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ON THE ACYCLICITY OF FIXED
POINT SETS OF MULTIVALUED MAPS

Grzegorz Gabor

Dedicated to the memory of Juliusz P. Schauder

Abstract. The paper is devoted to studying a topological structure of sets
of fixed points (or equilibria) of some classes of single-valued or multivalued

maps. In our opinion, this paper contains all main results connected with

this problem. We deal with Browder–Gupta type results and the inverse
systems approach.

1. Introduction

Well known fixed point theorems (Brouwer, Schauder and Lefschetz) give
us the existence of fixed points of some classes of single-valued and multival-
ued maps. One knows that a topological characterization of fixed point sets is
also weighty and has important applications. Namely, it performs a vital role
in investigating the structure of the solution sets of differential equations and
inclusions (see [30], [23], [21], [4], [7], [35], [34], [28], [5], [13], [18], and [14] for
further references), when the uniqueness condition is not satisfied. It can be
also applied to some existence results making use of the method described for
inclusions in [2].
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spaces.

c©1999 Juliusz Schauder Center for Nonlinear Studies

327



328 G. Gabor

The paper collects known results on the topological structure of fixed point
sets of maps in metric spaces and contains some of their new multivalued gener-
alizations. It is organized as follows.

Section 2 is devoted to studying the acyclicity (or Rδ property) of fixed
point sets (or sets of equilibria) by the use of some generalizations of results
which were obtained by Browder and Gupta in [7]. We give some remarks in
a single-valued case and prove some multivalued generalizations. We also include
some references to other papers concerning this topic.

In Section 3 we deal with the inverse systems approach, which was initiated
in [3], and study the topological structure of fixed point sets of limit maps induced
by multivalued maps of inverse systems of topological spaces.

Section 4 shows how the abstract results from Section 3 can be applied to
function spaces. We suggest seeing [3] for applications in differential inclusions
on noncompact intervals.

2. The Browder–Gupta theorem and its generalizations

In 1942 Aronszajn showed that the set of all local solutions to single-valued
Cauchy problem in finite dimensional space is an Rδ set. He used the following
characterization of Rδ-sets: K is compact Rδ if there is a sequence of compact
absolute retracts An such that K ⊂ An for every n ≥ 1 and K is a limit of
{An} in the sense of the Hausdorff metric. In 1969 Browder and Gupta proved
a theorem (see [7, Theorem 7]), giving an easy way to obtain Aronszajn’s result.
One can formulate this theorem as follows:

Theorem 2.1. Let X be a metric space, E a Banach space, and let f : X →
E be a (continuous) proper map1. Assume that there is a sequence of proper
maps fk : X → E such that

(i) ||fk(x)− f(x)|| < 1/k for every x ∈ X,
(ii) for every k ≥ 1 and every u ∈ E with ||u|| ≤ 1/k the equation fk(x) = u

has a unique solution.

Then the set S = f−1(0) is compact Rδ.

Remark 2.2. The above theorem is still true under weaker assumptions
(Palais–Smale type conditions) on maps fk, f (see e.g. [28], [31], [14]). For an-
other single-valued generalizations see e.g. [35], [34], [12] and [11].

The following lemma was the key to the proof by Browder and Gupta of the
above theorem.

1It means that preimages of compact subsets of E are compact.
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Lemma 2.3 (Browder–Gupta, [6, Lemma 5]). Let X be a metric space, and
{Rn} be a sequence of absolute retracts in X. Assume that M ⊂ X is such that
the following hold:

(i) M ⊂ Rn for every n,
(ii) M is the set-theoretic limit of the sequence {Rn},
(iii) For each open neighbourhood V of M in X there is an infinite subse-

quence {Rni} of {Rn} such that Rni ⊂ V for every i.

Then M is Rδ.

We show that, under the assumption on compactness of the sets Rn, we only
need that Rn are Rδ. At first, we give a clarifying remark concerning the above
lemma.

Remark 2.4. Following the proof of Lemma 2.3 in [7], assumption (i) and
the fact that the set-theoretic upper limit2 of any sequence of sets is contained in
the topological upper limit3 of it, we can assume in (ii) that M is a topological
limit of {Rn}.

Example 2.5. It is easy to see that the intersection M (∅ 6= M ⊂ X) of a
decreasing sequence of closed subsets of X is its topological limit.

Proposition 2.6. Let X be a metric space, and {Rn} be a sequence of
compact Rδ-sets in X. Assume that M ⊂ X is such that the following conditions
hold:

(i) M ⊂ Rn for every n,
(ii) M is the topological limit of the sequence {Rn},
(iii) For each open neighbourhood V of M in X there is an infinite subse-

quence {Rni} of {Rn} such that Rni ⊂ V for every i.

Then M is Rδ.

Proof. Let Rn =
⋂∞

k=1R
k
n for every n ≥ 1, where each Rk

n is a compact
absolute retract and Rk+1

n ⊂ Rk
n for all n, k ≥ 1. For every n, by the compactness

of Rk
n, there exists Wn = Rkn

n such that Rkn
n ⊂ N1/n(Rn), where N1/n(Rn)

denotes the 1/n-neighbourhood of the set Rn.
Notice that

(i)’ M ⊂ Rn ⊂ Rkn
n = Wn for every n.

(ii)’ From (i) it follows that M ⊂ LiWn. Let x ∈ LsWn be an arbitrary
point. Then there are a subsequence n1 < n2 < . . . and points xni

∈
2Let us recall that Liminf Rn =

S∞
n=1

T∞
k=n Rk, Limsup Rn =

T∞
n=1

S∞
k=n Rk and, if

Liminf Rn = Limsup Rn, then this set is called the set-theoretic limit Limes Rn of {Rn}.
3Recall that a lower topological limit is the set Li Rn = {x ∈ X | ∃{xn} : xn ∈

Rn and xn → x}, an upper topological limit of {Rn} is the set Ls Rn = {x ∈ X | ∃n1 <

n2 < . . . : xni ∈ Rni and xni → x} and, if Li Rn = LsRn, then this set is called a topological
limit Lim Rn of {Rn}.
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Wni
such that x = limi→∞ xni

. By the definition of Wni
, for every i ≥ 1

there exists zni ∈ Rni such that d(xni , zni) < 1/ni. Thus zni → x,
which implies that x ∈ LsRn. From assumption (ii) we obtain LsWn ⊂
M which gives M = LimWn.

(iii)’ Let U be an arbitrary open neighbourhood of M in X. By the compact-
ness of M , there is n0 ≥ 1 such that N2/n0(M) ⊂ U . By assumption
(iii), we can find a subsequence {Rni

}, n0 < n1 < n2 < . . . , such that
Rni ⊂ N1/ni

(M), for every i ≥ 1. Since Wni ⊂ N1/ni
(Rni), one can

easily obtain that Wni ⊂ N2/n0(M) ⊂ U .

The Browder–Gupta Lemma 2.3 and Remark 2.4 end the proof. �

Among several remarks on Browder–Gupta results the following should be
added.

Remark 2.7. In the case whenX is a metric absolute neighbourhood retract
(X ∈ ANR), Theorem 2.1 can be proved without using Lemma 2.3. Instead of
it we can use the characterization below (Lemma 2.9) of Rδ-sets due to Hyman
(see [22]). Although this case is not so general, it seems to be sufficient for
applications.

Lemma 2.8 ([26]). Let X,Y be metric spaces. If ϕ : X ( Y is an u.s.c.4,
proper5 map, then the map ψ = ϕ−1

+ : ϕ(X) ( X is u.s.c. with compact values.
Especially, for every y ∈ ϕ(X) and every open neighbourhood U of ϕ−1

+ (y) in X

there exists η > 0 such that ϕ−1
+ (Nη(y)) ⊂ U .

Lemma 2.9 ([22]). Let M be a compact subset of Y ∈ ANR. Then the
following conditions are equivalent:

(i) M is contractible in every open neighbourhood in Y ;
(ii) M is Rδ.

Alternative proof of Theorem 2.1 with X ∈ ANR. In a standard way
one can check that S is compact and nonempty. Define Yk = f−1

k (B(0, 1/k)),
where B(0, 1/k) stands for the ball in E with center at 0 and radius 1/k. It is
easily seen that, for every k, S ⊂ Yk and the restriction fk : Yk → B(0, 1/k) is
a homeomorphism. This implies that each Yk is a contractible set. Moreover,
Y2k ⊂ f−1(B(0, 1/k)).

Let U be an arbitrary open neighbourhood of S in X. From Lemma 2.8 it
follows that there is k ≥ 1 such that f−1(B(0, 1/k)) ⊂ U . Thus S ⊂ Y2k ⊂
f−1(B(0, 1/k)) ⊂ U . Since Y2k is contractible, we obtain that S is contractible
in U . Lemma 2.9 implies that S is Rδ. �

4A multivalued map ϕ : X ( Y is upper semicontinuous (u.s.c.) if ϕ−1(U) = {x ∈ X |
ϕ(x) ⊂ U} is open in X, for every open subset U of Y .

5We say that a multivalued map ϕ :( Y is proper if the preimage ϕ−1
+ (A) = {x ∈ X |

ϕ(x) ∩A 6= ∅} is compact, for every compact subset A of Y .
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There are possible multivalued generalizations of Theorem 2.1. We describe
this below. All the results (cf. Theorems 2.16, 2.19, 2.20) imply the classical
Krasnosel’skĭı–Perov theorem, (see [24] or [25]). At first we recall some notions.

We say that a multivalued map ϕ : X ( Y is admissible (in the sense
of Górniewicz, [17]), if there are a metric space Z and a pair of single-valued
continuous maps X

p←− Z
q−→ Y (a selected pair of ϕ) such that p is a Vietoris

map6 and q(p−1(x)) ⊂ ϕ(x), for every x ∈ X. Every admissible map induces
the set {ϕ}∗ of linear maps from H∗(Y ) to H∗(X), where H∗ stands for the
Čech–Alexander cohomology, {ϕ}∗ = {(p−1)∗q∗ | (p, q) is a selected pair of ϕ}.
A multivalued map H : X × [0, 1] ( Y is called an admissible homotopy joining
ϕ and ψ, if H is an admissible map and H(x, 0) ⊂ ϕ(x),H(x, 1) ⊂ ψ(x), for
every x ∈ X.

We will use the following two lemmas.

Lemma 2.10. Let K be a compact subset of a space X. If, for every open
neighbourhood U of K in X, there exists an acyclic set Z such that K ⊂ Z ⊂ U ,
then K is acyclic.

The proof is an immediate consequence of the continuity of the cohomology
functor.

Lemma 2.11. Let Y be an acyclic space, and ϕ : X ( Y be an u.s.c. map
with compact acyclic values (this implies that ϕ is admissible) and such that in
the selected pair X

p←− Γϕ
q−→ Y the map q is a Vietoris map. Then X is

acyclic.

The assertion immediately follows from the fact that

(p−1)∗q∗ : H∗(Y )→ H∗(X)

is an isomorphism.

Corollary 2.12. Let Y be an acyclic space, and ϕ : X ( Y be an u.s.c.
surjective map with compact acyclic values and such that ϕ−1

+ (y) is acyclic, for
every y ∈ Y . Then X is acyclic.

Using basic properties of admissible maps one can also easily obtain the
following lemma.

Lemma 2.13. Let A be a compact subset of a metric space X, and H :
A × [0, 1] ( X be an admissible homotopy. Assume that for every ε > 0 there
exists n0 ≥ 1 such that, for every n ≥ n0,

(i) Hn(A× [0, 1]) ⊂ Nε(A),
(ii) in ⊂ Hn(0, · ), where in : A→ Nε(A) is the inclusion map,

6e.i., p is a proper surjection such that p−1(x) is acyclic, for every x ∈ X.
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(iii) an ⊂ Hn(1, · ), where an : A→ Nε(A) is a constant map,
(iv) {Hn(0, · )}∗ and {Hn(1, · )}∗ are singletons.

Then A is acyclic.

Proof. It is obvious that for each ε > 0 and n ≥ n0 we have {Hn(0, · )}∗ =
i∗n = a∗n = {Hn(1, · )}∗ = 0. By the continuity of the theory of cohomology, we
can easily obtain that all the reduced cohomology groups of A are trivial. �

Remark 2.14. From the above lemma one can prove Lemma 4.2 in [16] and,
consequently, all the results in [16] on acyclicity of solution sets of functional
inclusions. We note one of them (cf. Theorem 2.19).

Remark 2.15. Let Y be a contractible subset of a Fréchet space, and ϕ :
X ( Y be a u.s.c. surjective map with compact convex values and such that
ϕ−1

+ (y) is acyclic, for every y ∈ Y . Then one can check that the following
multivalued homotopy H : X× [0, 1] ( X, H(x, t) = ϕ−1

+ (h(ϕ(x)×{t})), where
h is a homotopy contracting Y to a point, is an admissible homotopy satisfying
assumption (iv) of Lemma 2.13.

We are in a position to prove a multivalued generalization of Theorem 2.1.

Theorem 2.16. Let X be a metric space, E a Fréchet space, {Uk} a base
of open convex symmetric neighbourhoods of the origin in E, and let ϕ : X ( E

be an u.s.c. proper map with compact values. Assume that there is a sequence of
compact convex valued u.s.c. proper maps ϕk : X → E such that

(i) ϕk(x) ⊂ ϕ(N1/k(x)) + Uk, for every x ∈ X,
(ii) if 0 ∈ ϕ(x), then ϕk(x) ∩ Uk 6= ∅,
(iii) for every k ≥ 1 and every u ∈ E with u ∈ Uk the inclusion u ∈ ϕk(x)

has an acyclic set of solutions.

Then the set S = ϕ−1(0) is compact and acyclic.

Proof. We show that S is nonempty. To this end, notice that for every
k ≥ 1 we can find xk ∈ X such that 0 ∈ ϕk(xk). Assumption (i) implies that
there are zk ∈ N1/k(xk), yk ∈ ϕk(zk) and uk ∈ Uk such that 0 = yk + uk.
Thus yk → 0. Consider the compact set K = {yk} ∪ {0}. Since ϕ is proper,
the set ϕ−1

+ (K) is compact. Moreover, {zk} ⊂ ϕ−1
+ (K). Thus we can assume,

without loss of generality, that {zk} converges to some point x ∈ X. By the
upper semicontinuity of ϕ, we have 0 ∈ ϕ(x) and, what follows, S 6= ∅.

Since ϕ is proper, the set S is compact. We show that it is acyclic.
By assumption (ii), the set Ak = ϕ−1

k+(Uk) is nonempty. Consider the map
ψk : Ak ( Uk, ψk(x) = ϕk(x) ∩ Uk. Since Uk is contractible and ψk is u.s.c.
convex valued surjection (see (iii)), we can apply Corollary 2.12 to obtain that
Ak is acyclic.
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Now we show that for every open neighbourhood U of S in X there exists
k ≥ 1 such that Ak ⊂ U . Indeed, assume on the contrary that there is an open
neighbourhood U of S in X such that Ak 6⊂ U , for every k ≥ 1. It means that
there are xk ∈ Ak with xk 6∈ U and, consequently, there are yk ∈ ϕk(xk) such
that yk ∈ Uk. Assumption (i) implies that there are zk ∈ N1/k(xk), vk ∈ ϕk(zk)
and uk ∈ Uk such that yk = vk+uk. Therefore, vk = yk−uk ∈ 2Uk which implies
that vk → 0. Consider the compact set K0 = {vk} ∪ {0}. Since ϕ is proper, we
can assume that {zk} and, consequently, {xk} converges to some point x ∈ X.
Thus x ∈ S. On the other hand, x 6∈ U , a contradiction.

Using Lemma 2.10 we obtain that S is acyclic. �

Remark 2.17. It is easy to see that in the above result we can assume
that X is a subset of a Fréchet space. Then, instead of ε-neighbourhoods, we
can consider the sets x + Vk, where {Vk} is the base of open convex symmetric
neighbourhoods of the origin.

As a consequence of Theorem 2.16 and properties of a topological degree of
u.s.c. compact convex valued maps (see e.g. [29]) one can obtain the following
theorem generalizing result of Czarnowski in [11].

Theorem 2.18. Let Ω be an open subset of a Fréchet space E, {Uk} the base
of open convex symmetric neighbourhoods of the origin in E, and Φ : Ω ( E

a compact u.s.c. map with compact convex values. Suppose that x 6∈ Φ(x) for
every x ∈ ∂Ω, and Deg (j − Φ,Ω, 0) 6= 0, where j : Ω → E is an inclusion.
Assume that there exists a sequence {Φk : Ω ( E} of compact u.s.c. maps with
compact convex values such that

(i) Φk(x) ⊂ Φ(x+ Uk) + Uk, for every x ∈ Ω,
(ii) if x ∈ Φ(x), then x ∈ Φk(x) + Uk,
(iii) for every u ∈ Uk the set Sk

u of all solutions to the inclusion x−Φk(x) 3 u
is acyclic or empty, for every n > 0.

Then the fixed point set Fix(Φ) of Φ is compact and acyclic.

Proof. Define the maps ϕ,ϕk : Ω ( E, ϕ = j − Φ, ϕk = j − Φk. One
can check that ϕ,ϕk are proper maps. To apply Theorem 2.16, it is sufficient to
show that, for sufficiently big k and for every u ∈ Uk, the set Sk

u is nonempty.
For each k ≥ 1 define the map Ψk : Ω ( E, Ψk(x) = Φk(x) + u, for every

x ∈ Ω. We prove that, for sufficiently big k, Deg (j−Ψk,Ω, 0) 6= 0 which implies,
by the existence property of a degree, a nonemptiness of Sk

u .
Since ϕ is a closed7 map (see e.g. [29]), we can find, for sufficiently big k,

a neighbourhood Uk of the origin such that ϕ(∂Ω) ∩ Uk = ∅.

7i.e., for every closed subset A ⊂ Ω the set ϕ(A) is closed in E.
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Consider the following homotopy Hk : Ω×[0, 1] ( E, H(x, t) = (1−t)Φ(x)+
tΨk(x). We show that

Zk = {x ∈ ∂Ω | x ∈ Hk(x, t) for some t ∈ [0, 1]} = ∅,

for sufficiently big k. Suppose, on the contrary, that there are a subsequence of
{Hk} (we denote it also by {Hk}), points xk ∈ ∂Ω and numbers tk ∈ [0, 1] such
that xk ∈ Hk(xk, tk), that is xk = (1− tk)yk + tksk + tku, for some yk ∈ Φ(xk)
and sk ∈ Φk(xk). Assumption (i) implies that there are zk ∈ xk + Uk and
vk ∈ Φ(zk) such that sk ∈ vk + Uk. By the compactness of Φ, we can assume
that yk → y and vk → v. Therefore sk → v. Moreover, we can assume that
tk → t ∈ [0, 1]. This implies that xk → x0 = (1− t)y + tv + tu or, equivalently,
that 0 = (1 − t)(x0 − y) + t(x0 − v) − tu. But by the upper semicontinuity of
ϕ, we obtain that x0 − y ∈ ϕ(x0) and x0 − v ∈ ϕ(x0). Since ϕ is convex valued,
0 ∈ (1− t)ϕ(x0) + tϕ(x0)− tu ⊂ ϕ(x0)− tu. This implies that ϕ(x0) ∩ Uk 6= ∅,
a contradiction.

Now, by the homotopy property of a topological degree, one obtains

Deg (Ψk,Ω, 0) = Deg (Φ,Ω, 0) 6= 0,

which ends the proof of the theorem. �

For comparison, the following result, which is a consequence of Lemma 2.13,
has been obtained in [16].

Theorem 2.19 ([16, Theorem 4.6]). Let E be a Banach space, U an open
bounded subset of E, and F : U ( E a compact u.s.c. map with compact convex
values satisfying the following conditions:

(i) Deg (j − F,U, 0) 6= 0,
(ii) for every ε > 0 there is a compact ε-approximation8 fε : U → E of F

such that ||x− fε(x)|| ≤ ε, for any x ∈ Fix(F ),
(iii) there is a unique solution of x = fε(x)+v, for every ε > 0 and ||v|| ≤ ε.

Then the set Fix(F ) is acyclic.

To enrich the list of results concerning the topological structure of fixed
point sets of multivalued maps, it is worthwhile adding the following (see [8,
Corollary 2.6)].

Theorem 2.20. Let Y be a normed space, B its bounded closed subset, and
F : B ( Y a compact u.s.c. map with compact acyclic values. Assume that, for
every n ≥ 1, there exists a compact map gn : B → Y such that ||gn(y)|| ≤ 1/n.

8We say that f : X → Y is an ε-approximation of a multivalued map F : X ( Y if the

graph of f is contained in an ε-neighbourhood of the graph of F in X × Y .
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If, for any n ≥ 1 and ||z|| ≤ 1/n, the set {y ∈ B | y ∈ F (y) + gn(y) + z} is
acyclic, then Fix(F ) is acyclic.

Finally, we will show that in Theorem 2.16 one can weaken the assumption
on a regularity of maps instead of strengthening a connection between ϕ and ϕk.

Theorem 2.21. Let X be a metric space, E a Fréchet space, {Uk} a base
of open convex symmetric neighbourhoods of the origin in E, and let ϕ : X ( E

be an u.s.c. proper map with compact values. Assume that there is a sequence of
compact valued u.s.c. proper maps ϕk : X → E such that

(i) ϕk(x) ⊂ ϕ(N1/k(x)) + Uk, for every x ∈ X,
(ii) ϕ(x) ⊂ ϕk(x), for every x ∈ X,
(iii) for every k ≥ 1 the set Sk = ϕ−1

k+(0) is acyclic.

Then the set S = ϕ−1(0) is compact and acyclic.

Proof. The main idea of the proof is similar to the one in Theorem 2.4, [8].
At first, one can easily prove that S is nonempty and compact (cf. the proof of
Theorem 2.16).

Consider, for every n ≥ 1, the following open sets Wn = N2/n(S) and Vn =
N1/n(S). We show that there is k0 = k0(n) ≥ 1 such that 1/k0 < 1/n and
ϕ(x) ∩ Uk = ∅, for every k ≥ k0 and x ∈ X \ Vn.

Suppose, on the contrary, that there are sequences k1 < k2 < . . . and {xki} ⊂
X\Vn such that ϕ(xki

)∩Uki
6= ∅. This implies that there is a sequence {yki

} ⊂ E
such that yki

∈ ϕ(xki
) ∩ Uki

. Thus yki
→ 0. Consider the set K = {yki

} ∪ {0}
and take its preimage ϕ−1

+ (K). Since {xki} ⊂ ϕ−1
+ (K) and ϕ is proper, we can

assume that xki
→ x, for some x ∈ X \ Vn. On the other hand, since ϕ is u.s.c.,

it follows that 0 ∈ ϕ(x), which means that x ∈ S, a contradiction.
Notice that Sk ⊂ Wn, for every k ≥ k0. Indeed, suppose that there exists

x 6∈ Wn such that x ∈ Sk for some k ≥ k0. Then 0 ∈ ϕk(x) ⊂ ϕ(N1/k(x)) + Uk,
which implies that there exist zk ∈ N1/k(x) and yk ∈ ϕ(zk) such that yk ∈ Uk.
But zk ∈ N1/k(X \Wn) ⊂ X \ Vn and hence, ϕ(zk) ∩ Uk = ∅, a contradiction.

Thus we have Sk ⊂Wn. Assumption (ii) implies that S ⊂ Sk, for each k ≥ 1.
Using Lemma 2.10 we obtain that S is acyclic, as required. �

3. Topological structure of fixed point sets of limit maps

In 1987 B. Ricceri [32] showed that if X is a nonempty, convex and closed
subset of a Banach space E and ϕ : E ( E is a contractive multivalued map with
convex closed values, then the fixed point set Fix(ϕ) is an absolute retract. Some
generalizations for maps with decomposable values in the space of integrable
functions were also obtained (see [6]). The most general results for multivalued
contractions have been proved in [20] and [19] (cf. Theorem 3.10).
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An attempt to generalize the results mentioned above to the case of Fréchet
spaces brings some troubles because of the topology of such spaces. Namely,
they arise in checking a contractivity of operators. Even an operator which is a
contraction in every seminorm with the same constant of contractivity, may not
be a contraction with respect to a metric in the space (cf. Example 4.3).

In [3] authors presented a technique which allows us to overcome these trou-
bles by the use of inverse systems of topological spaces and by studying a topo-
logical structure of fixed point sets of limit maps induced by maps of these
systems.

Recall that by an inverse system of topological spaces we mean a family
S = {Xα, π

β
α,Σ}, where Σ is a set directed by the relation ≤, Xα is a topological

(Hausdorff) space for every α ∈ Σ and πβ
α : Xα → Xβ is a continuous mapping

for each two elements α, β ∈ Σ such that α ≤ β. Moreover, for each α ≤ β ≤ γ

the following conditions should hold: πα
α = idXα and πβ

απ
γ
β = πγ

α.
A subspace of the product

∏
α∈ΣXα is called a limit of the inverse system S

and it is denoted by lim←−S or lim←−{Xα, π
β
α,Σ} if

lim←−S =
{

(xα) ∈
∏
α∈Σ

Xα

∣∣∣∣πβ
α(xβ) = xα for all α ≤ β

}
.

An element of lim←−S is called a thread or a fibre of the system S. One can see that

if we denote by πα : lim←−S → Xα a restriction of the projection pα :
∏

α∈ΣXα →
Xα onto the α-th axis, then we obtain πα = πβ

απβ for each α ≤ β.
Now we summarize some useful properties of limits of inverse systems.

Proposition 3.1 ([14]). Let S = {Xα, π
β
α,Σ} be an inverse system.

(3.1.1) The limit lim←−S is a closed subset of
∏

α∈ΣXα.

(3.1.2) If, for every α ∈ Σ, Xα is

(i) compact, then lim←−S is compact;

(ii) compact and nonempty, then lim←−S is compact and nonempty;

(iii) a continuum, then lim←−S is a continuum;

(iv) compact and acyclic9, then lim←−S is compact and acyclic;

(v) metrizable, Σ is countable, and lim←−S is nonempty, then lim←−S is metriz-
able.

The following further information is useful for applications.

Proposition 3.2. Let S = {Xn, π
p
n,N} be an inverse system. If each Xn is

a compact Rδ-set, then lim←−S is Rδ, too.

9with respect to any continuous theory of cohomology.
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Proof. The assertion follows from Example 2.5 and Proposition 2.6. In-
deed, define

Qn =
{

(xi) ∈
∞∏

i=1

Xi

∣∣∣∣xi = πn
i (xn) for i ≤ n

}
.

It is easy to see that each Qn is homeomorphic to the Rδ-set
∏∞

i=nXi. Notice
that

∞⋂
n=1

Qn =
{

(xi) ∈
∞∏

i=1

Xn

∣∣∣∣xi = πn
i (xn) for every n ≥ 1 and i ≤ n

}
= lim←−S.

This implies (comp. Example 2.5) that lim←−S = Lim Qn, and by Proposition 2.6,
it is an Rδ-set, as required. �

The following example shows that a limit of an inverse system of absolute
retracts does not have to be an absolute retract.

Example 3.3. Consider a family {Xn}∞n=1 of subsets of R2 defined as fol-
lows:

Xn = ([0, 1/nπ]× [−1, 1]) ∪ {(x, y) | y = sin 1/x and 1/nπ < x ≤ 1}.

One can see that for each m,n ≥ 1 such that m ≥ n we have Xm ⊂ Xn.
Define the maps πm

n : Xm → Xn, πm
n (x) = x. Therefore S = {Xn, π

m
n ,N}

is an inverse system of compact absolute retracts. It is evident that lim←−S is
homeomorphic to the intersection of all Xn. On the other hand

X =
∞⋂

n=1

Xn = {(0, y) | y ∈ [−1, 1]} ∪ {(x, y) | y = sin 1/x and 0 < x ≤ 1},

and X is not an absolute retract since, for instance, X is not locally connected.

Note that in [1] the following information on a limit of an inverse system of
absolute retracts has been given.

Proposition 3.4. Let S = {Xn, π
p
n,N} be an inverse system of compact

absolute retracts such that Xn ⊂ Xp and πp
n be a retraction for all n ≤ p. Then

lim←−S has the fixed point property, i.e. every continuous map f : lim←−S → lim←−S
has a fixed point.

Example 3.5. Consider the inverse system S = {Xn, π
p
n,N} such that Xn =

[n,∞) and πp
n : Xp ↪→ Xn are inclusion maps for n ≤ p. It is obvious that lim←−S

is homeomorphic to the intersection of all Xn which is an empty set.
This shows that the compactness assumption in Proposition 3.1.2 is impor-

tant in obtaining a nonemptiness of the limit lim←−S.

Now we introduce the notion of multivalued maps of inverse systems. Sup-
pose that two systems S = {Xα, π

β
α,Σ} and S′ = {Yα′ , πβ′

α′ ,Σ′} are given.
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Definition 3.6. By a multivalued map of the system S into the system S′

we mean a family {σ, ϕσ(α′)} consisting of a monotone function σ : Σ′ → Σ, that
is σ(α′) ≤ σ(β′) for α′ ≤ β′, and of multivalued maps ϕσ(α′) : Xσ(α′) ( Yα′

with nonempty values, defined for every α′ ∈ Σ′ and such that

(1) πβ′

α′ϕσ(β′) = ϕσ(α′)π
σ(β′)
σ(α′),

for each α′ ≤ β′. A map of systems {σ, ϕσ(α′)} induces a limit map ϕ : lim←−S (

lim←−S
′ defined as follows:

ϕ(x) =
∏

α′∈Σ

ϕσ(α′)(xσ(α′)) ∩ lim←−S
′.

In other words, a limit map is a map such that, for every α′ ∈ Σ′,

(2) πα′ϕ = ϕσ(α′)πσ(α′).

Since a topology of a limit of an inverse system is the one generated by the base
consisting of all sets of the form πα(Uα), where α runs over an arbitrary set
cofinal in Σ and Uα are open subsets of the space Xα, it is easy to prove the
following continuity property for limit maps:

Proposition 3.7 ([3, Proposition 2.7]). Let S = {Xα, π
β
α,Σ} and S′ =

{Yα′ , πβ′

α′ ,Σ′} be two inverse systems, and ϕ : lim←−S ( lim←−S
′ be a limit map

induced by the map {σ, ϕσ(α′)}. If, for every α′ ∈ Σ′, ϕσ(α′) is

(i) u.s.c. with compact values, then ϕ is u.s.c.,
(ii) l.s.c.10, then ϕ is l.s.c.;
(iii) continuous11, then ϕ is continuous.

The following crucial result allows us to study a topological structure of fixed
point sets of limit maps.

Theorem 3.8. Let S = {Xα, π
β
α,Σ} be an inverse system, and ϕ : lim←−S (

lim←−S be a limit map induced by a map {id, ϕα}, where ϕα : Xα ( Xα. If fixed
point sets of ϕα are compact acyclic, then the fixed point set of ϕ is compact
acyclic, too.

Proof. Denote by Fα the fixed point set of ϕα, for every α ∈ Σ, and by F
the fixed point set of ϕ. We will show that πβ

α(Fβ) ⊂ Fα.
Let xβ ∈ Fβ . Then xβ ∈ ϕβ(xβ) and πβ

α(xβ) ∈ πβ
αϕβ(xβ) ⊂ ϕαπ

β
α(xβ),

which implies that πβ
α(xβ) ∈ Fα.

10A multivalued map ϕ : X ( Y is lower semicontinuous (l.s.c.) if ϕ−1
+ (U) = {x ∈ X |

ϕ(x) ∩ U 6= ∅} is open in X, for every open subset U of Y .
11A multivalued map ϕ : X ( Y is continuous if ϕ is u.s.c. and l.s.c.
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Similarly we show that πα(F) ⊂ Fα. Denote by πβ
α : Fβ → Fα the restriction

of πβ
α. One can see that S = {Fα, π

β
α,Σ} is an inverse system.

By Proposition 3.1, the set F is acyclic and the proof is complete. �

By Proposition 3.2 and the above proof we immediately obtain:

Theorem 3.9. Let S = {Xn, π
p
n,N} be an iverse system, and ϕ : lim←−S (

lim←−S be a limit map induced by a map {id, ϕn}, where ϕn : Xn ( Xn. If fixed
point sets of ϕn are compact Rδ, then the fixed point set of ϕ is Rδ, too.

Following [19] recall that a lower semicontinuous map ϕ : X ( X, where
X is a metric space, has the selection property with respect to a subclass D of
the class of metric spaces, if, for any Y ∈ D, any pair of continuous functions
f : Y → X and h : Y → (0,∞) such that

ψ(y) = cl[ϕ(f(y)) ∩Nh(y)(f(y))] 6= ∅, y ∈ Y,

and any nonempty closed set Y0 ⊂ Y , every continuous selection of ψ|Y0 admits a
continuous extension g over Y fulfilling g(y) ∈ ψ(y) for all y ∈ Y . If D is a class
of all metric spaces, then we say that ϕ has the selection property (ϕ ∈ SP (X)).

Note that, for example, every closed convex valued l.s.c. map from a Fréchet
space E into itself (and more generally, with values in any Michael family of
subsets of E) has the selection property. Moreover, if X is a closed subset of
L1(T,E), where E is a Banach space and ϕ : X ( X is a l.s.c. map with closed
decomposable values, then ϕ ∈ SP (X).

Theorem 3.10 ([19, Theorem 3.1]). Let X be a complete absolute retract
and let ϕ : X ( X be a multivalued contraction, i.e. a Lipschitz 12 map with a
constant 0 ≤ k < 1. Suppose that ϕ ∈ SP (X). Then the set Fix(ϕ) is a complete
absolute retract.

The above result gives us the following applications.

Corollary 3.11. Let S = {Xn, π
p
n,N} be an iverse system, and ϕ : lim←−S(

lim←−S be a limit map induced by a map {id, ϕn}, where ϕn : Xn ( Xn. If all Xn

are complete absolute retracts and all ϕn are compact valued contractions having
the selection property, then Fix(ϕ) is compact Rδ.

Proof. By Theorem 3.10, all the fixed point sets Fn of ϕn are absolute
retracts. Since every map ϕn has compact values, Theorem 1 in [33] implies the
compactness of Fn. Therefore our assertion follows from Proposition 3.2. �

12A multivalued map ϕ : X ( Y is a Lipschitz map, if there exists a constant k ≥ 0
such that dH(ϕ(x), ϕ(y)) ≤ kd(x, y), for every x, y ∈ X, where dH stands for the Hausdorff
distance.
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Corollary 3.12. Let S = {Xn, π
p
n,N} be an iverse system, and ϕ : lim←−S(

lim←−S be a limit map induced by a map {id, ϕn}, where ϕn : Xn ( Xn. If all
Xn are Fréchet spaces and all ϕn are contractions with convex compact values,
then Fix(ϕ) is compact Rδ.

4. Applications to function spaces

We start with the following important examples of inverse systems.

Example 4.1. Let, for every m ∈ N, Cm = C([0,m],Rn) be a Banach space
of all continuous functions of the closed interval [0,m] into Rn with the usual
sup norm, and C = C([0,∞),Rn) be an analogous Fréchet space of continuous
functions with the family of seminorms pm(x) = sup{|x(t)| | t ∈ [0,m]}.

Consider the maps πp
m : Cp → Cm, πp

m(x) = x|[0,m]. It is easy to see that
C is isometrically homeomorphic to a limit of the inverse system {Cm, π

p
m,N}.

The maps πm : C → Cm, πm(x) = x|[0,m] correspond with suitable projections.

Remark 4.2. In the same manner as above we can show that Fréchet
spaces C(J,Rn), where J is an arbitrary interval, L1

loc(J,Rn) of all locally inte-
grable functions, ACloc(J,Rn) of all locally absolutely continuous functions and
Ck(J,Rn) of all continuously differentiable functions up to the order k can be
considered as limits of suitable inverse systems.

More generally, every Fréchet space is a limit of some inverse system of
Banach spaces.

Using the inverse system described in Example 4.1 we can give an example of
a limit map induced by a map (of an inverse system) consisting of contractions
(even with the same constant of contractivity) which is not a contraction with
respect to the metric in a limit of this system.

Example 4.3. Consider the map f : C([0,∞),R) → C([0,∞),R), f(x) =
x/2. This map is a contraction (with 1/2 as a constant of contractivity) with
respect to each seminorm pm.

Suppose that there is k, 0 ≤ k < 1, such that

d(f(x), f(y)) ≤ k d(x, y), for any x, y ∈ C([0,∞),R).

Take L, max{1/2, k} < L < 1. We show that there are functions x, y ∈
C([0,∞),R) such that d(f(x), f(y)) ≥ Ld(x, y).

Indeed, let y ≡ 0 and x ≡ 2L/(1− L). Then pm(x − y) = 2L/(1− L), for
every m ≥ 1. One can easily check that

L
pm(x− y)

1 + pm(x− y)
=

2L2

1 + L
,



On the Acyclicity of Fixed Point Sets of Multivalued Maps 341

and
pm(f(x)− f(y))

1 + pm(f(x)− f(y))
=

pm(x− y)/2
1 + pm(x− y)/2

= L >
2L2

1 + L
.

Hence

Ld(x, y) = L
∞∑

m=1

1
2m

pm(x− y)
1 + pm(x− y)

≤
∞∑

m=1

pm(f(x)− f(y))
1 + pm(f(x)− f(y))

= d(f(x), f(y)).

This implies that f is not a contraction with respect to the metric in C([0,∞),R).

Now we formulate the results obtained in the previous section in a special case
of function spaces (to some examples described in Example 4.1 and Remark 4.2).

Corollary 4.4. Let ϕm : C([0,m],Rn) ( C([0,m],Rn) (respectively, ϕm :
L1([0,m],Rn) ( L1([0,m],Rn)), m ≥ 1, be compact valued contractions having
the selection property, and such that ϕp(x)|[0,m] = ϕm(x|[0,m]), for every x ∈
C([0, p],Rn) (respectively, L1([0, p],Rn)), p ≥ m. Define ϕ : C([0,∞),Rn) (

C([0,∞),Rn) (respectively, ϕ : L1
loc([0,∞),Rn) ( L1

loc([0,∞),Rn)), ϕ(x)|[0,m]

= ϕm(x|[0,m]), for every x ∈ C([0,∞),Rn) (respectively, L1([0,∞),Rn)). Then
Fix(ϕ) is compact Rδ.

Remark 4.5. From the above corollary one can infer that, if each ϕm has
convex values (or decomposable — in the case of L1 spaces), then Fix(ϕ) is
compact Rδ.

The inverse system approach describing above gives us an easy way to study
a topological structure of solution sets of differential problems on noncompact
intervals. Namely, the suitable operator with solutions as fixed points can be
often considered as a limit map induced by maps of Banach spaces of functions
defined on compact intervals (see [3] for examples).

Aknowledgement. The author thanks professor W. Kryszewski for valu-
able comments and the alternative proof of Theorem 2.1.
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[32] B. Ricceri, Une propriété topologique de l’ensemble des points fixes d’une contraction
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