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DECAYING SOLUTIONS FOR SEMILINEAR
ELLIPTIC EQUATIONS IN EXTERIOR DOMAINS

Robert Stańczy

Dedicated to the memory of Juliusz P. Schauder

Abstract. The existence of radial solutions for some semilinear elliptic

equations in an exterior domain is established under sublinearity or sign

assumption imposed on the nonlinearity.

1. Introduction

The paper is concerned with the existence of decaying radial solutions for
nonlinear elliptic equations in exterior domains.
We consider the following BVP:

(1.1)
−∆u = f(‖x‖ , u) for ‖x‖ ≥ 1, x ∈ Rn, n ≥ 3,
u(x) = 0 for ‖x‖ = 1,

and assuming that f is sublinear with respect to the second variable and de-
cays sufficiently quickly with respect to the first variable, by Schauder the-
orem we prove the existence of at least one radial, decaying solution. Assuming
that f changes sign and relaxing the sublinearity assumption, with the use of
Leray–Schauder degree theory, we also obtain the existence of at least one ra-
dial, decaying solution. Our result is meaningful only when f( · , 0) 6≡ 0. Similar
problems but with nonlinearity with separated variables were considered in [20].
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The papers, in which f is superlinear with respect to the second variable, in-
clude [5], [6] (cone compression and expansion approach) and [17] (variational
methods).
Similar BVP in an exterior domain Ω ⊂ Rn, n ≥ 3:

(1.2)
−∆u = f(x, u,∇u) for x ∈ Ω,
u(x) = 0 for x ∈ ∂Ω,

was considered in [9]. Under the sublinearity assumption imposed on f (with re-
spect to the second an the third variable) and decay with respect to x the author
proves (by sub- and supersolution method) the existence of at least one decaying
solution. This result is incomparable with ours, since the solution obtained in [9]
can be nonradial, even if nonlinearity f is radially symmetric with respect to x.
Related nonradial problems were considered in [1], [8], [10]–[14].

2. Main results

Consider the following BVP:

(2.1)

−∆u = f(‖x‖, u) for ‖x‖ ≥ 1, x ∈ Rn, n ≥ 3,
u(x) = 0 for ‖x‖ = 1,
lim
‖x‖→∞

u(x) = 0

where f : [1,∞) × R → R is continuous. Looking for radial solutions of (2.1)
leads to the BVP on a half line

(2.2)
−v′′ + 1− n

r
v′ = f(r, v) for r ∈ [1,∞)

v(1) = 0, lim
r→∞
v(r) = 0.

One can readily find the Green functions for the above problem. Namely

G(r, s) =


1
n− 2

s(1− r2−n) for s > r,

1
n− 2

r2−n(sn−1 − s) for s ≤ r,

is the Green function for (2.2) since it is continuous (nonnegative) and satisfies:

1◦ for any s ∈ [1,∞), G( · , s) satisfies the homogenous equation, i.e. for
any r 6= s

−∂
2G

∂r2
(r, s) +

1− n
r

∂G

∂r
(r, s) = 0,

2◦ for any s ∈ (1,∞)

lim
r→s+

∂G

∂r
(r, s)− lim

r→s−
∂G

∂r
(r, s) = 1,

3◦ for any s ∈ R the function G( · , s) satisfies the boundary conditions (i.e.
G(1, s) = 0 and limr→∞G(r, s) = 0 for every s ∈ [1,∞)).
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In our case the Green function is not symmetric, since the differential opera-
tor defined by the left-hand side of (2.2) (with boundary conditions taken into
account) is not (formally) selfadjoint. We have the following estimates:

(2.3) |G(r, s)| ≤


1
n− 2

s for s > r,

1
n− 2

r2−nsn−1 for s ≤ r,

and

(2.4)
∣∣∣∣∂G∂r (r, s)

∣∣∣∣ ≤
{
r1−ns for s > r,

r1−nsn−1 for s ≤ r,

Therefore, integrating (2.2), one obtains the following integral equation in the
space BC([1,∞)) (the space of bounded and continuous functions from [1,∞)
to R):

v(r) = Sv(r) df=
∫ ∞
1
G(r, s)f(s, v(s)) ds

provided f satisfies the following asymptotic condition with respect to the first
variable

(2.5) |f(r, v)| ≤ g(v)rβ

where β < −2 and g : R → R is continuous. Then for ‖v‖∞ ≤ M , denoting by
C = sup|v|≤M |g(v)| and using estimate (2.3), one can derive

|Sv(r)| ≤
∞∫
1

G(r, s)sβ |g(v(s))| ds ≤ sup
|v|≤M

|g(v)|
∫ ∞
1
G(r, s)sβ ds

≤ C

n− 2
r2−n
(∫ r
1
sn+β−1 ds+

∫ ∞
r

sβ+1 ds

)
whence

(2.6)

|Sv(r)| ≤Chβ,n(r),

hβ,n(r)
df=



−1
(n+ β)(β + 2)

rβ+2 for n+ β > 0,

1
n− 2

r2−n
(
ln r − 1

β + 2

)
for n+ β = 0,

−(n+ 2β + 2)
(n− 2)(n+ β)(β + 2)

r2−n for n+ β < 0,

The continuity of G implies

(Sv)′(r) =
∫ ∞
1

∂G

∂r
(r, s)f(s, v(s))ds,
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and using (2.4) we have the following estimate

(2.7)

|(Sv)′(r)| ≤Ckβ,n(r),

kβ,n(r)
df=



2− n
(n+ β)(β + 2)

rβ+1 for n+ β > 0,

r1−n
(
ln r − 1

β + 2

)
for n+ β = 0,

−(n+ 2β + 2)
(n+ β)(β + 2)

r1−n for n+ β < 0,

Moreover,

(2.8) sup
r∈[1,∞)

∫ ∞
1
|G(r, s)|sβ ds ≤ sup

r∈[1,∞)
hβ,n(r)

= Lβ,n
df=


−1

(n+ β)(β + 2)
for n+ β > 0,

1 for n+ β = 0,
−(n+ 2β + 2)

(n− 2)(n+ β)(β + 2)
for n+ β < 0,

Now we shall show that

S : BC([1,∞))→ BC([1,∞))

is compact. Therefore we have to verify that for any ball B(0,M) its image under
opreator S is relatively compact in the space BC([1,∞)). Take anyM > 0. From
the estimate (2.6) it follows that the functions from the set

{Sv ∈ BC([1,∞)) : ‖v‖∞ ≤M}

are equibounded by the function hβ,n, defined in (2.6), which is decaying. Fix
arbitrary ε > 0. Then one can choose r0 ≥ 1 such that for r ≥ r0 we have
|Chβ,n(r)| ≤ ε and consequently

(2.9) |Sv(r)| ≤ ε for ‖v‖∞ ≤M, r ≥ r0.

Since, for ‖v‖∞ ≤M , the functions Sv are equibounded and, due to the equibo-
undedness of (Sv)′ (see (2.7)), also equicontinuous, therefore from Ascoli–Arzelá
theorem on the interval [1, r0] the set

{(Sv)/[1, r0] : ‖v‖∞ ≤M}

is relatively compact. So it has a finite ε-net {Sv1/[1, r0], . . . , Svk/[1, r0]}. But
then by (2.9) the set {Sv1, . . . , Svk} constitutes an ε-net for {Sv ∈ BC([1,∞)) :
‖v‖∞ ≤ M}. Thus we have proved its relative compactness. Since M > 0 was
arbitrary chosen, the operator S : BC([1,∞))→ BC([1,∞)) maps bounded sets
of BC([1,∞)) into relatively compact ones so it is compact. For some compact-
ness criteria in the space BC([1,∞)) (and more general ones) one can see [15]
and [19].
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Theorem 2.1. Assume that f satisfies asymptotic condition (2.5), where
function g is continuous and sublinear i.e.

(2.10) lim sup
|v|→∞

|g(v)|/|v| = N < 1/Lβ,n,

where Lβ,n is defined in (2.8). Then the BVP (2.2) admits at least one solution.

Proof. By assumption (2.10), for ε = 1/Lβ,n −N > 0, choose M > 0 such
that |g(v)|/|v| < N + ε = 1/Lβ,n for any |v| > M. Define T = sup|v|≤M |g(v)|.
Hence, for ‖v‖∞ ≤ max{TLβ,n,M},

‖Sv‖∞ ≤ sup
r∈[1,∞)

(∫ ∞
1
|G(r, s)f(s, v(s))| ds

)
≤ sup
r∈[1,∞)

(∫
{s:|v(s)|≤M}

|G(r, s)sβg(v(s))| ds

+
∫
{s:|v(s)|>M}

|G(r, s)sβg(v(s))| ds
)

≤ sup
r∈[1,∞)

(∫
{s:|v(s)|≤M}

|G(r, s)sβ |max{T,M/Lβ,n} ds

+
∫
{s:|v(s)|>M}

|G(r, s)sβ |max{TLβ,n,M}/Lβ,n) ds
)

= max{T,M/Lβ,n} sup
r∈[1,∞)

∫ ∞
1
|G(r, s)sβ | ds

≤ max{T,M/Lβ,n}Lβ,n = max{TLβ,n,M}.

Then S : B(0,max{TLβ,n,M}) → B(0,max{TLβ,n,M}) so by the Schauder
theorem we obtain a fixed point of S in BC[1,∞)) i.e. v0 = Sv0. However, by
(2.6), the function Sv0 decays at infinity and so does v0. Therefore it is a solution
to our BVP (2.2).

Example. In particular Theorem 2.1 holds for functions of the following
form f(r, v) = h(r)g(v), where h : [1,∞)→ R and g : R→ R are continuous and
satisfy:

(i) g(0) 6= 0 and lim sup|v|→∞ |g(v)|/|v| = N < 1/Lβ,n,
(ii) |h(r)| ≤ Hrβ for some constants H > 0 and β < −2.

Theorem 2.2. If we assume that f satisfies the asymptotic condition (2.5),
where the function g is continuous, and that there exists a positive constant D
such that

(2.11) f(r, v)v < 0 for all r ∈ [1,∞) and |v| > D,

then the BVP (2.2) admits at least one solution.
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Proof. We consider the family of BVPs:

(2.12) −v′′ + 1− n
r
v′ = λf(r, v), v(1) = 0, lim

r→∞
v(r) = 0,

which can be restated as:

(2.13) v = λSv, λ ∈ [0, 1].

Now suppose that for some λ ∈ [0, 1] there exists a solution vλ such that ‖vλ‖∞ >
D. Since vλ(1) = 0 and limr→∞ |vλ(r)| = 0 it attains either postive maximum
or negative minimum at some point rλ ∈ [1,∞). We shall limit ourselves only
to the case of maximum, because the case of minimum can be considered in a
similar way. In such a case we have vλ(rλ) > D, v′′λ(rλ) ≤ 0, v′λ(rλ) = 0 and

f(rλ, vλ(rλ) = −v′′λ(rλ) +
1− n
rλ
v′λ(rλ) ≥ 0

which contradicts assumption (2.11). Therefore ‖vλ‖∞ = vλ(rλ) ≤ D. Thus
we have obtained a priori bounds for the solutions of (2.12) or (2.13). The
Leray–Schauder degree

deg(id− λS,B(0, D), 0)
is therefore well defined for all λ ∈ [0, 1]. By homotopy invariance of the degree
we have

deg(id− S,B(0, D), 0) = deg(id, B(0, D), 0) = 1
so S has a fixed point v0 ∈ BC[1,∞)). Since, by (2.6), for each v ∈ BC[1,∞)),
the function Sv must decay, so does a fixed point. Then it is a solution for
BVP (2.2).

Corollary 3.1. By estimates (2.6) and (2.7) one also obtains the rate of
convergence to 0 at ∞ for the solution of (2.2) and its derivative.

Example. In particular Theorem 2.2 holds for functions with separated va-
riables i.e. f(r, v) = h(r)g(v), where h : [1,∞) → (0,∞) and g : R → R are
continuous, and satisfy:

(i) g(0) 6= 0 and g(v)v < 0 for |v| > M , whereM is some positive constant,
(ii) h(r) ≤ Hrβ for some constants H > 0 and β < −2.

Remark. Although assumption (2.11) implies the existence of constant up-
per and lower solutions, they are not very helpful in establishing the existence
of a decaying solution for (2.2) but only of a bounded one (see [19]).

Remark. The existence result [9] for the BVP (1.2) holds true for example
if the nonlinearity (sufficiently smooth) satisfies the condition:

|f(x, u, p)| ≤ A‖x‖α +B‖x‖β |u|σ + C‖x‖γ‖p‖τ
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where A,B,C are some positive constants, α, β, γ < −2 and σ, τ ∈ (0, 1). Our
result (in the sublinear case) cannot be deduced from the above, even if the do-
main has radial symmetry (is exterior of a ball) and the nonlinearity does not
depend on ∇u and is radially symmetric in x. It follows from the fact that altho-
ugh the sub- and supersolutions for the problem (2.1) are radial (u

¯
(x) = c−‖x‖θ,

u(x) = c+‖x‖θ, respectively, c− < 0, c+ > 0, θ < 0) the monotone iteration
scheme used in [9] provides the solution which can be nonradial. However, if
f is autonomous there are many results which guarantee that a positive solu-
tion to (1.1) must be necessarily radial e.g. [2]–[4], [7], [16]. In our approach the
nonlinearity has to depend explicitly on ‖x‖, since it justifies our compactness
argument.
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[17] J. Santanilla, Existence and nonexistence of positive radial solutions of an elliptic

Dirichlet problem in an exterior domain, Nonlinear Anal. 25 (12) (1995), 1391–1399.
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Faculty of Mathematics

University of Łódź
Banacha 22
90-238 Łódź, POLAND

E-mail address: stanczr@imul.uni.lodz.pl

TMNA : Volume 14 – 1999 – No 2


