1) is said
to be at resonance and one can deal with the problem by using the coincidence
degree ([15], [9]) in that case. When the domain is unbounded (the half-line:
for example, a boundary value problem with limt→∞ x(t) = 0; the line: x is
bounded on R, or other cases) (see: [8], [21]–[23], [7], [2], [1], [19]), the operator
is usually non-Fredholm. For instance, two-point boundary value problems on
the half-line like: 

x′′ = f(x, x′, t),

x(0) = α,

limt→∞ x(t) = 0,

where f is continuous or Carathéodory function and satisfies some other con-
ditions, are considered in [21], [22], [7], [23]. When the third condition of the
problem is replaced by: x is bounded on [0,∞), we can see [22], [23], [2] (more-
over in [2] a unique bounded solution on [0,∞) is obtained). We have also some
results for the existence and uniqueness of solutions of boundary value problems
of the following type: {

x′′ = f(x, t),

x(t) bounded on (−∞,∞),

(see [2]).
One can see a variety of existence results for bounded solutions of first and

second order equations at resonance in the papers of Mawhin. There are bounded
on (−∞,∞) solutions for the nonautonomous equations

x′ = f(t, x)

in [17] and the problem

x′′ + Cx′ + f(t, x) = p(t)

in [16] (where the existence conditions are of Landesman–Lazer type). Some
inetersting results for the system of differential equations of Duffing’s type:

x′′(t) + [b(t)I + B(t)]x′(t) = F (t, x(t))

are obtained in [3] and [18] and, under some assumptions, there exists a unique
solution in appropriate function spaces.



Differential Equations at Resonance 373

Some other boundary value problems on an infinite or noncompact intervals
are considered also in [8], [24], [10], [1], [19].

We shall study the existence of a solution bounded on R of the differential
equation

(1.2) x′′ −Ax = f(t, x)

which is of type (1.1) with x′′−Ax denoted by L (linear part) and the nonlinear
part, the operator x → f( · , x( · )), denoted by N (in the appropriate function
spaces).

In this equation A ∈ L(H), f : R × H → H is continuous (H is a Hilbert
space). We shall work in the Banach space BC(R,H) — the space of all bounded
continuous functions x : R → H with the norm

‖x‖∞ = sup
t∈R

‖x(t)‖.

The operator L for equation (1.2) is actually non-Fredholm. We could easily
observe that the range of L is not a closed subspace in any reasonable Banach
space, if, for A = 0, we shall ask about the conditions for which the equation
x′′ = h(t), h : R → R, has a solution bounded on R. It is the case when we
cannot use the Green function (like in [4], [5], [12]) and we cannot apply the
scheme of Mawhin (compare [15], [9]). Therefore for the existence of solutions
we need additional or stronger assumptions.

That problem is solved in [11], but only for the first order equation:

(1.3) x′ −Ax = f(t, x)

(with A, f , x as above). As one can easily observe, the existence of solutions
which are bounded on R for equation (1.3) is not equivalent to the existence of
bounded solutions for (1.2). It means that we cannot consider the equation (1.2)
as the system of two first order equations.

Our technique (see [11]) involves a family of equations dependent on a real
parameter λ ∈ [0, λ1], namely we shall use the perturbation of the linear part L

(1.4) x′′ −Ax + λPx = f(t, x),

where P is a linear projector, in such a way that, for λ = 0, we get the studied
equation with a non-Fredholm operator, and, for λ > 0, the linear part is invert-
ible (we can find a fixed point by using fixed point theory or Leray–Schauder
degree theory).

2. Some preliminaries

We shall study the differential equation

(2.1) x′′ −Ax = f(t, x)
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where A ∈ L(H) is a bounded, selfadjoint operator (hence the spectrum SpA is
purely real), f : R×H → H is a continuous mapping (and satisfies some other
conditions). We shall look for bounded (on R) solutions of equation (2.1). Next,
we shall need some notation.

Suppose that Sp A = σ− ∪ σ0 ∪ σ+, where β ∈ σ− means that β < 0, β ∈ σ+

means that β > 0 and σ0 = {0} and are closed sets. Then we obtain the
decomposition H = H−⊕H0⊕H+ in the A-invariant and orthogonal subspaces,
such that Sp (A|Hi) = σi, i = ±, 0. Denote by P−, P0, P+ the projectors onto
corresponding subspaces. Then P− + P0 + P+ = I. Next, denote by f0 the
composition P0 ◦ f and, analogously, f− and f+.

We shall use estimates for the norm of the exponential function of the oper-
ator A. Let A ∈ L(H) and Sp A ⊂ {λ : Re λ < 0}. Then, for any ν > 0 such
that Re λ < −ν for all λ ∈ SpA, we find N > 0 for which

(2.2) ‖eAt‖ < Ne−νt, t ≥ 0,

(cf. [4]). Then we have that exp tA|H− → 0 for t → ∞, exp tA|H+ → 0 for
t → −∞ (with an exponential rate of convergence).

In the next section, we shall apply

Theorem 1 ([20]). Let E be a Banach space and let BC(R, E) be the space
of all bounded continuous functions x : R → E with the norm

‖x‖∞ = sup
t∈R

‖x(t)‖.

Let S : BC(R, E) → BC(R, E) be a nonlinear integral operator given by

Sx(t) =
∫ ∞

−∞
G(t, s)f(s, x(s)) ds

where:

(1) there exist the finite limits lims→t+ G(t, s), lims→t− G(t, s),
(2) ‖G(t, s)‖ ≤ Ne−α|t−s| for all t, s ∈ R, where N and α are some positive

constants,
(3) G : R× R → L(E) is a continuous mapping for t 6= s,
(4) f : R× E → E is uniformly continuous on bounded sets,
(5) f(t, · ) : E → E is completely continuous for any t ∈ R,
(6) there exists a bounded continuous function b : R → E such that, for

any M > 0, ε > 0, there is T > 0 such that ‖f(t, x) − b(t)‖ ≤ ε where
‖x‖ < M and |t| ≥ T .

Then S is completely continuous.

We shall use also the following compactness criterion:
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Theorem 2 ([26]). Let Y be a metric, locally compact space countable at ∞
and let X be a Banach space. Then the relative compactness of the set F ⊂
BC(Y, X) is equivalent to the conjunction of three conditions:

(i) The set {x(t) : x ∈ F} is relatively compact in X for each t ∈ Y.

(ii) For each compact K, K ⊂ Y , the functions in FK = {x|K : x ∈ F} are
equicontinuous.

(iii) For each ε > 0, there exist δ > 0 and compact K ⊂ Y such that, for
any x, y ∈ F, if ‖x|K − y|K‖∞ ≤ δ, then ‖x− y‖∞ ≤ ε.

We shall use these theorems for a Hilbert space.

Lemma 1. If g : R×H → H is a continuous function which satisfies condi-
tion (5) of Theorem 1 and

∀r > 0 ∃Hr : R → H ‖g(t, x)‖ ≤ Hr(t) ∀t ∈ R, ‖x‖ ≤ r,

where Hr is a continuous and integrable function, then the operator

T : BC(R,H) → BC(R,H)

given by

Tx(t) =
∫ t

−∞
g(s, x(s)) ds

is completely continuous.

Proof. Operator T transforms bounded sets into bounded ones because for
‖x‖∞ ≤ r (for some M > 0) we have

‖Tx(t)‖ =
∥∥∥∥∫ t

−∞
g(s, x(s)) ds

∥∥∥∥ ≤ ∣∣∣∣ ∫ ∞

−∞
Hr(t) dt

∣∣∣∣ < ∞.

It is also continuous. By using assumptions (i)–(iii) of Theorem 2 we will prove
that for any r > 0 the set T (B(0, r)) is relatively compact.

To check (i), fix t0 ∈ R and ε > 0. We shall find a finite ε-net for A :=
{Tx(t0) : ‖x‖ ≤ r}. Choose a compact set K ⊂ R such that∫

R\K
Hr(t) dt <

ε

2
.

Set x0 =
∫

R\K Hr(t) dt. Due to [24, Lemma 3] and, by assumption (5) of Theo-
rem 1, the set Z = {g(s, x) : ‖x‖ ≤ r, s ∈ K} is relatively compact in H. But
the integrals from set B = {

∫
K

g(s, x(s)) ds for ‖x‖ ≤ r} belong to the convex
hull µ(K)convZ, so there exists a finite ε/2-net x1, . . . , xp of B. Then

‖Tx(t0)− (x0 + xj)‖ ≤
∥∥∥∥∫

K

g(s, x(s)) ds− xj

∥∥∥∥ + ‖x0‖ ≤ ε.
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To prove condition (ii), take ε > 0 and a compact set K ⊂ R. Then, for
t ∈ K and ‖x‖∞ ≤ r, we have

‖(Tx)′(t)‖ = ‖g(t, x(t))‖ ≤ Hr(t) ≤ K1,

for some K1 > 0. Therefore, for t1, t2 ∈ K, such that |t1 − t2| < ε/K1, ξ ∈
(min{t1, t2}, max{t1, t2}) we have

‖Tx(t1)− Tx(t2)‖ ≤ |t1 − t2|‖(Tx)′(ξ)‖ ≤ ε

K1
·K1 = ε.

To prove condition (iii) we take ε > 0 and a compact set K which satisfies
the condition:

2
∫

R\K
Hr(s) ds ≤ ε

3
.

Let ‖x‖∞ ≤ r and ‖y‖∞ ≤ r. Then, if t < inf K,

‖Tx(t)− Ty(t)‖ ≤
∫ t

−∞
‖g(s, x(s))− g(s, y(s))‖ ds ≤ 2

∫ t

−∞
Hr(s) ds <

ε

3
< ε.

If t ∈ [inf K, supK], then

‖Tx(t)− Ty(t)‖ ≤ 2
∫

R\K
Hr(s) ds +

∫
[inf K,t]

‖g(s, x(s))− g(s, y(s))‖

≤ ε

3
+ diam K · sup

s∈K
‖g(s, x(s))− g(s, y(s))‖ ≤ ε,

because by equicontinuity of g on the set K and for ‖x− y‖ ≤ δ = ε/3, we have

‖g(s, x(s))− g(s, y(s))‖ ≤ ε

2diam K
.

If t > supK, then

‖Tx(t)− Ty(t)‖ ≤
∫

K

‖g(s, x(s))− g(s, y(s))‖ ds +
∫

R\K
Hr(s) ds ≤ ε,

which ends the proof. �

Lemma 2. If K1, K2 are compact sets, λ1, λ2 ∈ R, then the set

Z = {λ1u1 + λ2u2 : ui ∈ Ki}

is compact.

The lemma is obvious since Z is a continuous image of the compact set
K1 ×K2 under the mapping K1 ×K2 3 (u1, u2) → λ1u1 + λ2u2 ∈ Z.
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3. Existence of solutions

Theorem 3. If A ∈ L(H) is a selfadjoint operator which has finite-dimen-
sional kernel, 0 is an isolated eigenvalue of the operator A and f : R×H → H

is a continuous function satisfying conditions (4)–(6) of Theorem 1 and:

(i) ∃M+ > 0 ∀t ∈ R, ‖x+‖ ≥ M+ (x+, f+(t, x)) ≥ 0,
(ii) ∃M− > 0 ∀t ∈ R, ‖x−‖ ≥ M− (x−, Ax− + f−(t, x)) > 0,
(iii) ∃M0 > 0 ∀t ∈ R, ‖x0‖ ≥ M0 (x0, f0(t, x)) > 0,
(iv) ∀r > 0 ∃Hr : R → H ‖f−(t, x)‖ ≤ Hr(t) ∀t ∈ R, ‖x‖ ≤ r,

where Hr is a continuous and integrable function, then the equation

(3.1) x′′ −Ax = f(t, x)

has a solution bounded on R.

Proof. Equation (3.1) can be written down in the following form:
x′′+ = Ax+ + f+(t, x),

x′′0 = f0(t, x),

x′′− = Ax− + f−(t, x),

where x = (x+, x0, x−). Moreover, we remark (like before) that

Sp (A|H−) ⊂ (−∞, 0), Sp (A|H+) ⊂ (0,∞), Sp (A|H0) = {0}.

Notice that if A is selfadjoint and Sp (A|H0) = {0}, then A|H0 = 0.
Step 1. Take λ > 0 and consider the perturbed equation:

(3.2)


x′′+ = Ax+ + f+(t, x),

x′′0 = λx0 + f0(t, x),

x′′− = Ax− + f−(t, x).

We use this perturbation because for λ > 0 the linear part is invertible. Now if we
embed this equation in the family continuously depending on the real parameter
µ ∈ [0, 1]:

(3.3)


x′′+ = Ax+ + µf+(t, x),

x′′0 = λx0 + µf0(t, x),

x′′− = Ax− + µf−(t, x),

then the system of corresponding integral equations (3.3) has the form

(3.4)



x+(t) =
−µ

2
√

A|H+

∫ ∞

−∞
exp

[
−

√
A|H+ |t− s|

]
f+(s, x(s)) ds,

x0(t) =
−µ

2
√

λ

∫ ∞

−∞
exp

[
−
√

λ |t− s|
]
f0(s, x(s)) ds,

x−(t) =
µ√

−A|H−

∫ t

−∞
sin

[√
−A|H−(t− s)

]
f−(s, x(s)) ds,
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(for the meaning of A−1/2 one can see in [4], [27]). The integrals are well defined
as a consequence of estimates (2.2) and assumption (iv). It is sufficient to prove
that there exist solutions for system (3.4). For µ ∈ [0, 1], define a function

hµ : BC(R,H+ ⊕H0 ⊕H−) → BC(R,H+ ⊕H0 ⊕H−)

by the formula

hµ(x+, x0, x−)(t)

=



x+(t) +
µ

2
√

A|H+

∫ ∞

−∞
exp

[
−

√
A|H+ |t− s|

]
f+(s, x(s)) ds,

x0(t) +
µ

2
√

λ

∫ ∞

−∞
exp

[
−
√

λ |t− s|
]
f0(s, x(s)) ds,

x−(t)− µ√
−A|H−

∫ t

−∞
sin

[√
−A|H−(t− s)

]
f−(s, x(s)) ds).

Then hµ = I−µSλ where Sλ : BC(R,H+⊕H0⊕H−) → BC(R,H+⊕H0⊕H−)
is defined by the right-hand side of system (3.4) and is completely continuous
according to Theorem 1, Lemmas 1 and 2.

Now, we show that hµ(x+, x0, x−) = 0 has no solution for µ ∈ [0, 1] and
x = (x+, x0, x−) belonging to the boundary of the product of the balls B =
B(0,M+)×B(0,M0)×B(0,M−), that is:

∂B = ∂B(0,M+)×B(0,M0)×B(0,M−) ∪B(0,M+)× ∂B(0,M0)×B(0,M−)

∪B(0,M+)×B(0,M0)× ∂B(0,M−)

where M+, M0, M− are the positive constants from conditions (i)–(iii) and ε+

is the smallest positive eigenvalue of the operator A, −ε− is the largest negative
eigenvalue of A.

Suppose that there exists a solution of the equation hµ(x+, x0, x−) = 0 with
µ ∈ [0, 1] and x ∈ ∂B. Then x+ ∈ ∂B(0,M+) or x0 ∈ ∂B(0,M0), or x− ∈
∂B(0,M−).

Consider the case when x+ ∈ ∂B(0,M+). If we get h0(x+, x0, x−) = 0
for µ = 0, then x+(t) ≡ 0, which is imposible because x+ ∈ ∂B(0,M+). For
µ ∈ (0, 1], let ϕ+ : R → R be defined by ϕ+(t) = ‖x+(t)‖2. Then, for some
t0 ∈ R, we have ϕ+(t0) = M2

+ and at the point t0 function ϕ+ has a maximum
(which can be weak). From condition (i) we get

ϕ′′+(t) = 2(x+(t), x′′+(t)) + 2‖x′+(t)‖2

= 2µ(x+(t), f+(t, x(t))) + 2(x+(t), Ax+(t)) + 2‖x′+(t)‖2

≥ 2ε+ϕ+(t) + 2µ(x+(t), f+(t, x(t))) + 2‖x′+(t)‖2

≥ 2ε+ϕ+(t) + 2‖x′+(t)‖2 ≥ 2ε+ϕ+(t)
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for t = t0. For this t0, we have

ϕ′′+(t0) ≥ ε+M2
+ > 0,

which contradits ϕ′′+(t0) ≤ 0.
Our reasoning is similar when proving, that the equation hµ(x) = 0 has no

solution for x0 ∈ ∂B(0,M0) (using condition (iii)). For x− ∈ ∂B(0,M−), define
the function ϕ− : R → R by ϕ−(t) = −‖x−(t)‖2. Analogously, for some t0 ∈ R,
we have ϕ−(t0) = −M2

− and at the point t0 function ϕ− has a minimum (which
can be not strong). By condition (ii) we get

ϕ′′−(t) = −2(x−(t), x′′−(t))− 2‖x′−(t)‖2

= −2(x−(t), Ax−(t) + f−(t, x(t)))− 2‖x′−(t)‖2 < −2‖x′−(t)‖2

and, for t = t0, we have ϕ′′−(t) < 0, which contradits ϕ′′−(t0) ≥ 0. Therefore, by
the properties of the Leray–Schauder topological degree,

d(h1, B, 0) = d(hµ, B, 0) = d(h0, B, 0) = 1,

i.e. system (3.2) has a solution in B for any λ > 0.
Step 2. Now let λn → 0 and let xn = (xn+, xn0, xn−) denote a bounded

solution on R of system (3.2) with λ = λn. Let (xn) be a bounded sequence.
Then there exists a positive constant M such that ‖xn‖∞ ≤ M . Fix t ∈ R and
ε > 0. We shall find a finite ε-net for the set

F+
t :=

{
zn+(t) =

µ

2
√

A|H+

∫ ∞

−∞
exp

[
−

√
A|H+ |t− s|

]
f+(s, xn(s)) ds : n ∈ N

}
.

Choose T > 0 such that (by asumption (6) of Theorem 1):

(3.5) ‖f+(s, xn)‖ ≤
νε
√

ε+

2N

for |s| ≥ T. Set

x0(t) = − 1
2
√

A|H+

∫
|s|≥T

exp
[
−

√
A|H+ |t− s|

]
ds.

Then x0 ∈ BC(R,H). By (2.2) and (3.5)∥∥∥∥ −1
2
√

A|H+

∫
|s|≥T

exp
[
−

√
A|H+ |t− s|

]
f+(s, xn(s)) ds

∥∥∥∥
≤ 1

2√ε+
·
νε
√

ε+

2N

∫
R

Ne−ν|t−s| ds =
ε

2
.

Consider the set

B+ :=
{
− 1

2
√

A|H+

∫
|s|<T

exp
[
−

√
A|H+ |t− s|

]
f+(s, xn(s)) ds : n ∈ N

}
.
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It is easy to see that the set {f+(s, xn) : n ∈ N, |s| < T} is relatively compact
(by (5) of Theorem 1 and the continuity of f). The set

Z+ :=
{

exp
[
−

√
A|H+ |t− s|

]
(f+(s, xn) : n ∈ N, |s| < T

}
is also relatively compact by the properties of function exp. But the integrals
in B+ belong to the convex hull (T/

√
ε+)convZ+, so there exists a finite ε/2-net

of B+: x1, . . . , xp. Now, we easily see that x0 + x1, . . . , x0 + xp constitute an
ε-net of F+

t :

‖zn+(t) − (x0 + xj)‖

≤
∥∥∥∥− 1

2
√

A|H+

∫
|s|<T

exp
[
−

√
A|H+ |t− s|

]
f+(s, xn(s)) ds− xj

∥∥∥∥
+

∥∥∥∥− 1
2
√

A|H+

∫
|s|≥T

exp
[
−

√
A|H+ |t− s|

]
f+(s, xn(s)) ds

∥∥∥∥
≤ 2

ε

2
= ε.

Hence F+
t is relatively compact in H+.

We can also prove that the set

F−
t :=

{
zn−(t) =

µ√
−A|H−

∫ t

−∞
sin

[√
−A|H−(t− s)

]
f−(s, xn(s)) ds : n ∈ N

}
is relatively compact in H− (using the assumption (iv) and Lemmas 1 and 2).

The set
F 0

t := {xn0(t) : n ∈ N}
is relatively compact in H0 because (xn0) is a bounded sequence and the kernel
of A is finite-dimensional. Then Ft := {xn(t) : n ∈ N} is relatively compact
in H.

The equicontinuity of the family {xn|[−a,a] : n ∈ N}, for each a > 0, is the
consequence of the boundedness of (xn), (x

′

n) and (x
′′

n).
Now, by the Arzéla–Ascoli criterion, which can be applied due to the above

arguments, we can choose a subsequence (x1
n) uniformly convergent on the in-

terval [−1, 1]. The same reasoning can be repeated inductively to get a sequence
(xk

n)n∈N uniformly convergent on the interval [−k, k] for any k ∈ N. The diagonal
subsequence (xk

k)k∈N is, obviously, uniformly convergent on any compact subset
of R to some function x. It is easy to see that x is a solution of equation (3.1),
that is bounded on R by M .

Step 3. Suppose that the sequence (xn) is unbounded. Then at least one of
the sequences (xn+), (xn0), (xn−) is unbounded.

If a sequence (xn+) is unbounded, then, for some n, we have ‖xn+‖ > M+.
Define the function ϕ+ : R → R by ϕ+(t) = ‖xn+(t)‖2. From condition (i) (like
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in Step 1) we get

ϕ′′+(t) = 2(xn+(t), x′′n+(t)) + 2‖x′n+(t)‖2

= 2(xn+(t), f+(t, xn(t)) + 2(xn+(t), Axn+(t)) + 2‖x′n+(t)‖2

≥ 2ε+ϕ+(t) + 2(xn+(t), f+(t, xn(t)) + 2‖x′n+(t)‖2

≥ 2ε+ϕ+(t) + 2‖x′n+(t)‖2.

If for some t = t0 such that ϕ+(t) > M2
+ function ϕ+ has a maximum at that

point then ϕ′′+(t0) ≥ 0, which contradicts the fact, that ϕ′′+(t0) < 0 (from the
inequalities above). If the function does not have any maximum, then it is
strongly convex in the sense that ϕ′′+(t) > 0. Then it cannot be bounded, which
contradicts the fact, that the function xn+ is bounded.

In this way (by condition (ii) and by the definition ϕ−(t) = −‖xn−(t)‖2), we
get a contradiction if we assume, that the sequence (xn−) is unbounded (we get
ϕ′′−(t) < 0). Then we get the contradiction with the fact that this function has
a minimum or that it is strongly concave (in the sence that ϕ′′−(t) < 0).

If the sequence (xn0) is unbounded, then, for some n, we have ‖xn0‖ > M0.
Define the function ϕ0 : R → R by ϕ0(t) = ‖xn0(t)‖2. From condition (iii) we
get

ϕ′′0(t) = 2(xn0(t), x′′n0(t)) + 2‖x′n0(t)‖2

≥ 2λϕ0(t) + 2(xn0(t), f0(t, xn(t)) + 2‖x′n0(t)‖2 > 2λϕ0(t) + 2‖x′n0(t)‖2.

Then for some t = t0 (where t0 is the least t such that ϕ0(t) = M2
0 ) we have

ϕ′′0(t0) > 0 and ϕ′′0(t) > 0 for t > t0. Then ϕ′0(t0) ≥ 0 and ϕ0 cannot be
bounded. �

Theorem 4. Let A be a bounded selfadjoint linear operator on a Hilbert
space H which has finite-dimensional kernel and 0 is an isolated point of the
spectrum SpA. Let f : R×H → H be a bounded continuous function satisfying
conditions (4)–(6) of Theorem 1 and

(i) ∃M > 0 ∀t ∈ R, ‖x0‖ ≥ M, x± ∈ H± (x0, f0(t, x)) > 0,
(ii) ∀r > 0 ∃Hr : R → H ‖f−(t, x)‖ ≤ Hr(t) ∀t ∈ R, ‖x‖ ≤ r,

where Hr is a continuous and integrable function, then the equation

(3.6) x′′ −Ax = f(t, x)

has a solution x : R → H bounded on R.

Remark 1. We see that for the function b from condition (6) of Theorem 1
one has b0 = 0, but b+ and b− do not have to vanish.

Proof of Theorem 4. Equation (3.6) can be perturbed and written as
system (3.2) with λ > 0. Since Sp (A|H−) ⊂ (−∞,−ε−], Sp (A|H+) ⊂ [ε+,∞),
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system (3.2) is equivalent to integral system (3.4) with µ = 1. Then the opera-
tor Sλ defined in Step 1 of Theorem 3 is completely continuous by Theorem 1
and Lemma 1. From the boundedness of f ‖f(t, x)‖ ≤ R, for some R > 0, and
by assumption (ii) ∥∥∥∥∫ ∞

−∞
f−(s, x(s)) ds

∥∥∥∥ ≤ W,

for some W > 0, we obtain

‖(Sλ(x))+(t)‖ ≤ N

2√ε+
R

2
√

ε+
=

NR

ε+
,

‖(Sλ(x))0(t)‖ ≤
1

2
√

λ
R

2√
λ

=
R

λ
,

‖(Sλ(x))−(t)‖ ≤ W√−ε−
,

which means that Sλ maps the whole space into the ball Bλ with radius

max{NR, R,W} ·
(

1
λ

+
(

1
ε+

+
1√−ε−

))
.

Due to Schauder Fixed Point Theorem, Sλ has a fixed point xλ ∈ Bλ which is
a solution of (3.2).

We cannot expect a priori that xλ : λ > 0 is a bounded family because the
radius of the ball Bλ tends to infinity as λ → 0+. However, {xλ+} and {xλ−} are
bounded by NR/ε+ and W/

√−ε− respectively. The unboundedness of {xλ0}
contradicts assumption (i) as in the proof of Theorem 3.

The final part of the proof is the same as in Theorem 3. �

3. Examples of applications

Example 1. If H = H+ ⊕H0 ⊕H−, dim H0 < ∞ and A =
[

A 0 0

0 0 0

0 0 B

]
where,

for example, A : H+ → H+ is a positive definite (i.e. (Ax+, x+) ≥ ε+‖x+‖2)
selfadjoint operator and B : H− → H− is a negative definite (i.e. (Bx−, x−) ≤
−ε−‖x−‖2) selfadjoint operator, h : R → H is a continuous and integrable
function with a constant sign, satisfying the condition

(i) limt→±∞ h(t) = 0,

f = (f+, f0, f−) : H → H is a completely continuous and bounded function
satisfying

(ii) lim inf‖x0‖→∞ infx+,x− (x0, f0(x+, x0, x−)) > 0

then the equation

(4.1) x′′ −Ax = h(t)f(x)

has a solution x : R → H bounded on R (as a consequence of Theorem 4).
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In particular, if H = R3 = R⊕ R⊕ R and A =
[

a 0 0

0 0 0

0 0 −b

]
where a, b > 0 and

f = (f1, f2, f3) = (f+, f0, f−) is bounded continuous and

lim inf
|x0|→∞

inf
x+,x−

x0f0(x+, x0, x−) > 0,

then (4.1), i.e. 
x′+ = ax+ + h(t)f+(x),

x′0 = h(t)f0(x),

x′− = bx− + h(t)f−(x),
has a bounded solution.

Example 2. Let A, h, f be as in Example 1, but only f− is supposed to be
bounded. Instead of (ii) from Ex. 1, we assume:

(ii) ∃M+ > 0 ∀t ∈ R, ‖x+‖ ≥ M+ (x+, f+(x+, x0, x−)) ≥ 0,
(iii) ∃M− > 0 ∀t ∈ R, ‖x−‖ ≤ M− (x−, Ax− + h(t)f−(x+, x0, x−)) > 0,
(iv) lim inf‖x0‖→∞ infx+,x− (x0, f0(x+, x0, x−)) > 0.

Then (4.1) has a bounded solution (as a consequence of Theorem 3).

Remark 2. In the above examples, we deal with the nonlinearity of f having
asymptotic behaviour b = 0. It is easy to formulate the corresponding conditions
for the equation x′′ −Ax = h(t)f(x) + b(t) where b is bounded and continuous.
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