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SOME RECENT RESULTS ON THIN DOMAIN PROBLEMS
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Dedicated to the memory of Julisz P. Schauder

Abstract. Let Ω be an arbitrary smooth bounded domain in R2 and ε > 0
be arbitrary. Write (x, y) for a generic point of R2. Squeeze Ω by the factor ε
in the y-direction to obtain the squeezed domain Ωε = {(x, εy) | (x, y) ∈ Ω}.
Consider the following reaction-diffusion equation on Ωε:

(Eε)
ut = ∆u + f(u), t > 0, (x, y) ∈ Ωε

∂νεu = 0, t > 0, (x, y) ∈ ∂Ωε.

Here, νε is the exterior normal vector field on ∂Ωε and f : R → R is a
nonlinearity satisfying some growth and dissipativeness conditions ensuring
that (Eε) generates a semiflow πε on H1(Ωε) with a global attractor Aε.
In this paper we report on some recent results concerning the asymptotic
behavior of the equations (Eε) as ε → 0.

1. Limit dynamics on squeezed domains

Let Ω be an arbitrary smooth bounded domain in R
2 and ε > 0 be arbitrary.

Write (x, y) for a generic point of R
2. Given ε > 0 squeeze Ω by the factor ε

in the y-direction to obtain the squeezed domain Ωε. More precisely, define the
map

Tε: R2 → R
2, (x, y) �→ (x, εy)

and set Ωε := Tε(Ω). Consider the following reaction-diffusion equation on Ωε:

(1.1)
ut = ∆u + f(u), t > 0, (x, y) ∈ Ωε

∂νεu = 0, t > 0, (x, y) ∈ ∂Ωε.
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Here, νε is the exterior normal vector field on ∂Ωε and f : R → R is a C1-
nonlinearity of polynomial growth, that is

(1.2) |f ′(s)| ≤ C(1 + |s|β) for s ∈ R,

where C and β ∈ [0,∞[ are arbitrary real constants. In addition, suppose that
f is dissipative in the sense that

(1.3) lim sup
|s|→∞

f(s)/s ≤ −δ0 for some δ0 > 0.

These hypotheses imply that (1.1) generates a semiflow π̃ε = π̃ε,f on H1(Ωε)
which has a global attractor Ãε = Ãε,f .

As ε → 0 the thin domain Ωε degenerates to a one-dimensional interval.
One may ask what happens in the limit to the family (π̃ε)ε>0 of semiflows and

to the family (Ãε)ε>0 of attractors. Is there a limit semiflow and a corresponding
limit attractor?

This problem was first considered by Hale and Raugel in [7] for the case when
the domain Ω is the ordinate set of a smooth positive function g defined on an
interval [a, b], i.e.

Ω = {(x, y) | a < x < b and 0 < y < g(x)}.

The authors prove that, in this case, there exists a limit semiflow π̃0, which is
defined by the one-dimensional boundary value problem

(1.4)
ut = (1/g)(gux)x + f(u), t > 0, x ∈ ]a, b[ ,

ux = 0, t > 0, x = a, b.

Moreover, π̃0 has a global attractor Ã0 and, in some sense, the family (Ãε)ε≥0

is upper-semicontinuous at ε = 0.
Hale and Raugel also prove that one can modify the nonlinearity f in such a

way that each modified semiflow π̃′
ε possesses an invariant (inertial) C1-manifold

M̃ε of some fixed dimension ν which includes the attractor Ãε of the original
semiflow π̃ε. The semiflows π̃ε and π̃′

ε coincide on the attractor Ãε.
Moreover, as ε → 0, the reduced flow on M̃ε converges in the C1-sense to

the reduced flow on M̃0.
If the domain Ω is not the ordinate set of some function (e.g. if Ω has holes

or different horizontal branches) then (1.4) can no longer be a limiting equation
for (1.1). Nevertheless, as it was proved in [12] the family π̃ε still has a limit
semiflow. Moreover, there exists a limit global attractor and the upper-semicon-
tinuity result continues to hold.

In order to describe the main results of [12] we first transfer the family (1.1)
to boundary value problems on the fixed domain Ω. More explicitly, we use the
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linear isomorphism Φε: H1(Ωε) → H1(Ω), u �→ u◦Tε, to transform problem (1.1)
to the equivalent problem

(1.5)
ut = uxx +

1
ε2

uyy + f(u), t > 0, (x, y) ∈ Ω,

uxν1 +
1
ε2

uyν2 = 0, t > 0, (x, y) ∈ ∂Ω.

on Ω. Here, ν = (ν1, ν2) is the exterior normal vector field on ∂Ω.
Note that equation (1.5) can be written in the abstract form

u̇ + Aεu = f̂(u)

where f̂ : H1(Ω) → L2(Ω), u �→ f ◦ u, is the Nemitski operator generated by the
function f , and Aε is the linear operator defined by

Aεu = −uxx − 1
ε2

uyy ∈ L2(Ω) for u ∈ H2(Ω) with uxν1 +
1
ε2

uyν2 = 0 on ∂Ω.

Equation (1.5) defines a semiflow πε = πε, �f on H1(Ω) which is equivalent to π̃ε

and has the global attractor Aε := Φε(Ãε), consisting of the orbits of all full
bounded solutions of (1.5).

The operator Aε is, in the usual way, induced by the following bilinear form

aε(u, v) :=
∫

Ω

(uxvx +
1
ε2

uyvy) dx dy, u, v ∈ H1(Ω).

Notice that, for every fixed ε > 0 and u ∈ H1(Ω), the formula

|u|ε = (aε(u, u) + |u|2L2(Ω))
1/2

defines a norm on H1(Ω) which is equivalent to | · |H1(Ω). However, |u|ε → ∞ as
ε → 0+ whenever uy �= 0 in L2(Ω). In fact, we see that for u ∈ H1(Ω)

lim
ε→0+

aε(u, u) =

{ ∫
Ω

u2
x dx dy if uy = 0,

∞ otherwise.

Thus the family aε(u, u), ε > 0, of real numbers has a finite limit (as ε → 0)
if and only if u ∈ H1

s (Ω), where we define the closed linear subspace H1
s (Ω) of

H1(Ω) by
H1

s (Ω) := {u ∈ H1(Ω) | uy = 0}.
The corresponding limit bilinear form is given by the formula:

(1.6) a0(u, v) :=
∫

Ω

uxvx dx dy, u, v ∈ H1
s (Ω).

The form a0 uniquely determines a densely defined selfadjoint linear operator

A0: D(A0) ⊂ H1
s (Ω) → L2

s(Ω)
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by the usual formula

a0(u, v) = 〈A0u, v〉L2(Ω) for u ∈ D(A0) and v ∈ H1
s (Ω).

Here, the linear space L2
s(Ω) is defined as the closure of H1

s (Ω) in the L2-norm.
It follows that the Nemitski operator f̂ maps the space H1

s (Ω) into L2
s(Ω). Con-

sequently the abstract parabolic equation

(1.7) u̇ = −A0u + f̂(u)

defines a semiflow π0 = π0, �f on the space H1
s (Ω). This is the limit semiflow of

the family πε. In fact, the following results are proved in [12]:

Theorem 1.1. Let (εn)n∈N be an arbitrary sequence of positive numbers
convergent to zero and (un)n∈N be a sequence in L2(Ω) converging in the norm
of L2(Ω) to some u0 ∈ L2

s(Ω). Moreover, let (tn)n∈N be an arbitrary sequence of
positive numbers converging to some positive number t0. Then

|e−tnAεn un − e−t0A0u0|εn → 0 as n → ∞.

If, in addition, un ∈ H1(Ω) for every n ∈ N and if u0 ∈ H1
s (Ω), then

|unπεntn − u0π0t0|εn → 0 as n → ∞.

The limit semiflow π0 possesses a global attractor A0. The upper-semiconti-
nuity result alluded to above reads as follows:

Theorem 1.2. The family of attractors (Aε)ε∈[0,1] is upper-semicontinuous
at ε = 0 with respect to the family of norms | · |ε. This means that

lim
ε→0+

sup
u∈Aε

inf
v∈A0

|u − v|ε = 0.

In particular, there exists an ε1 > 0 and an open bounded set U in H1(Ω)
including all the attractors Aε, ε ∈ [0, ε1].

The definition of the linear operator A0, as given above, is not very explicit.
However, as it is shown in [12], there is a large class of the so-called nicely decom-
posed domains on which A0 can be characterized as a system of one-dimensional
second order linear differential operators, coupled to each other by certain com-
patibility and Kirchhoff type balance conditions. In this case, the abstract limit
equation (1.7) is equivalent to a parabolic equation on a finite graph (cf. Section 2
below).

Let (λν)ν∈N be the nondecreasing sequence of the eigenvalues of the limit
operator A0 (each of the eigenvalues being repeated according to its multiplicity).
Assume that the sequence (λν)ν∈N satisfies the following gap condition:

(1.8) lim sup
ν→∞

λν+1 − λν

λν
1/2

> 0.
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In [13] it is shown that under hypothesis (1.8) there is an ε0 > 0, ε0 ≤ ε1,
and there exists a family Mε, 0 ≤ ε ≤ ε0 of (inertial) C1-manifolds of some finite
dimension ν such that, whenever 0 ≤ ε ≤ ε0, then Aε ⊂ Mε and the manifold
Mε is locally invariant relative to the semiflow πε on the neighbourhood U of
the attractor Aε. Furthermore, as ε → 0, the reduced flow on the manifold Mε

converges in the C1-sense to the reduced flow on M0. It is also proved that the
gap condition (1.8) is satisfied on nicely decomposed domains satisfying a natural
additional condition. In particular, our inertial manifold theorem contains, as
a special case, the inertial manifold theorem of Hale and Raugel and it even
improves the latter.

Let us discuss in some detail the construction of the inertial manifolds given in
the proof of Theorem 1.3 below. We apply the method of functions of exponential
growth, used before by many researchers (cf. [5], [15] and the references contained
in these papers). First we choose an open set U in H1(Ω) which includes all
the attractors Aε, ε ∈ [0, ε0], ε0 > 0 small. Then we modify the Nemitski
operator f̂ (rather than the function f) by finding a globally Lipschitzian map
g: H1(Ω) → L2(Ω) with f̂(u) = g(u) for u ∈ U . For fixed ε ∈ [0, ε0] we seek an
invariant manifold Mε for the modified semiflow πε,g in the form Mε = Λε(Rν),
where Λε: Rν → H1(Ω) is a map obtained from the contraction mapping principle
applied to a properly defined nonlinear operator Γε defined on a certain space
of maps y: ]−∞, 0] → H1(Ω) of exponential growth. If the operator Γε is a
contraction then the map Λε is well-defined and Aε ⊂ Mε. It follows that Mε is
invariant with respect to solutions of the original semiflow πε,�f as long as these
solutions stay in the open set U . One can even find an open set V ⊂ R

ν such
that for ε ∈ [0, ε0] the set Λε(V ) is positively invariant with respect to πε, �f and
Aε ⊂ Λε(V ) ⊂ U .

The only problem is that, under the usual norm | · |ε on H1(Ω), the operator
Γε is not a contraction. In fact, the gap condition (1.8), which is the best possi-
ble, does not yield gaps which are large enough to counterbalance the Lipschitz
constant of the given Nemitski operator. At this point we use an ingenious idea
due to Brunovský and Tereščák (see Theorem 4.1 in [3] and its proof) and, given
positive numbers l and L introduce an equivalent norm

‖u‖ε = L|u|L2 + l|u|ε

on H1(Ω). Similarly, as in [3], we seek to choose the constants l and L in such
a way that the operator Γε is a uniform contraction with respect to the norm
‖·‖ε. That this is possible is due to the Gagliardo–Nirenberg inequality combined
with some linear estimates obtained from the variation-of-constants formula.

In order to state the inertial manifold theorem we need some notation. For
every ε ∈ [0, 1] let (λε,j)j∈N be the repeated sequence of the eigenvalues of Aε and
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let (wε,j)j∈N be a corresponding complete orthonormal sequence of eigenvectors.
For every ε ∈ [0, 1] and every ν ∈ N let Eε,ν : Rν → L2(Ω) be defined by

Eε,νξ :=
ν∑

j=1

ξjwε,j , ξ ∈ R
ν .

Furthermore, if ε > 0 (respectively, ε = 0), let Pε,ν : L2(Ω) → L2(Ω) (respec-
tively, Pε,ν : L2

s(Ω) → L2
s(Ω)) be the orthogonal projection of L2(Ω) (respectively,

L2
s(Ω)) onto the the span of the vectors wε,j , j = 1, . . . , ν.

Theorem 1.3. Suppose that f ∈ C1(R → R) satisfies the growth and dis-
sipativeness conditions (1.2) and (1.3). Suppose the eigenvalues of A0 satisfy
the gap condition (1.8). Then there are an ε0 > 0 and an open bounded set
U ⊂ H1(Ω) such that for every ε ∈ [0, ε0[ the attractor Aε of the semiflow πε,�f

lies in U .
Furthermore, there exists a globally Lipschitzian map g ∈ C1(H1(Ω) →

L2(Ω)) with g(u) = f̂(u) for u ∈ U .
Besides, there is a positive integer ν and for every ε ∈ [0, ε0[ there is a map

Λε ∈ C1(Rν → H1(Ω)) if ε > 0 and Λε ∈ C1(Rν → H1
s (Ω)) if ε = 0 such that

(1.9) Pε,ν ◦ Λε = Eε,ν

and Λε(Rν) is an invariant manifold with respect to the semiflow πε,g.
Finally, there is an open set V ⊂ R

ν such that, for every ε ∈ [0, ε0[,

Aε ⊂ Λε(V ) ⊂ U

and the set Λε(V ) is positively invariant with respect to the semiflow πε, �f .
The reduced equation on Λε(Rν) takes the form

(1.10) ξ̇ = vε(ξ), ξ ∈ R
ν ,

where

vε: Rν → R
ν , ξ �→ −AεEε,νξ + Pε,νg(Λε(ξ)).

Moreover, whenever εn → 0+ and ξn → ξ0 in R
ν , then

(1.11) |Λεn(ξn) − Λ0(ξ0)|εn +
ν∑

j=1

|∂jΛεn(ξn) − ∂jΛ0(ξ0)|εn → 0

and

(1.12) |vεn(ξn) − v0(ξ0)|Rν +
ν∑

j=1

|∂jvεn(ξn) − ∂jv0(ξ0)|Rν → 0.

The reader is referred to [13] for a detailed proof of Theorem 1.3.
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2. Nicely decomposed domains

In this section we report on some results from [12] and [13] which characterize
the function spaces H1

s (Ω) and L2
s(Ω) and the domain of the limit operator

A = A0 on nicely decomposed domains. Moreover, we state the additional
conditions which ensure that the eigenvalues of the operator A satisfy the gap
condition described in the previous section.

For the reader’s convenience we will first recall the definition of a nicely
decomposed domain.

We say that an open set Ω ⊂ R
2 has connected vertical sections if for every

x ∈ R the x-section Ωx is connected. Such a section is, of course, nonempty if
and only if x ∈ P (Ω), where P : R × R → R, (x, y) �→ x is the projection onto
the first component. Note that, given a nonempty bounded domain Ω in R

2,
JΩ := P (Ω) is a nonempty bounded open interval in R, that is JΩ = ]aΩ, bΩ[,
where −∞ < aΩ < bΩ < ∞.

Given a ∈ R and δ ∈ ]0,∞[ we set

Iδ(a) := ]a − δ, a + δ[ , I−δ (a) := ]a − δ, a[ and I+
δ (a) := ]a, a + δ[.

Definition 2.1. Let Ω, Ω1 and Ω2 be nonempty bounded domains in R
2.

Set ai := aΩi and bi := bΩi , i = 1, 2. Given c ∈ R we say that Ω1 joins Ω2 at c

in Ω if the following properties hold:

(1) Ω1 ∩ Ω2 = {c} × [β, γ] where β = βΩ1,Ω2 and γ = γΩ1,Ω2 are some real
numbers with β < γ,

(2) c = aΩ2 = bΩ1 ,
(3) {c} × ]β, γ[ ⊂ Ω,
(4) whenever d ∈ ]β, γ[, then there is a δ = δ(d) > 0 with the property that

Iδ(d) ⊂ ]β, γ[ and I−δ (c) × Iδ(d) ⊂ Ω1, I+
δ (c) × Iδ(d) ⊂ Ω2.

We say that Ω1 and Ω2 join at c in Ω if Ω1 joins Ω2 at c in Ω or Ω2 joins Ω1

at c in Ω.

Definition 2.2 (cf. Figure 1). Assume that Ω ⊂ R × R is a nonempty
bounded open domain with Lipschitz boundary. Let P : R × R → R, (x, y) �→
x be the projection onto the first variable. A nice decomposition of Ω is a
collection Ω1, . . . , Ωr of nonempty pairwise disjoint open connected subsets of
Ω with connected vertical sections such that, defining Jk := JΩk

, ak := aΩk
,

bk := bΩk
, k = 1, . . . , r, the following properties are satisfied:

(1) Ω \ (
⋃r

k=1 Ωk) ⊂ Z, where Z :=
⋃r

l=1({al, bl} × R),
(2) whenever k = 1, . . . , r then ∂Ωk ⊂ ∂Ω ∪ ({ak, bk} × R) and for c ∈

{ak, bk} ∂Ωk ∩ ({c} × R) = {c} × I, where I is a compact (possibly
degenerate) interval in R,



246 M. Prizzi — K. P. Rybakowski

Ω

Ω

Ω

Ω

Ω

Ω

1

2

3

4

5

J
J

J
J

J

J
1

2

3

4

5

6

6

 
Figure 1

(3) whenever k, l = 1, . . . , r, k �= l and (c, d) ∈ Ωk ∩ Ωl is arbitrary then
either Ωk and Ωl join at c in Ω or else there is an m ∈ {1, . . . , r} such
that Ωk and Ωm join at c in Ω and Ωl and Ωm join at c in Ω,

(4) for every k = 1, . . . , r the function pk: Jk → ]0,∞[, x �→ µ1((Ωk)x), is
such that 1/pk ∈ L1(Jk).

Remarks. (1) Definition 2.2 says that, up to a set of measure zero, contained
in a set Z of finitely many vertical lines, Ω can be decomposed into the finitely
many domains Ωk, k = 1, . . . , r in such a way that at Z the various sets Ωk and
Ωl “join” in a nice way. Points of Ω∩Z are, intuitively speaking, those at which
connected components of the vertical sections Ωx bifurcate.

(2) Let R1, . . . , Rs be closed bounded intervals in R
2, with nonempty in-

terior; let ΩR be the interior of
⋃s

k=1 Rk. Then any connected component Ω of
ΩR is a nicely decomposable domain with Lipschitz boundary.

(3) In Section 3 below we will show that all real analytic domains are nicely
decomposable.

Finally, given a nice decomposition Ω1, . . . , Ωr of Ω, we set

E :=
r⋃

k=1

(({ak, bk} × R) ∩ ∂Ωk).

As we already said, our goal is to give a detailed description of the spaces
H1

s (Ω) and L2
s(Ω) when Ω is a nicely decomposed domain. We begin our de-

scription by first considering the simpler case of an open set O with connected
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vertical sections. Below, such a role will be played by the sets Ωk occurring in
the nice decomposition of Ω. We do not assume that O has Lipschitz boundary,
since the sets Ωk occurring in the nice decomposition of Ω in general do not have
this property.

Let P : R × R → R, (x, y) �→ x be the projection onto the first variable.
Let J := P (O) and assume for simplicity that J = ]0, 1[. Define the function
p: J → ]0,∞[ by x �→ µ1(Ωx). In [12] it is shown that, if u ∈ L2(O) satisfies
uy = 0 in the distributional sense, then there is a null set S in R

2 and a function
v ∈ L1

loc(J) such that u(x, y) = v(x) for every (x, y) ∈ O \ S. Moreover, p1/2v ∈
L2(J). If u ∈ H1(O) then v′ ∈ L1

loc(J) and we can choose the null set S so
that u(x, y) = v(x) and ux(x, y) = v′(x) for every (x, y) ∈ Ω \ S. Moreover,
p1/2v′ ∈ L2(J) and we can choose the function v to be absolutely continuous
on J .

Now, since O is open and bounded, it is easy to see that the function p

satisfies the following hypothesis:

(A) p ∈ L∞(0, 1) and for every ε, 0 < ε < 1− ε, there exists δ > 0 such that
p(x) > δ in ]ε, 1 − ε[.

Given an arbitrary function p satisfying hypothesis (A), note that p(x) > 0
for 0 < x < 1. Therefore the following linear spaces

H(p) := {u ∈ L1
loc(0, 1) | p1/2u ∈ L2(0, 1)}

and

V (p) := {u ∈ L1
loc(0, 1) | u′ ∈ L1

loc(0, 1), p1/2u ∈ L2(0, 1), p1/2u′ ∈ L2(0, 1)}
are well-defined. Define on H(p) and V (p) the scalar products

〈u, v〉H(p) :=
∫ 1

0

p(x)u(x)v(x) dx

and

〈u, v〉V (p) :=
∫ 1

0

p(x)u′(x)v′(x) dx +
∫ 1

0

p(x)u(x)v(x) dx.

It is easy to check that these products define Hilbert space structures on H(p)
and V (p).

Now define the mapping

ι: L2
s(O) → H(p), u �→ v,

where v is the function v: J → R such that u(x, y) = v(x) almost everywhere
in O. It turns out that ι is a well-defined isometry of L2

s(O) onto H(p). Moreover,
ι restricts to an isometry of H1

s (O) onto V (p).
In [13] the following result is proved:
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Proposition 2.3. Assume that the function p satisfies (A) and (1/p) ∈
L1(0, 1). Let u ∈ V (p). Then there exists a function v ∈ C0([0, 1]) such that
u = v almost everywhere in ]0, 1[. Moreover, the imbedding V (p) ↪→ C0([0, 1])
(and hence the imbedding V (p) ↪→ H(p)) is compact.

Now we consider the full nicely decomposed domain Ω. For k = 1, . . . , r let
us define the linear spaces

Hk := {u ∈ L1
loc(ak, bk) | p

1/2
k u ∈ L2(ak, bk)}

and
Vk := {u ∈ Hk | u′ ∈ L1

loc(ak, bk), p
1/2
k u′ ∈ L2(ak, bk)}.

We have seen that Hk and Vk, with the scalar products

〈u, v〉Hk
:=

∫ bk

ak

pk(x)u(x)v(x) dx

and

〈u, v〉Vk
:=

∫ bk

ak

pk(x)u′(x)v′(x) dx +
∫ bk

ak

pk(x)u(x)v(x) dx

respectively, are Hilbert spaces and that the imbedding Vk ↪→ Hk is dense and
compact. Moreover, consider the following bilinear forms on Vk:

ak(u, v) :=
∫ bk

ak

pk(x)u′(x)v′(x) dx,

bk(u, v) :=
∫ bk

ak

pk(x)u(x)v(x) dx.

The fact that we use the same symbols “ak” and “bk” to denote both a bilinear
form and the endpoints of the interval Jk will not lead to confusion.

Define the product spaces

H⊕ := H1 ⊕ . . . ⊕ Hr := {[u] = (u1, . . . , ur) | uk ∈ Hk, k = 1, . . . , r}
and

V⊕ := V1 ⊕ . . . ⊕ Vr := {[u] = (u1, . . . , ur) | uk ∈ Vk, k = 1, . . . , r},
with the scalar products

〈[u], [v]〉H⊕ :=
r∑

k=1

〈uk, vk〉Hk
and 〈[u], [v]〉V⊕ :=

r∑
k=1

〈uk, vk〉Vk
,

respectively. It is easy to check that H⊕ and V⊕ are Hilbert spaces and that the
imbedding V⊕ ↪→ H⊕ is dense and compact.

Furthermore, consider the following bilinear forms on V⊕:

a⊕([u], [v]) :=
r∑

k=1

ak(uk, vk) and b⊕([u], [v]) :=
r∑

k=1

bk(uk, vk).
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Note that b⊕ is just the restriction to V⊕ × V⊕ of the scalar product 〈 · , · 〉H⊕ .
For k = 1, . . . , r, let ιk := ιpk

. Define the map

ι⊕: L2
s(Ω) → H⊕, ι⊕u := (ι1(u|Ω1), . . . , ιr(u|Ωr )).

It follows that ι⊕ is an isometry of L2
s(Ω) into H⊕ and that ι⊕ restricts to an

isometry of H1
s (Ω) into V⊕. Set

V ⊕̃ := {[u] ∈ V⊕ | uk(bk) = ul(al)

whenever bk = al = c and Ωk and Ωl join at c}.

The following result characterizes the spaces H1
s (Ω) and L2

s(Ω):

Proposition 2.4. The following properties hold:

(1) ι⊕(L2
s(Ω)) = H⊕,

(2) ι⊕(H1
s (Ω)) = V ⊕̃.

Next we consider the limit operator A = A0, which, as we know, is generated
by the bilinear form a0 defined in formula (1.6). Let a⊕̃ be the restriction of a⊕
to V ⊕̃ × V ⊕̃ and let A⊕̃ be the self-adjoint operator generated by a⊕̃ in H⊕. If
u ∈ D(A), then, for all v ∈ H1

s (Ω),

〈Au, v〉L2
s(Ω) = a0(u, v) = a⊕̃(ι⊕u, ι⊕v).

On the other hand

〈Au, v〉L2
s(Ω) = 〈ι⊕Au, ι⊕v〉H⊕ .

It follows that

a⊕̃(ι⊕u, ι⊕v) = 〈ι⊕Au, ι⊕v〉H⊕

for all v ∈ H1
s (Ω), so ι⊕u ∈ D(A⊕̃) and A⊕̃ι⊕u = ι⊕Au. Similarly, one can prove

that, whenever [u] ∈ D(A⊕̃), then ι−1
⊕ [u] ∈ D(A), and Aι−1

⊕ [u] = ι−1
⊕ A⊕̃[u].

This means that ι⊕ restricts to an isometry of D(A) onto D(A⊕̃) and that
A = ι−1

⊕ A⊕̃ι⊕.
For k = 1, . . . , r, let us define the spaces

Zk := {u ∈ Vk | (pku′)′ ∈ L1
loc(ak, bk), p

−1/2
k (pku′)′ ∈ L2(ak, bk)}.

Moreover, set Z⊕ := Z1⊕. . .⊕Zr. Then we obtain the following characterization
of the domain D(A⊕̃) of A:

Theorem 2.5. Let A⊕̃ be the self-adjoint operator generated by the bilinear
form a⊕̃. Then D(A⊕̃) = Z⊕̃, where Z⊕̃ is the subspace of Z⊕ consisting of all
[u] = (u1, . . . , uk) satisfying the following properties:

(1) uk(bk) = ul(al) whenever bk = al = c and Ωk and Ωl join at c;
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(2) whenever Γ is a connected component of E (necessarily of the form
Γ = {c} × I, where c ∈ ⋃r

k=1{ak, bk} and I is an interval) then∑
k∈σ+

(pkuk
′)(c) =

∑
k∈σ−

(pkuk
′)(c).

Here, σ+ = σ+(Γ) is the set of all k such that Ωk∩({bk}×R) ⊂ Γ and so
bk = c, while σ− = σ−(Γ) is the set of all k such that Ωk∩({ak}×R) ⊂ Γ
and so ak = c.

Moreover, for [u] ∈ Z⊕̃, A⊕̃[u] = (p−1
1 (p1u

′
r)

′, . . . , p−1
r (pru

′
r)

′).

If Ω is nicely decomposable, then, due to the isometry ι⊕ and in view of
Theorem 2.5, the abstract equation (1.7) is equivalent to the following system of
“concrete” one-dimensional reaction-diffusion equations:

∂tuk = (1/pk)(pkuk
′)′ + f(uk) on ]ak, bk[ for k = 1, . . . , r,

with compatibility conditions

uk(c) = ul(c)

whenever bk = al = c and Ωk and Ωl join at c, and Kirchhoff type balance
conditions ∑

k∈σ+(Γ)

(pkuk
′)(c) =

∑
k∈σ−(Γ)

(pkuk
′)(c)

whenever Γ = {c} × I is a connected component of E.
As it is explained in [12], such a system can be interpreted as a reaction-

diffusion equation on an appropriate finite graph.
Now assume that the nicely decomposed domain Ω satisfies the following

additional hypothesis:

(C) For every k = 1, . . . , r one of the following conditions is satisfied:
(1) there exist two constants αk and βk, 0 < αk ≤ βk, such that αk ≤

pk(x) ≤ βk in ]ak, bk[;
(2) there exists a function qk ∈ C0([ak, bk]) ∩ C2(]ak, bk]), with q(x) > 0,

q′(x) ≥ 0 and q′′(x) ≤ 0 on ]ak, bk], q(ak) = 0 and (1/qk) ∈ L1(ak, bk),
and there exist two constants αk and βk, 0 < αk ≤ βk, such that
αkqk(x) ≤ pk(x) ≤ βkqk(x) in ]ak, bk[;

(3) there exists a function qk ∈ C0([ak, bk]) ∩ C2([ak, bk[), with q(x) > 0,
q′(x) ≤ 0 and q′′(x) ≤ 0 on [ak, bk[, q(bk) = 0 and (1/qk) ∈ L1(ak, bk),
and there exist two constants αk and βk, 0 < αk ≤ βk, such that
αkqk(x) ≤ pk(x) ≤ βkqk(x) in ]ak, bk[.

Remark. The technical condition (C) is general enough to cover all the
classes of nicely decomposable domains discussed in the remarks following Defi-
nition 2.2.
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The following result is proved in [13]:

Theorem 2.6. Let Ω ⊂ R
2 be a nicely decomposed domain and assume

condition (C) is satisfied. Let (λν)ν∈N be the repeated sequence of eigenvalues of
the limit operator A0. Then the gap condition (1.8) is satisfied.

The proof this result is quite technical and is based on comparison arguments
and on the min-max characterization of the eigenvalues of selfadjoint operators.
The reader is referred to [13] for details. As we said before, this result enables
us to construct inertial manifolds for the semiflows πε, for ε ≥ 0 small enough.

3. An example: analytic domains

Let φ: R2 → R be a real analytic function, and assume that φ(x, y) → ∞ as
|(x, y)| → ∞. Assume that 0 is a regular value of φ and consider the sublevel set

Ωφ := {(x, y) ∈ R
2 | φ(x, y) < 0}.

The set Ωφ is open, bounded, and has analytic boundary. Finally, let Ω be any
connected component of Ωφ. In this section we shall prove that such a domain
Ω admits a nice decomposition. We give only the main ideas of the proof and
leave the details to the reader (cf. also Figure 1).

The starting point is the following proposition, which is an easy consequence
of the analyticity of φ and the implicit function theorem.

Proposition 3.1. Let (x0, y0) ∈ R
2 be such that φ(x0, y0) = 0, φy(x0, y0) =

0. Then there exist δ, η > 0 such that (φ(x, y), φy(x, y)) �= (0, 0) for all (x, y) ∈
Iη(x0) × Iδ(y0) with (x, y) �= (x0, y0).

Since Ω is bounded, it follows immediately from Proposition 3.1 that there is
only a finite number of points (x, y) ∈ ∂Ω such that φ(x, y) = 0 and φy(x, y) = 0.
Set

X := {x ∈ R | there exists y ∈ R

with φ(x, y) = 0, φy(x, y) = 0 and (x, y) ∈ ∂Ω}.

Then X is finite, and we can write

X = {x0, . . . , xs} with x0 < . . . < xs.

Let P (Ω) := ]a, b[. It is easy to check that a = x0 and b = xs. The open domain
Ω is therefore contained in the strip ]x0, xs[ × R. Let us define

Z :=
s⋃

i=0

({xi} × R).
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Consider the strips Si := ]xi−1, xi[ × R for i = 1, . . . , s. Then

Ω \ Z ⊂
s⋃

i=1

Si.

Let us fix i = 1, . . . , s and consider Ω∩Si. Let (x, y) ∈ ∂Ω∩Si. Then φ(x, y) = 0
and φy(x, y) �= 0. The implicit function theorem and the analiticity of φ imply
that there exists a unique analytic function f : ]xi−1, xi[ → R such that f(x) = y

and φ(x, f(x)) ≡ 0 on ]xi−1, xi[. Furthermore, the function f can be extended
to a continuous function, again denoted by f , on the closed interval [xi−1, xi].

Now we fix ξi ∈ ]xi−1, xi[ arbitrarily and we set

Yi := {y ∈ R | φ(ξi, y) = 0 and (ξi, y) ∈ ∂Ω}.
At such points we have φy(ξi, y) �= 0, so Yi is finite. Let us write

Yi = {yi,1, . . . , yi,t(i)} with yi,1 < . . . < yi,t(i).

Thus for every j = 1, . . . , t(i) there exists a unique continuous function

fi,j: [xi−1, xi] → R,

which is in fact analytic on ]xi−1, xi[, and satisfies fi,j(ξi) = yi,j and φ(x, fi,j(x))
≡ 0 on [xi−1, xi]. Moreover,

fi,1(x) < . . . < fi,t(i)(x) for all x ∈ ]xi−1, xi[

and {
φy(x, fi,j(x)) < 0 for all x ∈ ]xi−1, xi[ if j is odd,

φy(x, fi,j(x)) > 0 for all x ∈ ]xi−1, xi[ if j is even.

It follows that t(i) is even for every i = 1, . . . , s, and

Ω ∩ Si =
⋃

j∈Di

Ωi,j for i = 1, . . . , s,

where
Di := {1, 3, . . . , t(i) − 1} for i = 1, . . . , s

and
Ωi,j := {(x, y) ∈ Si | fi,j(x) < y < fi,j+1(x)}

for i = 1, . . . , s and j ∈ Di.
The family (Ωi,j)(i,j), where i = 1, . . . , s and j ∈ Di, is a nice decomposition

of the set Ω. The proof of properties (1), (2) and (3) in Definition 2.2 depends
only on the implicit function theorem and does not present particular difficulties.
Property (4) is a little more delicate and requires some estimates for the first
order derivatives of implicitly defined functions. In the same way one can prove
that the domain Ω satisfies condition (C), so the eigenvalues of the operator A0

on Ω satisfy the gap condition (1.8). The details are left to the reader.
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Remarks. (1) Open sets with C∞ boundary need not be nicely decompos-
able. As an example, consider the curve

γ1(t) := (φ(t) sin(1/t), t) for t ∈ [0, 1],

where

φ(t) :=

{
e(−1/t2) for t �= 0,

0 for t = 0.

Moreover, choose a C∞-imbedded curve γ2: [1, 2] → R
2 such that

γ2(1) = (e−1 sin(1), 1), γ2(2) = (e−1 sin(−1),−1)

and such that the curve γ: [−1, 2] → R
2 defined by

γ(t) :=

{
γ1(t) for t ∈ [−1, 1],

γ2(t) for t ∈ [1, 2],

is a C∞-imbedded curve. Then γ is a Jordan curve, and the corresponding
bounded region Ω is an open set with C∞ boundary. Clearly, this domain does
not admit any nice decomposition.

(2) On the other hand, let φ: R2 → R be a C2 function such that φ(x, y) → ∞
as |(x, y)| → ∞. Assume that 0 is a regular value of φ. Let Ωφ := {(x, y) |
φ(x, y) < 0} and let Ω be any connected component of Ωφ. Moreover, sup-
pose that, whenever φ(x0, y0) = 0, φy(x0, y0) = 0 and (x0, y0) ∈ ∂Ω, then
φyy(x0, y0) �= 0. Then Ω is nicely decomposable. The proof is similar as in the
case of analytic domains.

4. Concluding remarks

It is straightforward to generalize some of the preceding results to domains
of dimension higher than two. In fact, assume that Ω is a bounded domain in
R

M+N ∼= R
M × R

N with Lipschitz boundary. Define, for ε > 0, the squeezing
operator

(4.1) Tε: RM × R
N → R

M , (x, y) �→ (x, εy)

and set Ωε := Tε(Ω). We can then consider, as before, the boundary value
problem (1.1). With some obvious notational changes, we can define the oper-
ators Aε, ε > 0, the function spaces H1

s (Ω) and L2
s(Ω) and the limit operator

A0. If the growth exponent β of the function f satisfies appropriate restrictions
then we can also define the semiflows πε, �f , ε > 0, and the limit semiflow π0,�f .
Theorems 1.1 and 1.2 continue to hold in this more general setting (see [12] for
details).

The transformation Tε defined in (4.1) is an example of flat squeezing of the
space R

M+N “toward” an M -dimensional linear subspace. One can consider,
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much more generally, a squeezing transformation of an open subset of R
M+N to-

ward an arbitrary (curved) smooth M -dimensional submanifold S. More specif-
ically, if S is orientable, then there is a system νk: S → R

M+N , k = 1, . . . , N

of linearly independent smooth vectorfields of norm one which are normal to S.
Moreover, there is a (tubular) neighbourhood U of S in R

M+N and smooth maps
φ: U → S and αk: U → R, k = 1, . . . , N , such that φ represents the “normal”
projection of U onto S and αk(z), z ∈ U gives the “distance” between z and
φ(z) in the νk(φ(z))-direction. Note that

z ≡ φ(z) +
N∑

k=1

αk(z)νk(φ(z)), z ∈ U.

We can now define, for ε > 0, the squeezing map Tε: U → R
M+N by

(4.2) Tε(z) := φ(z) + ε

N∑
k=1

αk(z)νk(φ(z)), z ∈ U.

If Ω is a bounded domain in R
M+N with Lipschitz boundary and Ω ⊂ U , then

set
Ωε := Tε(Ω).

Note that formula (4.2) reduces to formula (4.1) in the special case U = R
M+N ∼=

R
M × R

N , S = R
M × {0}, φ(x, y) ≡ (x, 0), νk(x) ≡ eM+k and αk(x, y) ≡ yk,

k = 1, . . . , N . Here, e1, . . . , eM+N is the canonical basis of R
M+N .

The simplest nonflat example is obtained by letting S be the M -dimensional
unit sphere in R

M+1. A squeezing transformation toward S can then be defined
by (4.2) by setting U = R

M+1 \ {0}, φ(z) ≡ z/‖z‖, α1(z) ≡ ‖z‖ − 1, z ∈ U and
ν1(z) ≡ z, z ∈ S. Here ‖ · ‖ is the Euclidean norm in R

M+1.
Again one can consider the boundary value problems (1.1) on Ωε. One can

now translate these problems to an equivalent family of boundary value problems
on the fixed domain Ω. One can define the analogues of the spaces H1

s (Ω) and
L2

s(Ω), the limit operator A0 and one can prove, in this general setting, most
of the results described in this paper. The details are presented in the recent
work [11] of M. Rinaldi and the present authors.

Some applications of the Conley index to thin domain problems are contained
in the recent paper [4] of M. Carbinatto and the second author.
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