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MORSE DECOMPOSITIONS
IN THE ABSENCE OF UNIQUENESS

MARIA C. CARBINATTO — KRZYSZTOF P. RYBAKOWSKI

ABSTRACT. In this paper we define attractors and Morse decompositions in
an abstract framework of curves in a metric space. We establish some basic
properties of these concepts including their stability under perturbations.
This extends results known for flows and semiflows on metric spaces to large
classes of ordinary or partial differential equations with possibly nonunique
solutions of the Cauchy problem. As an application, we first prove a Morse
equation in the context of a Conley index theory which was recently defined
in [10] for problems without uniqueness, and then apply this equation to
give an elementary proof of two multiplicity results for strongly indefinite
elliptic systems previously obtained in [1] using Morse—Floer homology.

1. Introduction

Morse decompositions (see e.g. [3], [14], [13], [5], [6]) are a useful tool in the
analysis of flows or semiflows defined by ordinary, functional and evolutionary
partial differential equations. Combined with an appropriate version of the Con-
ley index and a corresponding Morse equation, they often allow us to obtain
multiplicity results for solutions of variational problems. Through the use of
some more refined topological tools like the Conley connection matrix, Morse
decompositions can also be used to detect connections, i.e. heteroclinic orbits in
dynamical systems.
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However, in many situations of interest, e.g. in various applications to bound-
ary value problems in Hilbert spaces, the resulting differential equation does not
generate a (semi)flow simply because the nonlinearity of the equation is not
regular enough and, as a consequence, the uniqueness property of the Cauchy
problem is violated. In such cases concepts like attractors and Morse decompo-
sitions, as defined in the above mentioned works, are not applicable. Motivated
by such applications, we develop in this paper an abstract theory of attractors
and Morse decompositions, which contains as a special case the theory known
for flows or semiflows but which also applies to various classes of ordinary or
evolution equations with nonunique solutions.

Let us describe the main ideas of our approach. To this end let X be a
metric space and C = C(R — X) be the set of all continuous maps from R to
X endowed with the topology of uniform convergence on compact subsets of R.
Let 7 be a semiflow on X. As usual, we write z7t instead of (¢, ). Recall that
a full solution of m is a map o:R — X such that for all ¢ € [0,00[ and s € R
we have o(s)mt = (s +t). Recall also that a subset S of X is called invariant
relative to mw if for every z € S there is a full solution ¢ of 7 lying in S, i.e.
o(R) C S, and such that o(0) = .

Now let N be an arbitrary subset of X and let 7 be the set of all full solutions
of m lying in N. It then follows that for every S C N, the set S is invariant
relative to 7 if and only if for every « € S there is a ¢ € 7 such that o(R) C S
and ¢(0) = z. In other words, S is invariant relative to = if and only if S is
T-invariant, by which we mean that S = Invz(S), where

Invy(S):={y € X | 3o € T with o(R) C S and y = 0(0)}.

Note that 7 is a subset of C. Moreover, note that once 7 is given we do not need
the semiflow 7 any more in order to define invariance of S C N relative to .

Similarly, if S C N is compact and invariant relative to 7, then in order to
define attractors in S (relative to 7) we only need the given set 7 of solutions.
In fact, rewording the usual definition (see e.g. [13]) we see that A C S is an
attractor in S relative to 7 if and only if A is a 7T-attractor, by which we mean
that there is a neighbourhood Y of A such that A = w7 (Y).

Here, wr(Y) is the set of all y € X for which there exist sequences (0, )nen
in 7 and (ty)nen in [0, 00[ such that ¢,(0) € Y for all n € N, ¢, — oo and
On(tn) — y as n — 0.

We can now proceed abstractly and first take 7 to be an arbitrary subset of C.
We can then define 7-invariant sets and 7-attractors as above. Similarly as in
the semiflow case we can also define the dual 7 -repellers and 7 -attractor-repeller
pairs.
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As we show in Section 2, all the basic properties of attractor-repeller pairs
known for flows or semiflows hold in this abstract situation if we assume that 7 is
translation invariant and compact as a subset of C. Here, translation invariance
means, of course, that whenever o is in 7 then so is every translate o(- + s),
s € R. In particular, if 7 is defined as above in the semiflow case, then 7 is
obviously translation invariant. Moreover, 7 is compact if N is m-admissible in
the sense of [13].

In the semiflow case, one can give two definitions of (totally ordered) Morse
decompositions of S (one in terms of attractor filtrations and the other in terms
of connecting orbits) and prove that these two definitions are equivalent. This
can also be done in the present abstract setting, leading to the concepts of 7-
Morse decompositions of the first and second kind. In Section 3 it is proved that
these two definitions are equivalent provided that 7 C C is compact, translation
invariant and, in addition, cut-and-glue invariant. By cut-and-glue invariance of
7 we mean that whenever o1 and o9 € 7 with 01(0) = 02(0), then o € 7, where
the map o0:R — X is defined by

o) = { o1(t) ift<0,

O'Q(t) if t 2 0.

In Sections 2 and 3 we also define convergence of sequences of subsets of C and
show that, in some sense, 7 -attractor-repeller pairs and 7-Morse decompositions
are stable with respect to perturbations of 7.

Now the concept of a (full) solution makes sense not only for flows or semi-
flows but also for large classes of ordinary differential equations or evolution
equations on a phase space X with merely continuous nonlinearities, which, in
general, do not define a semiflow. Given a subset N of X we can then define 7
to be the set of all full solutions of such an equation lying in N. Then, under
very general hypotheses on the set N and the given equation, the solution set 7°
is compact, translation invariant and cut-and-glue invariant.

A specific application of our abstract results is given in Section 4. Using the
perturbation stability result for 7-Morse decompositions we establish a Morse
equation for the Galerkin-type Conley index theory developed in the recent pa-
per [10] for problems with nonunique solutions.

In Section 5 we finally apply our theory to the strongly indefinite elliptic
system

—Au = 0, H(u,v,z) in Q,
(1.1) —Av =9, H(u,v,z) in Q,
u=0, v=0 in O€).
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on a smooth bounded domain € in RY, considered in the recent important
paper [1] by Angenent and van der Vorst.

Under the growth assumptions on H made in [1] the solutions of (1.1) turn
out to be equilibria of an abstract ordinary differential equation

(1.2) = f(2)

on a Hilbert space X with the nonlinearity f: X — X being merely continuous
but, in general, not differentiable nor even locally Lipschitzian. Therefore, in
general, Equation (1.2) does not generate a semiflow on X.

However, the index theory of [10] and our abstract Morse decomposition
theory are applicable in this situation. In particular, using the Morse equation
from Section 4 we give new, Conley index based proofs of two multiplicity results
for this system established in [1] by the use of Morse-Floer homology.

More applications of the abstract theory presented here will be given in the
forthcoming publications [2] and [11].

In this paper we mostly use standard notation. In particular, by R, Z, N and
Ny we denote the set of all real, all integer, all positive integer and all nonnegative
integer numbers, respectively. Given a topological space X and ¥ C X, we
write Intx (Y), Clx(Y) and 9x(Y) to denote the interior, the closure and the
boundary of Y in X, respectively. Given topological spaces X1 and X5 we denote
by C(X;1 — X5) the set of all continuous maps from X; to Xo. Finally, for a

and b € Z, we write [a,b] := [a,b] N Z. This less common notation is used here
to replace the somewhat imprecise three dot ... symbol. In particular, we will
write [1,n] instead of {1,...,n} and z;, ¢ € [1,n], instead of x1, ..., .

2. T-invariance and attractor-repeller pairs

Throughout this paper, unless otherwise specified, let (X,d) be a metric
space.

Let C = C(R — X) be the set of all continuous maps from R to X. We
endow C with the metric

d(z,y) =Y 2 "dn(w,y)/(dn(z,y) + 1),
neN

where

dn(z,y) = ?up ]d(x(t),y(t)), z,y€C.
te|—n,n

Note that d is indeed a metric on C inducing the topology of uniform convergence
on compact sets in R.

Let 7 be an arbitrary subset of C. To aid intuition, the reader may think
of X as a Hilbert or Banach space and 7 as a specified set of (full) solutions
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of a given ordinary differential equation or an evolution equation defined on (an
open subset of) X.

In this section we define the concepts of invariance, attractors and repellers
relative to this set 7 of “solutions”. We will study some properties of these
concepts under the assumption that 7 is compact in C and translation invari-
ant. In particular, we will establish extensions of some fundamental results on
attractor-repeller pairs known for flows or semiflows to the present more general
case (cf. Theorem 2.11). In addition, we define perturbations of the solution
sets 7 and show that attractor-repeller pairs have some stability properties with
respect to such perturbations (see Theorem 2.19).

We first need a number of preliminary definitions. Let 6:R — X be an
arbitrary function. The function 0 7:R — X, s — o(—s), is called the time
inverse of o. Moreover, for every ¢ € R the function tsl;o: R — X, s — o(s+1),
is called the t-translate of o. Furthermore, let w(o) be the set of all y € X for
which there exists a sequence (t,)nen in [0, 00 with ¢, — oo and o(t,) — y as
n — oo0. Set (o) =w(o™). Given Y C X, PCR, y € X and t € R we now
define the following sets:

(2.1) Sr=J o),
oeT

(22) TY,P)={yeX| Joe€T3Ite P witho(0) €Y and y =o(t)},
(2:3) T(y,P) =T({y}, P),
(2.4) T(Y,t) = T(Y,{t}),
(2.5) T ={0"|oeT},
(2.6) wr(Y)= [ Clx(T(Y.[t, o)),

te[0,00[
(2.7 Yi={ye X|JoeT withw(ec) CX\Y and y =0c(0)},
(2.8) Invy(Y)={ye X |3oeT witho(R) CY and y = c(0)}.

A set S C X is called T -invariant if S = Inv7(S), i.e. if and only if for every
y € S there is a ¢ € T such that o(R) C S and y = ¢(0).

A point © € X is called a T -equilibrium if there is a o € 7 such that o(t) =«
for all t € R.

T is called translation invariant if tsl;o € 7 for all 0 € 7 and all t € R.

T is called gradient-like with respect to ¢ if ¢v:S7 — R is a continuous
function such that for every o € 7 the function ¢ o 0:R — R is nonincreasing
and if ¢ o o is constant, then 0: R — X is constant.

T is called gradient-like if there exists a function ¢ such that 7 is gradient-
like with respect to (.
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A set A C X is called a T -attractor if there is a set Y C X such that
ACIntx(Y) and A=wr(Y). Ais called a T -repeller if A is a T~ -attractor.

In the next propositions we will establish a few elementary properties of the
sets and concepts just introduced.

ProproOSITION 2.1. For all Y C X and y € X the following conditions are
equivalent:

(2.9) yewr(Y).

(2.10) There exist sequences (0n)neny i T and (tn)nen in [0,00[ such that
on(0) €Y foralln €N, t, — 0o and o, (t,) — y as n — co.

PROOF. Suppose y € wr(Y). Then by (2.6) for every n € N there is a
yn € T(Y,[n,o0[) such that d(y,y,) < 1/n. Hence there is a o, € 7 and a
t, > n with 0,(0) € Y and y,, = 0, (t,). Thus (2.10) is satisfied.

Now assume (2.10) and let (op,)nen and (tp)nen be as in (2.10). Let ¢ €
[0, 00[ be arbitrary. Then t, > t for some ny € N and all n > ng. It follows
that o,(t,) € T(Y,[t,00[) for all n > ng and so y € Clx7 (Y, [t,00[). This
proves (2.9). O

Let o € C be arbitrary. For 7 := {o} and Y := X we see that 7 (Y, [t,o0[) =
o([t,o0]) for all t € R and so, using Proposition 2.1, we obtain

(2.11) w(o) = ﬂ Clx (o ([t, o0l)).
te[0,00[

ProrosITION 2.2. If T is compact and translation invariant, then St is
compact and T -invariant. Moreover, for every o € T the sets a(o) and w(co) are
nonempty, compact, connected and T -invariant. In addition, if T is gradient-
like, then a(o) and w(o) consist only of T -equilibria. Finally, if T is gradient-
like with respect to a function ¢ and o € T is not a constant map, then for all
x€alo) and y € w(o)

o) = sup (o (1)) > inf e(o (1)) = w(y)
teR €

s0, in particular, a(o) Nw(o) = 0.

PROOF. Let (z,)nen be any sequence in Sr. Then there are sequences
(0n)neny in 7 and (t,)nen in R such that o,(t,) = z, for every n € N. Let
Tn = tsly, 0,. Since 7 is translation invariant, it follows that 7,, € 7 for all
n € N. Since 7 is compact, we may assume, taking a subsequence if necessary,
that there is a 7 € 7 such that 7,, — 7 in C as n — oco. Setting z = 7(0) we
see that x, = oy, (tn) = 7,(0) — 7(0) = = as n — oo. This proves compactness
of S7. Now let x € St be arbitrary. Then there is a ¢ € 7 and a t € R with
o(t) = z. Setting 7 = tsl;o we have that 7 € 7 and 7(0) = z. This proves that
ST is T-invariant.
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Now let ¢ € 7 be arbitrary and set 7, := tsl,o, n € N. Then by the
compactness and translation invariance of 7 we have that 7, € 7 for all n € N
and there is a subsequence (7,,,, )men Of (T )nen converging in C to some 7 € 7.
In particular, o(nm,) = 7,,,(0) — x := 7(0) as m — oo, so z € w(o) and thus
w(o) is nonempty.

To prove that w(o) is compact and connected, note that, by (2.11), the
set w(co) is the intersection of the family Cly (o ([t,o0[)), t € [0, 0], of closed
subsets of Sz which is directed by the relation D. Since S7 is compact and
o is continuous it follows that Clx(o([t,o0[)) is compact and connected for all
t € [0,00[. Now general topological results (e.g. Theorem 6.1.18 in [4]) imply
that w(o) is compact and connected.

Now let y € w(o) be arbitrary. Then there is a sequence (t,)nen such that
t, — oo and o(t,) — yasn — co. Set 7, = tsly, o, n € N. Taking a subsequence,
if necessary, we may assume that 7, — 7 as n — oo, for some 7 € 7. It follows
that for every ¢t € R we have ¢, +t — oo and o (¢, +t) = 7,(t) — 7(t) asn € N,
so 7(t) € w(o). Thus 7(R) C w(o) and y = 7(0), which shows that w(o) is
T-invariant. Now suppose, in addition, that ¢: S — R and 7 is gradient-like
with respect to ¢. Since ¢ is continuous and ¢ o ¢ is nonincreasing, we obtain
that

o(7(t)) = sup(p(o(s))), teR.
seR
It follows that ¢ o 7 is constant, so 7 is constant, i.e. y is a 7-equilibrium.

The analogous statements concerning «(c) follow from the fact that the map
C — C, 0+~ o~ ,is continuous so 7 ~ is compact and translation invariant. Since
o~ € T~ we thus obtain, from what we have proved so far, that a(o) = w(c™) is
nonempty, compact, connected and 7 -invariant. Moreover, if 7 is gradient-like
with respect to ¢ then 7~ is gradient-like with respect to —p and so a(o) =
w(o ™) consists only of 7~ -equilibria, i.e. only of 7T-equilibria.

The last statement of the proposition is obvious. O

PROPOSITION 2.3. If T is translation invariant and Y C X, then Invz(Y)
is T-invariant and Invz(Y) is the largest T -invariant set included in'Y .

PrOOF. Let 2 € Invy(Y) be arbitrary. Then, by (2.8), there isa 0 € T
with # = 0(0) and o(R) C Y. Let s € R be arbitrary and 7 = tsl;o. Then, by
our hypothesis, 7 € 7 and 7(R) = o(R) C Y. Thus o(s) = 7(0) € Invr(Y), so
Inv7(Y) is 7-invariant.

Now let S C Y be 7-invariant. Then, for every x € S, there is a 0 € 7 such
that x = 0(0) and o(R) C S C Y. It follows that « € Invz(Y"). This proves that
S CInvy(Y) so Invy(Y) is the largest 7-invariant set included in Y. O
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PROPOSITION 2.4. If T is translation invariant andY C X, then Invz(Y) C
wT(Y).

PRrOOF. Let y € Invy(Y) be arbitrary. Then there is a ¢ € 7 such that
o(R) CY and ¢(0) = y. For n € Nlet 7, = tsl_,0. Then 7, € T, 7,(0) =
o(—n) € Y and 7,(n) = y. Proposition 2.1 implies that y € wr(Y). O

COROLLARY 2.5. wr (@) = 0. Moreover, if T is compact and translation
invariant, then wr(X) = St.

PROOF. It is clear that wz (@) = 0. Assume that 7 is compact and transla-
tion invariant. Then S7 C X and so by Propositions 2.2, 2.3 and 2.4 we obtain
that

St C IHVT(X) C wT(X).

On the other hand, let y € ws(X) be arbitrary. Then there is a sequence
(0n)nen in 7 and a sequence (t)nen such that t, — oo and o, (t,) — y. Let
Tp :=tsly, 0, for alln € N. Then 7,, € 7 for all n € N and, taking a subsequence,
if necessary, we may assume that 7,, — 7 in C for some 7 € 7. It follows that
T(R) C St so y = 7(0) € S7. Consequently, wr(X) C St and the corollary is
proved. O

PROPOSITION 2.6. If T is compact and translation invariant, then for every
Y C X the set wr(Y) is compact and T -invariant.

PROOF. Let Y C X and y € wr(Y) be arbitrary. Let (oy,)nen and (£, )nen
be as in (2.10). By the compactness of 7 we may assume that there isa 7€ 7
such that 7, := tsl;, 0, — 7 in C as n — oo. It follows that for every t € R
we have o,(t, +t) = 7,(t) — 7(t) and ¢, +t — oo as n — oo. Moreover,
on(0) € Y for all n € N. By Proposition 2.1 we now obtain that 7(¢t) € wz(Y)
for all ¢t € R. This proves that wy(Y') is 7-invariant and so wz(Y) C S7. Since
St is compact by Proposition 2.2 and w7 (Y") is closed by (2.6), it follows that
wr(Y) is compact. O

ProrosITION 2.7. If T is compact and translation invariant and if Y C
Y'CX andwr(Y') CY then wr(Y) =wr(Y’).

PROOF. Since Y C Y’ we have wr(Y) C wr(Y’), by (2.6). By Proposi-
tion 2.6 wr (Y') C Inv7(Y') and by Proposition 2.4 Invy(Y) C wr(Y). O

The following result gives a useful characterization of 7-attractors:

THEOREM 2.8. Let T be compact and translation invariant and Y C X be
closed. Then, for every A C X, the following conditions are equivalent:

(2.12) A=wr(Y) CIntx(Y),
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(2.13) A=Invy(Y) and there is a t € |0, 00[ such that T(Y,t) C Intx (V).

PROOF. Assume (2.12) and suppose that there is no ¢ € ]0,00[ such that
T(Y,t) C Intx(Y). Then there are sequences (¢, )nen in ]0, 0o and (¥, )nen such
that ¢, — coasn — oo and y,, € T(Y,t,)\Intx (V) for all n € N. Thus, for every
n € N, there is a 0, € T with 0,(0) € Y and y,, = 0,,(t,,). By the compactness
of 7 we may assume that there is a 7 € 7 such that 7, :=tsl;, 0, — 7 in C as
n — oo. It follows that y, = 0, (t,) — 7(0) asn — oo so 7(0) € wr(Y)\Intx (Y),
a contradiction.

By Proposition 2.6 the set A = w7 (Y) is T-invariant, so by (2.12) and
Proposition 2.3 we have that A C Invz(Y). On the other hand, Invy(Y) C
w7 (Y) by Proposition 2.4. This proves (2.13).

Now assume (2.13). First we claim that

(2.14) there is an e € |0, 00| such that 7(Y, [t —e,t +¢]) C Intx (V).

In fact, if the claim is not true, then we obtain a sequence (t,)nen in R with
t, — tas n — oo and a sequence (op)neny in 7 with 0,(0) € Y and o,(ty,) ¢
Intx (Y) for every n € N. We may assume that o, — o as n — oo for some
o € T. Thus o,(t,) — o(t) as n — o0, so o(t) ¢ Intx(Y) and 0,(0) — o(0)
asn — 00, 50 0(0) € Y as Y is closed. Thus o(t) € 7(Y,t) \ Intx(Y") which
contradicts our assumption. This proves (2.14).

We also claim that
(2.15) the set T (Y, [t — &,t + €]) is compact.
In fact, if (z,,)nen is a sequence in 7 (Y, [t — &,t + £]) then for every n € N there
isao, €T and t, € [t—e¢,t+¢] such that o,(t,) = z,. We may assume,
taking a subsequence if necessary, that o,, — ¢ and t,, — tg as n — oo, for some
o € T and some ty € [t —¢,t +¢]. It follows that x,, — x¢ := o(to). This proves
compactness of T (Y, [t —e,t +€]).

By (2.14) and (2.15) we see that there is an open set U such that

(2.16) T, [t—¢e,t+¢]) CU CClx(U) CIntx(Y) CY.

It casily follows that whenever o € T satisfies 0(0) € Y then o(nr) € U for all
neNandrelt—e,t+el

Now let s € [t?/e, 00[ be arbitrary. Proposition 2.9 below implies that there
isann € Nand anr € |t — ¢, ¢ such that s = nr. Thus, whenever o € 7 satisfies
o(0) € Y we obtain o(s) = o(nr) € U. It follows that 7 (Y, [t?/e,00[) C U which
implies that

(2.17) wr(Y) € Clx(T(Y,[t?/e,0[)) C Clx(U) C Intx (Y).
In particular, by (2.17) and Propositions 2.4 and 2.6 we have

A=Invy(Y) Cwr(Y) C Invy(Y)
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o
(2.18) A=wr(Y).
(2.17) and (2.18) imply that (2.12) holds and the proof is complete. O

PROPOSITION 2.9. For all e and t € ]0,00[ and all s € [t*/e, o[ there is an
n €N and an r € |t —¢,t[ such that s = nr.

PROOF. Given ¢, t € ]0,00[ and s € [t? /e, 00 there is an n € N such that
(n—1)t <s<mnt.

It follows that t?/e < s < nt so t/e < n i.e. t < en. Moreover, r := s/n < t.
Since (n — 1)t < s we also have nt < t+s < en+ s so n(t —e) < s, ie.
r=s/n>t—e. O

Let A C X be a T-attractor and let Y C X be such that A C Intx(Y") and

A = wr(Y). If T is compact and translation invariant then A is compact by
Proposition 2.6 and so we may choose an open set U such that

ACUCClx(U) € Intx(Y).

Proposition 2.7 implies that A = w7 (Clx (U)) and so we can always assume that
Y is closed. We will use this remark implicitly in the sequel.

PROPOSITION 2.10. Suppose that T is compact and translation invariant.
Let Y C X be arbitrary with A := wr(Y) C Intx(Y). Then, for every o € T,
the following statements are equivalent:

wo)NA#DeoR)NntxY 20 < oc(R)NY #0 < w(o) C A.

PROOF. Suppose w(o) N A # 0. Since A C Intx(Y), the definition of w(o)
implies that o(R)NIntxY # (. Now assume that ¢(R)NY # (. Then w(s) C A
by the definition of w(o) and the translation invariance of 7. Since w(o) # 0
by the compactness and translation invariance of 7, we conclude that w(c) C A
implies that w(o) N A # 0. O

The following result defines 7 -attractor-repeller pairs and establishes their
main properties:

THEOREM 2.11. Let T be compact and translation invariant and let A be a
T -attractor. Then the set A* := A% is a T-repeller. The sets A and A* are
compact, disjoint and T -invariant. Moreover, for every o € T, the following
alternatives hold:
(2.19) if o(R) ¢ A* then w(o) C A,
(2.20) if o(R) ¢ A then a(o) C A*.
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In particular, either o(R) C A, or o(R) C A* or else a(o0) C A* and w(o) C A.
Finally, A = (A%)%_.

We call the set A% the dual T -repeller of A and the pair (A, A*) a 7-
attractor-repeller pair.

PrOOF. Let y € A* be arbitrary. It follows from the definition of A* that
there is a o € 7 such that ¢(0) =y and w(o) N A = 0. For every ¢ € R we have
ot :=tslyo € T and w(o) = w(o) so w(or) N A = 0. Hence o(t) = 04(0) € A*,
so o(R) C A*. Tt follows that A* is T-invariant.

There is a closed set Y C X such that A = wr(Y) C Intx(Y). It follows
from Proposition 2.10 that

(2.21)  whenever ¢ € 7 then w(c)NA=0 < o(R) CY* := X \ Intx(Y).

(2.21) and the compactness of 7 easily imply that A* is compact.

We now show that A* = Invy-(Y™*). In fact, obviously Invy-(Y*) =
Invy(Y™*). Since A* is T-invariant and A* C Y™ by (2.21), we obtain A* C
Invy(Y*). If y € Invy(Y™*) then there is a 0 € 7 with ¢(0) = y and o(R) C Y*.
Thus from (2.21) we conclude that y € A*.

We finally claim that there is a t € [0,00[ with 7-(Y*,t) C X \Y C
Intx (Y*). Suppose this claim is not true. Then, since 7(Y*,t) = 7 (Y™*, —t),
we obtain the existence of a sequence (t,)nen in |0, co] with ¢, — oo as n — oo,
and a sequence (0,)nen in 7 such that 0,(0) € Y* and o,(—t,) € Y for all
n € N. Taking a subsequence if necessary we may assume that ¢, — o in C.
Let 7, = tsl_4, 0, n € N. Then 7,(0) = o,(—t,) € Y for all n € N and
Tn(tn) = 0, (0) — o(0). Since Y™ is closed, we see that

c0) eY ' Nwr(Y)=Y*NA=0,

a contradiction, which proves the claim. Altogether, we obtain from Theorem 2.8
that

(2.22) A" = wr- (V") C Intx (V™)

so A* is a 7 ~-attractor, i.e. a 7-repeller. It also follows that AN A* = (.

Now let o € T be arbitrary. If o(R) ¢ A = Inv7(Y') then there is a t € R
with o(t) ¢ Y, so o(t) € Y*. This implies that a(c) C wr-(Y*) = A*.

On the other hand, if o(R) ¢ A* = Invy(Y™*) then there is a t € R with
o(t) ¢ Y* ie. o(t) € Intx(Y). This implies that w(o) C A.

Finally, y € (A%)%_ if and only if there is a 7 € T~ with 7(0) = y and
w(r) N A% = 0 if and only if there is a 0 € 7 with ¢(0) = y and a(o) N A% = 0.
Here, 0 = 7~. Now, by what we have proved so far, a(o) N A% = if and only
if o(R) C A. This clearly implies that (A%)%_ = A. The theorem is proved. [

Theorem 2.11 clearly implies the following corollary:
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COROLLARY 2.12. Let 7 be compact and translation invariant. A pair
(A1, A2) of subsets of X is a T -attractor-repeller pair if and only if the pair
(Az, A1) is a T~ -altractor-repeller pair.

We will now discuss perturbations of attractor-repeller pairs with respect to
the set 7 C C. To this end we need the following convergence concept on the set
of all subsets of C.

DEFINITION 2.13. Let (7x)xen be a sequence of subsets of C and 7 C C
be arbitrary. We say that (7,;).en converges to T, and we write 7,, — 7 (as
Kk — 00), if for every sequence (kp)neny in N with k, — 0o as n — oo and
every sequence (o, )nen such that o,, € 7, for all n € N there is a subsequence
(0n,,)men and a o € T such that o,,,, — o in C as m — oo.

The next propositions contain some elementary consequences of the above
definition.

PROPOSITION 2.14. Suppose N is closed in X, T, — T and Invy(N) C
Intx (N). Assume also that each T, is translation invariant. Then there is a
ko € N such that Invy, (N) C Intx (N) for all k > ko.

PRrROOF. If the proposition is not true then, by Definition 2.13 and the trans-
lation invariance of 7y, there is a sequence (kp)nen With k, — 00 as n — oo,
a sequence (o, )nen such that o, € 7, for all n € N and a 0 € 7 such that
on — 0 asn — 00, 0,(R) C N and 0,(0) € dx (V) for every n € N. Since N is
closed it follows that o(R) C N and 0(0) € dx(V), a contradiction. O

PROPOSITION 2.15. Suppose N is closed and U is open in X, T,, — T and
Invy(N) C Invy(U). Assume also that each T is translation invariant. Then
there is a ko € N such that Invy (N) C Invy_ (U) for all k > ko.

PRrROOF. If the proposition is not true, then, by Definition 2.13 and the trans-
lation invariance of 7y, there is a sequence (kp)nen With k, — 00 as n — oo,
a sequence (0, )nen such that o, € 7, for all n € N and a 0 € 7 such that
on — 0 asn — 00, 0,(R) C N and 0,(0) € X \ U for every n € N. We thus
obtain that o(0) € X \ U. However, since N is closed it follows that o(R) C N
and so 0(0) € Invy(N) C Invy(U) C U, a contradiction. O

PROPOSITION 2.16. Suppose N is closed in X, N' C X is arbitrary, T, — T
and Invy (N) C Invy(N') C Intx (N'). Assume also that each T,; is translation
invariant. Then there is a ko € N such that Invy (N) C Invy (N') for all
K 2 RQ-

PROOF. Let U :=Intx(N'). Since Invy(N’) C U we obtain that Invy(U) =
Invz(N') so the proposition follows from Proposition 2.15. O
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PROPOSITION 2.17. Suppose N and N’ are closed in X, T,, — T,
Invy(N) C Intx(N), Invy(N') C Intx (N') and Invy(N) = Invy (N').

Assume also that each T, is translation invariant.
Then there is a kg € N such that Invy (N) = Invy (N') for all k > ko.

ProoF. This is an immediate consequence of Proposition 2.16. g

PROPOSITION 2.18. Suppose N is closed in X, T, — T, t € |0,00] and
T(N,t) C Intx(N). Then there is a ko € N such that T,(N,t) C Intx(N) for
all kK > Kg.

PRrROOF. If the proposition is not true then, by Definition 2.13, there is a
sequence (Kp)pnen With K, — 0o as n — oo, a sequence (0,)nen such that
on € T, for all n € N and a o € 7 such that 0,, — 0 as n — o0, 0,(0) € N
and o, (t) € Intx (N) for every n € N. Since N is closed it follows that o(0) € N
and o(t) € Intx (IV), a contradiction. O

We can now state a basic perturbation stability result for attractor-repeller

pairs:

THEOREM 2.19. Let (7;)xen be a sequence of compact and translation in-
variant subsets of C and T C C be compact and translation invariant. Suppose
T. — T and let (A, A*) be a T -attractor-repeller pair. Let V (resp. V*) be
closed in X and such that A = Invy (V) C Intx (V) (resp. A* = Invy—(V*) C
Intx (V*)). Then there is a kg € N such that (Invy, (V),Invy, (V*)) is a T-
attractor-repeller pair for all k > K.

PROOF. Let N and N* be closed and such that A = wz(N) C Intx(N)
and A* = wr-(N*) C Intx(N*). Since A and A* are disjoint and closed
by Theorem 2.11 we may use Proposition 2.7 and choose N and N* smaller,
if necessary, to ensure that N and N* are disjoint. For x € N set A, =
Invy (N) and A, = Invz (N*). By Theorem 2.8 there is a to € ]0, 00| such
that 7 (N, tg) C Intx(N). Consequently, by Proposition 2.18 there is a kg € N
such that 7,(N,tg) C Intx (V) for all K > k9. Thus Theorem 2.8 implies that

(2.23) A, =wr, (N) C Intx(N), K > Ko,

so A, is a Ty-attractor for all K > ro. Set Ay = A% . If K > ko and x € g,i
then there is a ¢ € 7,, with 0(0) = 2 and ¢(R) C N*. Since N* is closed, we
conclude that w(c) C N* C X\ N, sow(c)NA, = 0. Hence z € A% which proves
that A, C A%. Now suppose that A% ¢ A, for infinitely many x € N. Then
there are sequences (ky)neny With K, — 00 as n — oo and (x,)nen such that
T, € A \g,% for all n € N. Thus there is a sequence (o, )nen With o, € 7,
Ty = 0,(0) and w(o,) N A, = 0 for all n € N. Proposition 2.10 and (2.23)
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imply that 0,(R) N N = () for all n € N large enough. On the other hand, for
every n € N we have 0,(R) ¢ N* since otherwise z,, € Invy, (N*) = Ao, a
contradiction. It follows that for every n € N there is a ¢, € R with o,,(¢,,) &€ N*.
Let 7, = tsl;, 0, n € N. Taking subsequences if necessary we may assume that
there is a 7 € 7 such that 7, — 7 in C. It follows that 7(0) ¢ Intx(N*).
By Theorem 2.11 this implies that w(r) C A so 7(t) € Intx(N) for some ¢ €
R. But 7,(R) = 0,(R) € X\ N for all n € N so 7(R) € X \ Intx(N), a
contradiction. This proves that A} C gﬁ so A¥ = gﬁ for all x large enough.
Thus, for all such k, the pair (AH,KH) is a 7.-attractor-repeller pair. Now,
since A = Invz (V) C Intx (V) and A = Invy(N) C Intx (), Proposition 2.17
implies that Invy, (V) = Invy, (N) = A, for all k € N large enough. Similarly,
Inv,— (V") = Inv,- (N*) = A, for all k € N large enough. This completes the
proof. O

3. 7-Morse decompositions

In this section we again assume that we have a fixed subset 7 of C. We will
define attractor filtrations relative to 7 (Definitions 3.1) and we will present two
definitions of a Morse decomposition relative to 7 (Definitions 3.2 and 3.3). If 7
is compact, translation invariant and satisfies a so-called cut-and-glue invariance
property, then, as we will show in Theorems 3.8 and 3.10 these two definitions are
equivalent. Finally, we establish perturbation stability properties for attractor
filtrations and Morse decompositions (Theorems 3.14 and 3.15).

We begin with the following definitions.

DEFINITION 3.1. A T -attractor filtration (of length m) is a sequence (A,)™
of T-attractors such that Ay =0, A,, = Sz and A, C A,1; for r € [0,m — 1].

If (A,)I, is a T-attractor filtration then the sequence ((A,)%)I is called
the dual T -repeller filtration of (A,)7,.

DEFINITION 3.2. A finite sequence (M,)", is called a 7-Morse decomp-
osition of the first kind if there is a T-attractor filtration (A,), such that
M, = A, N (Ar—1)% for r € [1,m].

DEFINITION 3.3. A finite sequence (M,)", is called a 7-Morse decomp-
osition of the second kind if the following properties hold:
(3.1)  The sets M, r € [1,m], are closed, T-invariant and pairwise disjoint.
(3.2)  For every o € T either o(R) C My, for some k € [1,m] or else there are
k,l € [1,m] with k <, a(0) C M; and w(o) C M.
The following simple result is important for applications:

PROPOSITION 3.4. Let T be compact, translation invariant and gradient-like
with respect to a function ¢: ST — R. Suppose that the set £ of T -equilibria has
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m elements for some m € N. Put all the elements of € in a sequence (x,)1,
with p(x,) < @(xr41) for all v € [I,m—1]. Then ({x,.}), is a T-Morse
decomposition of the second kind.

Proor. Clearly the sets {z,}, r € [1,m], are closed and pairwise disjoint.
Moreover, the definition of 7-equilibria implies that for every r € [1,m] the set
{z,} is T-invariant.

Let o € T be arbitrary. Either o is a constant map so o(t) = z; for some
i € [1,m] and all ¢ € R, or else o is not constant and so, by Proposition 2.2
the sets a(o) and w(o) are connected and contain only 7-equilibria. Moreover,
o(x) > ¢(y) for € a(o) and y € w(o). It follows that a(c) = {x;} and
w(o) = {xy} for some k and [ € [1,m] with k& <. O

We have the following simple result.

PROPOSITION 3.5. Let T be compact and translation invariant and (M),
be a T-Morse decomposition of the second kind. Moreover, let ki, ko € [1,m],
k1 < ko ando € T be arbitrary with a(o) C My, andw(o) C My,. Thenk; = ks
and o(R) C My, = M,.

PrOOF. Since 7 is compact and translation invariant, it follows that both
w(o) and a(o) are nonempty. By Definition 3.3 two possible cases can occur:

Case 1. There is a k € [1,m] with o(R) C M.

Since M}, is closed we obtain

0+ alc) C MyN M, and 0 # w(oc)C MgN My,.

Since the sets M,., r € [1,m], are pairwise disjoint, we obtain k = k; = ko and
so the conclusion follows in this case.
Case 2. There are k, l € [1,m] with k <, a(c) C M, and w(c) C M.
However, this implies

@#a(U)CMlﬂMkl and @#W(U)CMkﬁMkz,
so k1 =1 >k = ko > k1, a contradiction. O
We now introduce the following basic concept:

DEFINITION 3.6. Given o1 and o3 € C with 01(0) = 02(0) the map

{Uﬂﬂ if t <0,

oo R— X, (01>02)(t) :=
Lo (o1202)(F) oo(t) it >0,
is called the cut-and-glue of (01, 02).

Intuitively, we cut ox, k = 1, 2, into the “left” and “right” parts and glue
the left part of o1 to the right part of os.
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A subset 7 of C is called cut-and-glue invariant if for all o1, oo € 7 with
01(0) = 02(0) it follows that o1 >o9 € 7.

PROPOSITION 3.7. Suppose that T is translation and cut-and-glue invariant,
s € R is arbitrary and o1, 0o € T are arbitrary such that o1(s) = o2(s). Then

01> 09 €T, where

O'l(t) ’Lft < S,
o102 R — X, (0105 02)(t) ==
oa(t) ift>s.
PROOF. Set 7, = tslyox, k =1, 2. Then 7, € 7 for k = 1, 2 and 71(0) =
72(0), 80 T:=T1>75 € T. Hence o :=tsl_,7 € 7. Now

T1I(=s+t)=01(t) if —s+t<0,
To(—s+1t) =0q(t) if —s+t>0.

ot)=1(—s+1t)= {

Hence 0 = 01 >, 0. O
We can now state the following theorem.

THEOREM 3.8. Suppose T is compact, translation and cut-and-glue invari-
ant. Moreover, let (M), be a T-Morse-decomposition of the first kind. Then
(M), is a T-Morse-decomposition of the second kind.

PRrROOF. Let (A,), be a T-attractor filtration with M, = A, N (A,_1)%
for r € [1,m]. Since A, and (A,_1)% are closed it follows that M, is closed, for
all 7 € [1,m]. Let » € [1,m] and & € M, be arbitrary. Since A, is 7-invariant,
there is a 01 € 7 such that 01(0) = = and o1(R) C A,. By the definition of
(Ar—1)%, there is a o9 € 7 such that 02(0) = = and w(oz) C X \ A,_1. Let
o :=o01>03 Then o € 7. Let t € R be arbitrary and o; := tsl;o. Then
or € T, a(oy) = a(o) = a(o1) C A, and w(oy) = w(o) = w(oz) C X\ A1
so o(t) = 04(0) € A, N (A,_1)%. Since ¢t € R is arbitrary, we conclude that
oR) C A, N (A._1)%. Since z € M, is arbitrary, this implies that M, is 7-
invariant.

Now let k and [ € [1,m] be arbitrary with k # [. We may assume that k < [.
Hence k <1 —1so0 (Aj—1)% C (Ar)% so

MM =A, N (A1)  NA N (A21)7 C AN (AR = 0.

This concludes the proof of property (3.1).

Now let 0 € T be arbitrary. Since w(o) C St = Ay, and a(o) C St = (Ao)%
it follows that there is a smallest k € [0, m] and a largest [ € [0,m] such that
w(o) C Ay and a(o) C (A;)%. Since St is compact by Proposition 2.2, it follows
that w(o) and (o) are both nonempty so, in particular, k # 0 and [ # m (as



MORSE DECOMPOSITIONS IN THE ABSENCE OF UNIQUENESS 221

Ag =0 = (An)%). We thus have w(o) ¢ Ax_1 and a(o) ¢ (Aj41)% which, by
Theorem 2.11, implies that o(R) C (Ax_1)% and o(R) C A;4;. Thus

(33) U(R) C AN (Ak_l)f;r
If I + 1 = k then (3.3) implies that
(3.4) o(R) C M.

Suppose that [ +1 # k. We claim that k < [+ 1. In fact, otherwise [ + 1 < k so
I+1<k—1s0(3.3) shows that

O'(R) C Al+1 N (Akfl)j;— CA_1N (Ak71)f§- = (Z),

a contradiction, which proves the claim. Using (3.3) and the definition of k£ and
l we also have

w(a) C AN (A}Cfl):;— = M,
(36) Oé(O') C AN (Al)f;r =M4.
The above claim together with (3.4), (3.5) and (3.6) implies property (3.2). O

The next result shows that a 7-Morse decomposition of the first kind unique-
ly determines its 7 -attractor filtration.

PRrROPOSITION 3.9. Suppose T is compact, translation and cut-and-glue in-
variant. Let (A,)7Ly be a T -attractor filtration and set M, = A, N (A,_1)% for
r € [1,m].

Then, for every k € [0,m],

(3.7) Ay = {x

k
Jdo € T with 0(0) =z and a(o) C U MT}.
r=1

PROOF. Note that, if k = 0 then [ J_, M, = () so the right hand side of (3.7)
is the empty set. Since Ay = @), Formula (3.7) holds in this case.

Let k € [1,m] and = € Ay be arbitrary. Since Ay is 7T-invariant by Theo-
rem 2.11, thereis a 0 € 7 with 0(0) = x and o(R) C Ay. Thus there is a smallest
i € [1,k] with o(R) C A;. Hence o(R) ¢ A;_1 so a(o) C A; N (Ai—1)y = M.
It follows that a(o) C Ule M,. Conversely, if = is such that there is a 0 € T
with ¢(0) = z and a(o) C Ule M., then, for some i € [1,k], a(o) C M; =
A;N(Ai—1)%, so a(o) C A; C Ay and so, by Theorem 2.11, o(R) C Aj. Hence
T € Ag. O

Proposition 3.9 suggests the following converse of Theorem 3.8:
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THEOREM 3.10. Suppose T is compact, translation and cut-and-glue invari-
ant. Moreover, let (M), be a T -Morse-decomposition of the second kind. For
k € [0,m] define the sets

(3.8) Ay = {x

k
Jo € T with 0(0) =z and a(o) C U M, }
r=1

Then (Ar)jv, is a T -attractor filtration and My, = AN (Ak—1)% for k € [1,m].

m
r=1

In particular, (M,) is a T -Morse-decomposition of the first kind.

PROOF. Note that, by (3.8) and the translation invariance of 7, the set Ay
is T-invariant for every k € [0, m]. We first claim that for k, I € [1,m],

(3.9) M, C Ajifk<land M, C X\ A if k> L.

In fact, suppose first that & < [ and let x € M}, be arbitrary. Since My, is 7-
invariant, there is a ¢ € 7 with ¢(0) = # and o(R) C Mj. Since My, is closed
and k <1 we see that a(c) C M}, C Ulr:1 M; and so x € A;, as claimed.

Now assume that k > [ and suppose that there is an z € My N A;. Using
the definition of A; and the 7-invariance of M) we obtain the existence of o1,
oy € T with 01(0) = 2 = 02(0) such that a(o1) € ._; M, and 0(R) C M.
Set 0 = 01 > 03. Thus there is an r € [1,1] with a(o) = a(o1) C M, and, since
Mj, is closed, we also have that w(o) = w(o2) C My. Now Proposition 3.5 and
the fact that r < k£ immediately lead to a contradiction, proving the claim.

By (3.2) and (3.8) we have that Ay = @ and A,, = S7. Thus Corollary 2.5
implies that Ag and A,, are T-attractors. Let [ € [1,m — 1] be arbitrary and
assume that A;41 is a 7-attractor. We will prove that A; is a 7-attractor. This
will imply that Ay is a T-attractor for all k € [0, m].

We require three lemmas.

LEMMA 3.11. Let V be an open set with M;1 CV and M, C X \'V for all
k#0141 Letx € X, (1,)ven be a sequence in T with 7,(0) — z as v — o0
and (sy)ven be a sequence in [0, 00[ such that 7,(t) € Clx (V) for allv € N and
allt € [0,s,]. Assume that there is a z € My such that 7,(s,) — z as v — oo.
Then there is a 7 € T with

(3.10) 7(0)=2 and w(T) C Mi41.

Proor. Taking subsequences if necessary, we may assume that 7, — 7’/ for
some 7’ € T. We have two possible cases to consider:

Case 1. The sequence (s, ),en is unbounded. Then, taking subsequences, we
may assume that s, — 0o as ¥ — oo. It then follows that for every ¢ € [0, 00|
there is a v(t) € N such that ¢t € [0,s,] (and so 7,(t) € Clx(V)) for v > v(t).
Hence 7/(t) € Clx (V) for all t € [0, o[ and so our choice of V imply that 7 := 7/
satisfies (3.10).
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Case 2. The sequence (s,),en is bounded. Then, taking subsequences, we
may assume that s, — s as v — 00, for some s € [0,00[. Then 7,(s,) — 7/(s)
so 7'(s) = z € Mj41. Since 7 is translation invariant and M;; is 7-invariant,
we see that there is a 77 € T with 77(s) = 7/(s) and 7’(R) C Mj4;. Let
7 :=7">s7"”. Then 7 € T and since 0 < s we have 7(0) = 7/(0) = z and so 7
satisfies (3.10). O

LEMMA 3.12. A; is closed.

PROOF. In fact, let (y,)nen be an arbitrary sequence in A; such that y, — y
as n — 00, for some y € X. We want to prove that y € A;. From the definition
of A; we obtain a sequence (o, )nen in 7 such that 0,(0) = y,, and

1
(3.11) a(oy,) C U M, for all n € N.

r=1

It clearly follows that
(3.12) on(R) C Ay C A1y, neN

By taking subsequences if necessary we may suppose that o, — o in C for some
o € T. Since Aj41 is closed, (3.12) implies that o(R) C A;11 and a(o) C Aj41.
There is an r € [1,m] with a(o) C M,. Hence a(o) C M, N A;41 which in view
of (3.9) implies that r <1+ 1. If r <[ then the fact that ¢(0) = y implies that
y € A; and we are done. Therefore, suppose that r =1 + 1. We will show that
this leads to a contradiction, proving the lemma.

Since the sets My, k € [1,m], are closed and pairwise disjoint, there is an
open set V with M;;1 € V and M, € X\ V for all &k # [+ 1. It follows
that there is a sequence (t,),en with ¢, — oo and o(—t,) — z as v — oo, for
some z € Mj,1. We can choose a strictly increasing sequence (n,),en such that
d(oy, (=t,),0(—t,)) — 0 as v — oo. It follows that o, (—t,) — z as v — oo.
Since z € V and V is open we may also assume that o, (—t,) € V for all v € N.
Now (3.11) implies that for every v € N there is a ¢/, € R with —¢,, < —t,,
such that o, (—t,,) € 0x(V) and o,,(t) € Clx(V) for all ¢t € [—t,,—t,]. Set
s, =1, —t, and 7, := tsl_y 0y, v € N. It follows that, for all v € N, 7, € T
and, moreover, that

(3.13) 7,(0) € 9x(V) and 7,(t) € Clx(V) for all v € N and all t € [0, s,].

Taking subsequences if necessary we may assume that 7, — 7" as v — oo, for
some 7" € 7. Using (3.12) we obtain 7,(R) = o, (R) C A;41 so 7' (R) C Aj41q
and thus a(7’) C Ajy1, ie. a(r') C M, for some r € [1,I+ 1]. Let x = 7/(0).
Since 7,(s,) — 2z € M;y; as v — oo, Lemma 3.11 implies that there is a
7 € T with 7(0) = z and w(r) C M;41. Let 7/ = /> 7. Then 7”7 € T,
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a(t") = a(r’) € Ay and w(t”’) = w(7) C Mj4+1. Now Proposition 3.5 implies
that 7" (R) C Mj41 80 x = 7(0) € Ox (V)N M;41 = 0 by (3.13), a contradiction.[]

LEmMA 3.13. A; is a T -attractor.

PrOOF. Given Y C X and § € ]0,00[ we denote by Vs(Y) the closed 6-
neighbourhood of Y, i.e.

Vs(Y)={z € X | inf d(z,y) < d}.
yey

Since A;4; is a T-attractor, there is a closed set N such that A;y1 = wr(N) C
Intx (N). Since A;1q is 7-invariant we have A;11 C S7 and since A;4 is closed
and S is compact we conclude that A, is compact. Thus there is a § € ]0, oo|
such that

Vg(AH_l) Clntx(N), 56}0,5]

Now the 7 -invariance of A; implies that
(3.14) A CInvyr (Vs(4)) Cwr(Vs(4y)), d€ ]O,S].

We claim that

(3.15) wr(Vs(4;)) C Ay, for some § € ]0,4].

This claim, together with (3.14) and the fact that A; C Intx (Vs(A;)) implies the
lemma.

Suppose (3.15) is not true and let (3, ),en be a sequence in |0, 6] with 6, — 0
as v — oo. Let v € N be arbitrary. Then there is a y, € wr(Vs,(41)) \ A

n

Mnpen in T and a sequence (t7),en in R such that

Hence there is a sequence (o
ol (0) € Vs, (A4;) for all n € N while ¢} — oo and o]} () — v, as n — oo. Taking
subsequences if necessary we may assume that tslyno) — o, for some 0, € 7.
Then, for every t € R, it follows that ¢ +¢ — oo and o7(¢t +t) — o,(t) as

O'l,(t) S WT(V&, (Al)) C wT(V(;U (Al+1)) C wT(N) = Aiq1.

It follows that o, (R) C A;11, so, as A;q; is closed, we conclude that «(o,) C
Ajy1. Hence, by (3.9), there is an r € [1,1 + 1] such that a(o,) C M,. If r <1
then it follows that y, = 0,(0) € A;, a contradiction. Therefore,

(3.16) alo,) C My, veN

Let V be as in the proof of Lemma 3.12. Since A; is closed by Lemma 3.12 and
disjoint from M; i, we may assume, by taking V and & smaller, if necessary,
that

(3.17) Cly(V) N Vs(A) =0, §<]o,d].
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Now (3.16) implies that, for every v € N, there is a 2z, € M;y; and a sequence
(r#)pen in R with r# — 0o as u — oo and d(o, (—1%),2,) < (1/p) for all p € N.
In particular, d(o,(—7%), z,) < (1/v). Taking subsequences if necessary we may
also assume that there is a z € M4 such that d(z,,z2) < (1/v) for all v € N.
Thus for every v € N there is an n(v) € Nwithn(v) > v, s, = £n ) -y >0
and d(off('/) (sv),00(—7Y)) < (1/v). Putting things together, we thus obtain that

d(UZL(V)(Su), z) < (3/v) forallveN.

Since z € V we may thus assume that ag(y)(sy) € V and O'Z(V)(O) ¢ V for all
v € N. Therefore for every v € N there is a 5, € ]0,s,[ such that op) (sy) €
Ox (V) and af(”)(t) € Clx(V) for all ¢t € [5,,s,]. Let 7, := tslguaf(”), veNlN
Then, for all v € N, 7,(0) € 0x(V) and 7,(t) € Clx(V) for all £ € [0, s, —5,].
Taking subsequences, if necessary, we may assume that 7,,(0) — = as v — oo,
for some x € dx (V). Since 7,(s, —S,) — z € Mj41 as v — oo, an application of
Lemma 3.11 shows that there is a 7 € 7 with 7(0) = z and w(7) C M;14.

Now we have two possible cases:

Case 1. The sequence (S,),en is unbounded. We may then assume that
5, — oo as v — oo. Since on”(0) € N for all v € N, it follows that = €
wr(N) = Ajyq, so there is a 7/ € T with 7/(0) = z and «(7') C M, for some
r € [1,l+1]. Defining 7”7 := 7/ > 7 we see that 7/ € 7, a(r") C M, and
w(7") C Mj41, which by Proposition 3.5 implies that 7”(R) C M;41, and this is
a contradiction since 77(0) = z € dx (V).

Case 2. The sequence (5,),en is bounded. We may then assume that 5, — s
for some s € [0,00[, 7, — 7’ and aﬁ(u)(O) — w as v — 00, for some 7' € T and
w € A;. Thus 7,(—=35,) — w so 7(—s) = w and 7/(0) = z. The definition
of A; and the translation invariance of 7 imply that there is a 7/ € 7 with
7"(=s) = w and «a(7"”) C M, for some r € [1,I]. Set 7" = 7" >_s 7'. Then
" e T, a(r") C M, and, since —s < 0, we also have that 7//(0) = 7/(0) = z.
Set 7" = 7" > 1. Then 7" € T, a(7"") C M, and w(7""") C M1, which
contradicts Proposition 3.5, as r < [+ 1. The lemma is proved. O

Lemma 3.13 and obvious induction shows that Aj is a 7-attractor for all
k € [0,m].

Now let k € [1,m] be arbitrary. Let © € My be arbitrary. Since M}, is
T -invariant, there is a 0 € 7 with ¢(0) = z and o(R) C Mj. Since My, is closed
we have a(o) C My so by the definition of Ay we have z € A;. If o(R) ¢
(Ak—1)% then (3.9) and Theorem 2.11 imply that § # w(e) C Mi N Ax_1 =0,
a contradiction. Thus o(R) C (Ax_1)% so x € Ax N (Ak_1)%. This proves that
My, C Ak N (Ag—1)%. Conversely, let © € A N (Ar—1)% be arbitrary. Then,
by the definition of Ay and Definition 3.3 there is a o4 € 7 with 01(0) = x
and an r € [1,k] such that a(c;) C M,. Moreover, there is a oo € 7 such
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that 02(0) = z and w(o2) N Ax_1 = 0, which, in view of (3.9) implies that
w(og) N M; = 0 for all | € [1,k—1]. It follows that w(og) C M, for some
n € [k,m]. Setting ¢ = o1 >0 € T we see that a(o) C M,, w(o) C M,, and
r < n. Proposition 3.5 implies r = n = k and o(R) C My, so z € M. This
proves that Ay N (Ax—1)% C M}, and completes the proof of the theorem. O

In the sequel, if 7 is compact, translation and cut-and-glue invariant, then,
in view of Theorems 3.8 and 3.10 we have a well-defined concept of a 7-Morse de-
composition, meaning a 7-Morse decomposition of the first kind or, equivalently,
of the second kind.

We will now state and prove two perturbation stability results for attractor
filtrations and Morse decompositions.

THEOREM 3.14. Suppose that T, — T, where T and 1., k € N, are compact,
translation and cut-and-glue invariant subsets of C. Let (A,)" be a T -attractor
filtration. For everyr € [0, m] let V,. and V. be closed sets with A, = Invy(V,.) C
Intx (V,) and (A;)% = Invy— (V) C Intx (V,F).

For k € N and r € [0,m] set

Ar =Tnvy, (V,), g’; =Inv - (Vo).

Then there is a kg € N such that, for oll kK € N with k > kg, the sequence
(AR is a T-attractor filtration and (AF)TL, is its dual T, -repeller filtration.

PROOF. An application of Theorem 2.19 shows that (A%, A%) is a T,-attr-
actor-repeller pair for all r € [0,m] and all k € N large enough. Furthermore,
we conclude from Proposition 2.16 that Af C Ar,, for all » € [0,m — 1] and all
k € N large enough. Thus we only have to show that A§ = () and A%, = Sz, for
all k € N large enough. If there is a sequence (K, )nen in N with s, — oo and
AG™ # 0, then there is a sequence (0, )pen such that o,, € 75, and 0,,(R) C Vj for
all n € N. Then, taking a subsequence if necessary, we may assume that o, — o
for some o € 7. Hence o(R) C Vj so Ag = Inv7(Vp) # 0, a contradiction. Now
clearly A, C St, for every k € N. Consequently, if there is a sequence (kp)nen
in N with x,, — oo and Afi» # Sz, then there is a sequence (0y,)nen such that
on € Ty, and 0,(0) ¢ V,, for all n € N. Taking a subsequence if necessary, we
may assume that o, — o for some o € 7. Hence 0(0) ¢ Intx (V) so o(R) ¢ A,
and thus A,, # S, a contradiction. O

THEOREM 3.15. Suppose that T,, — T, where T and T, k € N, are compact,
translation and cut-and-glue invariant subsets of C. Let (M), be a T-Morse

decomposition. Let (W,)™, be a finite sequence of closed sets such that

M, =Invy(W,) C Intx(W,), re€[l,m].
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For k € N and r € [1,m] set
(3.18) M* = Tnvy (W)

Then there is a k1 € N such that for all k € N with k > k1 the sequence (Mf)m

T

is a T.-Morse decomposition.
PRrROOF. Choose a T-attractor filtration (A, )", such that
M,=A,Nn(A_1)5, re[l,m].

For every r € [0,m] let V,. and V,* be closed sets with A, = Invy(V;) C Intx (V;.)
and (A,)% = Invy— (V;¥) C Intx (V). Let r € [1,m] be arbitrary. Since M, is
T-invariant and M, C V. N V", we see that

M, Clovy (V. NV ) C Invy (V) NInvy (V)
= Invy (V) NInvy— (Vi) = A 0 (Ara)7 = M,y
0
M, =Tavz (V. NV ) =Invy (V) NInve— (V5 4)

(3.19)
- Intx(‘/r) n IntX(Vr*_l) - Intx(m n V:_l).

For r € [0,m] and & € N define A% = Invy (V,), A% = Inv - (V;*). By Theo-
rem 3.14 there is a kg € N such that, for all kK € N with kK > kg, the sequence
(AR is a T,-attractor filtration and (217'?);”:0 is its dual 7,-repeller filtration.
It follows that, for all x € N with £ > kg, the sequence (JT/[/f)Tzl is a 7,-Morse
decomposition, where Mf = AN ;1?_1, r € [1,m]. Proceeding as in the proof
of Formula (3.19) we see that

My =TInvy, (V. N V) = Invy, (V.) NInv, - (V2,)
CIntx (V) NIntx (VX ;) C Intx (V. NV, ).

Now (3.18), (3.19), and Proposition 2.17 imply that there is a k1 € N, k1 > ko,
such that

MF =Invy (V,NVF ) =Invy. (W,) = MF, re[l,m],x>r. O

4. Applications to a Galerkin-type Conley index

In this section we will apply the abstract results obtained before to certain
classes of ordinary differential equations on Banach spaces, considered in the
paper [10], which do not necessarily satisfy the uniqueness property of the Cauchy
problem. In [10] a Galerkin-type Conley index is defined for such equations,
generalizing an index previously defined in [7].

We will establish a Morse equation for this Conley index theory (Theo-
rems 4.7 and 4.16). This Morse equation can be used to prove multiplicity
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results for strongly indefinite problems in Hilbert spaces. An example of such
an application will be given in the next section.

We assume the reader’s familiarity with the paper [10] and only review some
basic notation and those results from that paper which we require to prove the
results of this section.

In this section let (E,| - ||) be a Banach space and we set X = E and
d(z,y) = |Jx —y|| for z, y € X. Given N C U C E and f:U — FE an arbitrary
function, we set

|[fIx = sup [|f(z)[| € [0, 00].
zeEN

If U C X is open and f € C(U — X) then by a solution of f we mean a
differentiable function o: R — E with ¢(R) C U and such that

o'(t) = f(o(t)), forallteR.

Note that any translate of a solution of f is again a solution of f. Furthermore,
if o1 and o9 are two solutions of f with ¢1(0) = 02(0), then ¢ := o1 >0 is easily
seen to be a solution of f.

By Sol(f) we denote the set of all solutions of f. Moreover, given Y C U we
denote by Sol(f,Y) the set of all solutions ¢ of f such that o(R) C Y. It follows
that Sol(f,Y) is translation and cut-and-glue invariant.

Define Inv(f,Y’) to be the set of all y € E for which there is a o € Sol(f,Y)
with ¢(0) = y. Note that Inv(f,Y) = Invz(Y), where T = Sol(f). A set S C U
is called invariant relative to f if Inv(f,S) = S. Thus S is invariant relative to f
if and only if S is T-invariant, where 7 = Sol(f).

Now let S C U be invariant relative to f. Set 7(y,g) = Sol(f,S). Since S is
invariant relative to f it follows that S = S, .

We say that a set A is an attractor (resp. a repeller) in S if A is a 7(f g)-
attractor (resp. a 7(s g)-repeller). Analogously, attractor filtrations in S, resp.
Morse decompositions of the first (resp. the second) kind of S are simply 7 g)-
attractor filtrations, resp. 7 ¢)-Morse decompositions of the first (resp. the
second) kind. If 74 g) is compact then in view of Theorems 3.8 and 3.10 we may
simply speak of Morse-decompositions of S.

A bounded set N C U is called an isolating neighbourhood relative to f if
N is closed in X and Inv(f, N) C Intx (V). The set Inv(f, N) is then called an
isolated invariant set relative to f.

The following result is obvious:

ProrosiTiON 4.1. If U C E is open, f:U — FE is continuous, and Y C
Y' C U then
Sol(f,Y) = Sol(f,S), where S =Inv(f,Y),
Inv(f,Y) =Invz(Y), where T = Sol(f,Y").



MORSE DECOMPOSITIONS IN THE ABSENCE OF UNIQUENESS 229

We also have the following result:

PROPOSITION 4.2. Suppose E is finite dimensional, U is open in E, N is
bounded and closed in E and |f. — fIn — 0 as K — oo where (fi)xen 1S @
sequence in C(U — E) and f € C(U — E) is arbitrary. Define T := Sol(f, N)
and T, := Sol(fx,N), k € N. Then the sets T, T, k € N, are compact and
T.—T.

PROOF. This follows from Proposition 3.10 in [10]. The proof is an applica-
tion of Kamke’s Theorem for finite dimensional ordinary differential equations.l]

We now obtain the following

PROPOSITION 4.3. Suppose E is finite dimensional, U is open in E, N 1is
bounded and closed in E and |f. — fln — 0 as kK — 00 where (fx)sen 1S a
sequence in C(U — E) and f € C(U — E) is arbitrary. Suppose that N is an
isolating neighbourhood relative to f. Then there is a kg € N such that for every
k € N with k > kg, N is an isolating neighbourhood relative to f.

PrOOF. Using Proposition 4.1 we obtain Inv(f, N) = Invy(N) and
Inv(fe, N) =Invy, (N), k€N,

where 7 := Sol(f, N) and 7., := Sol(fx,N), « € N. Our hypothesis is that
Inv(f, N) C Intx(N). Thus Invy(N) C Intx(N) and so, by Proposition 2.14,
Invy, (N) C Intx (N) for some kg € N and all K > kg. Thus

Inv(f., N) CIntx(N), & > Ko. O

The last result obviously implies the following corollary.

COROLLARY 4.4. Suppose E is finite dimensional, U is open in E, N 1is
bounded and closed in E and f € C(U — E) is arbitrary. If N is an isolating
neighbourhood relative to f then there is an € > 0 such that whenever g €
C(U — E) is such that |g — fly < € then N is an isolating neighbourhood
relative to g. We define e(f, N) > 0 to be the supremum of such numbers .

In the situation of the above corollary, if f is locally Lipschitzian, then the
classical Conley index of Sy := Inv(f, N) relative to the local flow 7 generated
by the ordinary differential equation

&= f(z)

is defined, and we write h(f, Sf) to denote this index. Actually, since the set N
uniquely determines the invariant set Sy we also write h(f, N) instead of Sy and
call h(f, N) the Conley index of the isolating neighbourhood N relative to f. If
f is merely continuous, then there is a locally Lipschitzian map g with

lg — fIn <e(f,N).
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Following [10] we now define the Conley index h(f, N) of the isolating neighbour-
hood N relative to f as
h(f,N):=h(g,N).

It is shown in [10] that the index just defined only depends on the isolated
invariant set S; and not on the particular choice of the isolating neighbourhood.
Moreover, this index enjoys all the properties of the classical Conley index like
nontriviality or homotopy invariance.

We can now specialize the perturbation stability result for Morse decompo-
sitions, Theorem 3.15, to the present finite dimensional situation:

THEOREM 4.5. Suppose E is finite dimensional, U is open in E, N is boun-
ded and closed in E and |f; — fln — 0 as k — oo where (fs)xen s a sequence
in C(U — E) and f € C(U — E) is arbitrary. Suppose that N is an isolat-
ing neighbourhood relative to f. Moreover, for every r € [1,m] let W, C N be
a closed set which is an isolating neighbourhood relative to f and suppose that
(Inv(f, W)™, is a Morse decomposition of Inv(f, N) relative to f. Then there
is a kg € N such that for all Kk € N with k > kg, the set N is an isolating
neighbourhood relative to f., for every r € [1,m] the set W,. C N is an isolating
neighbourhood relative to f. and (Inv(f., W)L, is a Morse decomposition of
Inv(fs, N) relative to fi.

PrOOF. Let 7 and 7, x € N be as in of Proposition 4.2. By Proposition 4.1
we have Inv(f, N) = Invy(N) C Intx (N), Inv(f, W;.) = Invg(W,.) C Intx (W,.),
Inv(fs, N) = Invy, (N) and Inv(fs, W;.) = Invy, (W), r € [1,m], k € N,

Since 7 and 7, « € N are compact, translation and cut-and-glue invariant,
an application of Proposition 4.2, Proposition 2.14 and Theorem 3.15 shows that
there is a ko € N such that for all Kk > ko, Inv(fx, N) = Invy, (N) C Intx(N)
and Inv(f., W,.) = Invy (W,.) C Intx(W,), r € [1,m], and (Inv(f., W,))™,
is a 7;,-Morse decomposition, i.e. (Inv(f,, W,))"™  is a Morse decomposition of

r=1

Inv(fs, N) relative to fi. O
The last result clearly implies the following theorem.

THEOREM 4.6. Suppose that E is finite dimensional, U C E is open, N C E
is bounded and closed and N C U, f:U — FE is continuous. Suppose that
N is an isolating neighbourhood relative to f. Moreover, for every r € [1,m]
let W, C N be a closed set which is an isolating neighbourhood relative to f
and suppose that (Inv(f, W,.))m, is a Morse decomposition of Inv(f, N) relative
to f. Then there is an € € ]0,00| such that whenever g:U — E is continuous
and |f — g|ly < € then N is an isolating neighbourhood relative to g, W, is
an isolating neighbourhood relative to g, v € [1,m], and (Inv(g, W)™, is a
Morse decomposition of Inv(g, N) relative to g. By e(f, N,(W,)'"_;) we denote
the supremum of all such numbers €.
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We will now state and prove the Morse equation for the version of the Conley
index defined above. To this end, let (Hy)qez (resp. (H7)qez) be an arbitrary
homology (resp. cohomology) theory with coefficients in an R-module M, where
R is an integral domain. If (Y, yo) is a pointed space then we define the Betti
numbers

B4(Y,yo) :==rank H,(Y,{yo}) € NoU {0}, ¢€Z,
resp.
BUY,yo) :=rank H*(Y, {yo}) € No U {oc}, ¢€Z.

We also define the formal Poincaré polynomial

, (Y, 90)) Zﬁq Y,yo)t?, teR,

resp.
(Y, 10)) ZﬁquO teR.

In particular, whenever defined, the Conley index h(f, N) is an equivalence class
of homotopy equivalent pointed spaces, so the polynomial p(t, h(f, N)) is defined.
We now obtain the following Morse equation:

THEOREM 4.7. Let U, f, N and (W,)", be as in Theorem 4.6. Then
> p(t, h(f, W) = p(t,h(f,N)) + 1+ H)Q(t), tER,
r=1
where Q(t) = > poaxt®, t € R, is a formal power series with coefficients ay, €
Ny U {OO}, k € Np.
PRroOOF. Let g € C(U — E) be a locally Lipschitzian map such that
19— flnv <e(f,N,(Wy);Ly).

Then from Theorem II1.3.5 in [13] we obtain the usual Morse equation
(4.1) > p(t,h(g, Wy)) = p(t, (g, N)) + (1 +6)Q(t), teR
r=1

where Q(t) = > pr arpt®, t € R, is a formal power series with coefficients a;, €
No U {o0}, k € No.

Since, clearly, e(f, N, (Wy)/L;) < &(f,N) and e(f, N, (Wy);Ly) < e(f, Wy)
for all r € [1,m] we see that h(f, N) = h(g,N) and h(f,W,) = h(g, W,) for all
r € [1,m]. This together with (4.1) implies the assertion of the theorem. O

We will now treat certain classes of ordinary differential equations on infinite
dimensional Banach space.
We begin with the following useful definition.
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DEFINITION 4.8. The quadruple (L, E_1, Ey, F1) is called a trichotomy on
the Banach space E if the following properties are satisfied:
(1) L: E — FE is a bounded linear operator.
(2) Ej, j € [-1,1], are closed L-invariant subspaces of E with E = E_; &
Ey @ E; and Ej is finite dimensional. For j € [—1,1] we denote by
L;: E; — Ej; the restriction of L to Ej.
(3) There are constants M € [0, 00[ and « € ]0, 0o[ such that

||6L71t|‘£(E71,E71) < Meiatv te [0700[,
" |2y, my) < Me™, ¢ €]—00,0].

The triple (L, E_1, E1) is called a dichotomy on E if (L, E_1,{0}, Ey) is a
trichotomy on F.

For the rest of this section assume that (E, | - ||) is an infinite dimensional
Banach space.

Assume the following hypothesis:

HyPOTHESIS 4.9.

(1) (L,E_1,Ey, Ey) is a given trichotomy on E.

(2) (P%)en is a sequence of bounded linear operators on E such that, for
allz € E, P(x) — 2 as { — oc.

(3) For every £ € N the subspace E* := P*(E) is finite dimensional (hence
closed in E) and L-invariant. By L*: E* — E* we denote the restriction
of L to E* for ¢ € N.

REMARK 4.10. In view of the Uniform Boundedness Principle, item (2) of
the above hypothesis is equivalent to the requirement that P! — Idg as £ — oo,
uniformly on compact subsets of F.

We have the following result:

PRrROPOSITION 4.11. Suppose U is open in E, N is bounded and closed in E
with N C U, and K € C(U — E) is such that K(N) is relatively compact in E.
Define

f:U—E, xw— Lx+ K(zx),

and
fSUNE* - EY - L2+ P'K(z), (€N,
Let
T :=Sol(f,N) C C(R — E)
and

T :=Sol(f, NNEYY cC(R— E) CcC(R— E), (eN.
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Then T and Ty, £ € N are compact in C := C(R — E) and Ty — T in C, as

{ — oo.

PRrOOF. The proof follows from [10, Proposition 4.3 and the proof of Propo-
sition 4.7]. O

Now we obtain the following

COROLLARY 4.12. Assume the hypotheses of Proposition 4.11. In addition,
suppose that N is an isolating neighbourhood relative to f. Then there is an £y €
N such that for all ¢ € N with £ > {y the set NN E* is an isolating neighbourhood
relative to f*. By lo(K, N) we denote the smallest of such numbers £y.

ProoF. Note that, by Proposition 4.1, Inv(f, N) = Invz(N) and Inv(f*, NN
E') = Invy,(N), ¢ € N. Now Proposition 4.11 together with Proposition 2.14
imply the existence of an ¢y € N such that whenever ¢ > ¢y, then Invy, (N) C
Intx(N). Since X = E and Invg,(N) C E* for all £ € N it follows that
Invz,(N) C Intge (N N E*) for all £ € N with £ > 4. O

Now assume all hypotheses of Corollary 4.12. Following [10] we define the
LS-Conley index h(f, N) of the isolating neighbourhood N relative to f as

h(f,N) := (h(f, N)e)e>eo(k,N)

where h(f, N), = h(f', NN E%), £ > {o(K, N). Here, of course, h(f*, NN E*) is
the finite dimensional Conley index defined earlier in this section.

It is proved in [10] that whenever N and N’ are two isolating neighbour-
hoods of the same isolated invariant set S (relative to f) with K(N) and K(N')
relatively compact in E' then

h(f,N)e = h(f,N")y, forall £e N large enough.

Consequently, given an isolated invariant set relative to f we may write h(f,S)
instead of A(f, N), where N is an arbitrary isolating neighbourhood of S relative
to f with K (V) relatively compact in E.

As it is shown in [10] this version of Conley index again satisfies all the
properties of the classical Conley index.

Now consider the following additional hypothesis.

HypPOTHESIS 4.13. For every sufficiently large ¢ € N there are linear L-
invariant subspaces F¢, F*, and F{ of E such that E“*' = F* @ E* and the
triple

(L|F"'a Fflﬁ F{)

is a dichotomy on F*. By i, we denote the dimension of FY.

We now have the following



234 M. C. CARBINATTO K. P. RYBAKOWSKI

PROPOSITION 4.14. Assume Hypothesis 4.13 in addition to the hypotheses
of Corollary 4.12. Then there is an €1 > ly(K, N) such that

R(f,N)es1 =S AR(f,N)g, €> 4.

Here, of course, XF is the homotopy type of a pointed k-dimensional sphere,
k € Np.

PRrROOF. This is just Proposition 4.18 in [10]. O

We can now state the following perturbation stability result for Morse de-

compositions:

THEOREM 4.15. Assume the hypotheses of Corollary 4.12. In addition, for
every r € [1,m] let W, C N be closed with Inv(f, W,.) C Intg(W,.) and suppose
that (Inv(f, W,.))™, is a Morse decomposition of Inv(f, N) relative to f. Let f*

be as in Proposition 4.11. Then there is an ¢y € Ny such that whenever £ > {;
then

Inv(f', NN E") CIntg (NN E"),
Inv(ff7 W, N EZ) C Intge (W, N EE) for all r € [1,m],

and (Inv(f*, W, N E*))™ , is a Morse decomposition of Inv(f*, N N E*) relative
to f*.
By bo(f, N, (W,),) we denote the minimum of all such numbers L.

ProOOF. Let 7 and 7y, ¢ € N be as in Proposition 4.11. By Proposition 4.1
we have Inv(f, N) = Invy(N) C Intx (N), Inv(f, W,.) = Invg(W,.) C Intx (W,.),
Inv(f% N) = Invy,(N) and Inv(f*, W,.) = Inv,(W,), r € [1,m], £ € N.

Since 7 and 7y, ¢ € N are compact, translation and cut-and-glue invariant, an
application of Proposition 2.14 and Theorem 3.15 shows that there is an {5 € N
such that for all £ > £y, Inv(f*, N) = Invy,(N) C Intx(N) and Inv(f* W,) =
Invy,(W,) C Intx(W,.), r € [1,m], and (Inv(f*, W,))™ is a T;-Morse decom-
position, i.e. (Inv(f*, W,))™, is a Morse decomposition of Inv(f*, N) relative
to f*. Since Invy, (N) C E* and Invg,(W,) C E¥, £ € N, r € [1,m], it follows
that Inv(f¢ N) = Invz,(N) C Intge(N N EY) and Inv(f*, W,) = Invg,(W,) C
Int e (W, N EY), r € [1,m], £ > . O

We now obtain the following Morse equation:

THEOREM 4.16. Assume all the hypotheses of Theorem 4.15. Then, for every
12 Z fo(f, N7 (Wr):"nzl)a

D p(th(fWe)e) = p(t A, N)e) + (1+Qu(t),  tER,
r=1



MORSE DECOMPOSITIONS IN THE ABSENCE OF UNIQUENESS 235
where Qu(t) = > _garit”, t € R, is a formal power series with coefficients
ek € Ny U {OO}, k € Ng.

PRrROOF. This is an application of Theorems 4.7 and 4.15. 0

5. An indefinite elliptic system

We will now apply the results of the preceding section to give Conley in-
dex proofs of two multiplicity results for a strongly indefinite elliptic system
previously proved in [1] using the Morse-Floer homology.

Let Q be a bounded domain in RY with smooth boundary. Consider the

following elliptic system

—Au = 0,H(u,v,z) in Q,
(5.1) —Av =9, H(u,v,xz) in Q,
u=0, v=0 in O€).

Throughout this section we make the following assumptions:
(5.2) p and q € ]1,00][ are such that
(1/p) > (1/2) - 2/N),
(1/q) > (1/2) = (2/N),
(1/p) + (1/¢) > 1= (2/N).
(5.3) The function H:R x R x Q — R, (&,n,z) — H(£,n,2), is of class C2.
(5.4) There is a constant ¢y € ]0,00] such that for all (§,n,7) € R x R x Q

|65H(§1777x)| < Cl(|§|p71 + |1]‘(p*1)‘I/P 4 1)’
|0y H (€, m,2)] < ca(|n|*~" + (¢[00 4 1),

(5.5) There are constants co and § € ]0, 00 such that for all (€,m,2) € RxRxQ

8€H(€7 1, x)f - 877H(£7 1, 37)77 Z —C2 + 5(|£|p + |77|q)

Following [11] we will now briefly describe how to use Conley index to ob-
tain solutions of (5.1). For more details, the reader is referred to [11] and the
references contained there.

First of all, it is well-known that the linear operator
B:W22(Q)nW,2(Q) — L2(Q), u— —Au,

is positive self-adjoint and, consequently, sectorial in X = L%(2). Thus B gen-
erates a family X, « € [0, 00[, of fractional power spaces (cf e.g. [8]). We write
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A := BY2. Moreover, for a € [0,00[ let E% := X%/2 and E~ := E“* be the
dual of E“. Note that for a € [0, 00| the formula

(U, V) = (A%, A0) 2, u,v € E

defines a Hilbert product in E¢ and A® is an isometry between the Hilbert spaces
E® and L*(Q). Endow E~® := E** with the dual product. We write
AT = (A*) "L L2 (Q) — E~.

Whenever A > 0 and B¢ = \¢ then AP¢ = N?/2¢ for every 3 € R.
It is also well-known that for every 3 € R the operator A? can be uniquely

Aﬁ:UE“—> UE“

a€R a€cR

such that whenever a € R then A?(E%) = E*F and A‘BEQ:EO‘ — B is an

extended to a map

isometry.
Moreover, Hypothesis (5.2) is easily seen to be equivalent to the following
condition:

(5.6) pand q €]1,00[ and there are s, t € |0, 00[ such that s+t = 2 and

(1/p) > (1/2) = (s/N),
(1/q) > (1/2) = (t/N).
From now on choose s and ¢ as in (5.6).
Define the product Hilbert space E := E° x E? with the Hilbert product

(2,2") = (u,u')s + (0,0"), 2= (u,v), 2 = (u,v) €E.

We write |- |g to denote the Hilbert space norm on E. Moreover, given z = (u,v)
we write Z := (u, —v). Now set

L(u,v) := (A=A, A7'A%u), (u,v) € E.

This defines a bounded (FE, (-, -))-symmetric linear operator L: E — E which

has two eigenvalues, A —1 and A = 1 with the corresponding eigenspaces
denoted by E_; and E1, respectively. The spaces E_; and E; are E-orthogonal
complements to each other, and so, in particular, £ = E_; ® Ey. Thus the triple
(L,E_1,E) is a dichotomy on E. Let (Ax)gen be the repeated nondecreasing
sequence of eigenvalues of B and (¢g)ren, be a corresponding L2-orthogonal
sequence of eigenvectors such that |¢x|2, = 1/2 for every k € N. For every
k €N let
Xk = (A™%r, A" ¢p).

Then (xk)ken, is an F-orthonormal basis of Fy, while (X},)ken, is an E-orthonor-
mal basis of F_1.
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For every £ € N let E’ be the linear subspace spanned by Uizl{xbyk}.
Moreover, let F* |, resp. F{, be the one-dimensional linear subspace of E spanned
by Xp41, resp. Xe41 and set F'=F' @F{. Let P*: E — E be the E-orthogonal
projector of E onto E‘. It follows that P‘c — x as £ — oo, for every z € E.

Altogether, we see that Hypotheses 4.9 and 4.13 are satisfied with i, = 1 for
all £ € N.

Now let us note that, in view of (5.4), for v € LP(Q2) and v € L(Q2) the func-
tion O H (u(-),v(+), -) lies in LP/?P=1)(Q) so we may regard 9 H (u(-),v(-),")
as an element of the dual space of LP(£2). Since our choice of s implies that E® C
LP(2) with compact inclusion induced map, we can regard ¢ H (u(-),v(-),-) as
an element of E~*. Hence A™2%0:H (u(-),v(-), ) is a well-defined element of
E?. Similarly, we may regard the function 0, H (u(-),v(-), -) as an element of
E~tso A7%9,H (u(-),v(-), -) is a well-defined element of E*. We thus obtain
a well-defined map

(5.7) K:E—FE, (u,v)— (Ki(u,v), Ko(u,v))

where

Ky (u,v) = =A™ 0 H (u( ), v(+), ),

Ko (u,v) = —AT*0, H (u(-),v(-), ).

Set f = fx = L+ K. The map K: E — FE is continuous and whenever N C F

is bounded, then the set K(N) is relatively compact in E. Moreover, K = -V
where

(5.8)

v:E—R, (u,v) — /QH(u(:c),v(x),x) dz.

Here, and in the sequel, the symbol V denotes the gradient (of a given function
on E) with respect to the inner product on E.
Since L is E-symmetric, we thus obtain

(5.9) f=fk=V2
where
O:F—R, zw— (1/2){(Lz,z2) —¢(2).
By using important bootstrapping arguments established in [1] it is proved that
z = (u,v) is a classical solution of (5.1) if and only if z € E and fx(z) = 0.

Thus the study of solutions of system (5.1) is reduced to the study of equilibria
of the gradient-like ordinary differential equation

(5.10) i = fk(2)

on E.
However, note that we do not impose any growth restrictions on the sec-
ond partial derivatives of H with respect to the variables (£,7). Therefore,
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no matter how smooth the function H is, the map fx:F — E, in general, is
not differentiable nor even locally Lipschitzian, and so the Cauchy problem for
Equation (5.10) may have nonunique solutions. This is where the Conley index
developed in [10] and the results on Morse decompositions presented in the first
part of this paper come into play.

We first need the following useful

DEFINITION 5.1. Suppose zg = (ug,vp) € E is an equilibrium of (5.10), i.e.
fK(20) = 0.
Define the linear map Kjiy . : £ — E by
Kiin,z (u,0) = (A7 (=a (- Ju+ (- )v), A7 (c(- Ju = b( - )v)).

Here, the continuous functions a, b and c: Q — R are defined, for z € Q, by

We call the equilibrium zy hyperbolic if the linear operator L+ Kjiy », is injective.

REMARK. Note that the operator L+ Ky ., is the ‘formal’ Fréchet derivative
of fx at zp. In general, the true Fréchet derivative D fx (z9) does not exist.

We now state the following fundamental Linearization Principle.

THEOREM 5.2. Let zg = (ug,v0) € E be a hyperbolic equilibrium of (5.10).
Then {zo} is an isolated invariant set for fi and there is an integer v = v(20),

called the renormalized Morse index of zg, and there is an {1 € N such that

(5.11) h(fr,s{z0})e = WL + Kiin 29, {0})e = SV, €> 44,

PRrROOF. This is Theorem 2.8 in [11] and its corollary. The proof that
h(fr,{z0})e = ML + Kiin,z, {0})¢, for all £ € N large enough

is technically involved since, in general, the map fx = L + K: F — FE is merely
continuous but not differentiable. To prove that

h(L 4 Kiin o, {0}) = 27 for all £ € N large enough,

note that, for all £ € N large enough, 0 is a hyperbolic equilibrium of the linear
finite dimensional ODE

i=gi(x), weE
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where go: B¢ — E* is the linear map g, = P’ o (L + Kiin,z )|t~ Thus, for every
{ large enough there is a ky € Ny such that

(5.12) h(ge, {0}) = ="

Since in our case Hypothesis 4.13 holds with i, = 1, formula (5.12) together with
Proposition 4.14 immediately implies the existence of v € Z such that

h(L + Klin,zoa {0})€ = Z’Y—i_ea
for all £ € N large enough. O

The following result was proved in [10] using an important a-priori estimate
established in [1].

THEOREM 5.3. Define S to be the set of all points zqg € E for which there is
a bounded solution z:R — E of fx such that z(0) = zg. Then S is compact in
E and the Conley index h(fk,S) is defined and

h(fx,S)e =Xt for all ¢ sufficiently large.

We say that the function ® is a Morse function if every equilibrium of (5.10)
is hyperbolic. It is proved in Section 7 of [1] that the property of being a Morse
function is generic in a certain sense.

We can now state the main result of this section.

THEOREM 5.4. Suppose that ® is a Morse function. Moreover, assume that
0 is a hyperbolic equilibrium of (5.10) with v(0) # 0. Then system (5.1) has at
least two nontrivial solutions. Furthermore, if v(0) > 0 and H is even, i.e.

H(u,v,x) = H(—u,—v,z), (u,v,7) ER xR xQ,

then for every v € [0,v(0) — 1] equation (5.10) has at least two different equilibria
with renormalized Morse index . In particular, system (5.1) has at least 2v(0)
nontrivial solutions.

REMARK 5.5. This result was proved in sections 9.2.1 and 9.2.2 of [1] using
a version of Morse—Floer homology.

PrOOF. By Theorem 5.3 there is a bounded and closed set N C FE such
that N is an isolating neighbourhood of S relative to fx. Let 7 := Sol(fk, N).
Then 7 is compact in C = C(R — E), translation and cut-and-glue invariant.
Moreover, zg € E is a T-equilibrium if and only if zg is an equilibrium of (5.10).
Every equilibrium zp of (5.10) is hyperbolic and so we conclude, by Theorem 5.2,
that {zo} is an isolated invariant set for fx. It follows that the set £ of equilibria
of (5.10) is finite and (as 0 € £) this set has m elements z,, r € [1,m], for some
m € N. Since by (5.9) the set 7 is gradient-like with respect to the function
—® it follows from Proposition 3.4 that, after a possible reordering, the family
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({zr})™, is a T-Morse decomposition, i.e ({z,})"; is a Morse decomposition
of S = Invy(N), relative to fx.

Now, for every r € [1,m] let W,. C N be a bounded isolating neighbourhood
of {z.} (relative to fx). Let v = v(2), r € [1,m]. Then we obtain, using
Theorems 5.2 and 5.3, that, for all £ € N large enough,

p(t h(fr {2 })e) = e [1,m],
p(t,h(fr,S))) =t".

In view of Theorem 4.16 this implies that there is an ¢; € N such that, for every
¢ € N with £ > {1, there is a formal power series

o0
Qu(t) =) arpt*, teR
k=0

with coefficients ag , k € Ny lying in No U {oo} and such that

m

(5.13) D> p(t, hl(fi, {z)e) = p(t: A fics 9))e) + (1 +D)Qu(t), £> 1, tER.

r=1

Setting a, 1 = 0 we see that

(1+8)Qe(t) = sz,ktk, >4, teR
k=0

where

(5.14) bk =apr+ark—1, keNy

o

(5.15) zm:t%” =t' + i bet®, >0, tER.
r=1 k=0

For v € Z let ¢y € Ny be the number of r € [1,m] such that 7, = . Since
Y+ € >0 for all £ > ¢y and r € [1,m] we see that

m o
S =N "ot =N "o gth, L=, tER,
r=1 k=0

YEZL

We can thus rewrite (5.13) in the form
(5.16) ch,gtk =+ Z bg,ktk, >0, teR.
k=0 k=0

Fix ¢ > ¢; arbitrarily. If m = 1, then 3 = v(0) # 0. However, (5.15) implies
v1 = 0, a contradiction.
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If m = 2, then (5.15) implies that 3 = 0 or 72 = 0 and so there is a v € Z
such that

(5.17) = "bit®, teR.
k=0

This means that byg, # 0 for some ky € Ny. But then (5.14) implies that
be.ko—1 7 0 or else by k41 7 0. However, this contradicts (5.17) and proves that
m > 3. This proves the first part of the theorem.

Now assume that v(0) > 0 and that H is even. This implies, in particular that
whenever zp # 0 is an equilibrium of (5.10) then —z¢ # 2o but Kiin,—», = Kiin,z
and so by Theorem 5.3 we have that

h(fr,{=20})¢e = h(fK,{z0})e, for all £ € N large enough.

It follows that ¢, is odd for v = v(0) and ¢, is even otherwise. Hence it follows
from (5.16) that by is odd if k = £ or k = v(0) + ¢ and even otherwise. It now
follows from (5.14) that as, is even if —1 < k < £ and so ag ¢ is odd. This implies
by simple induction that ayx is odd for all k € [¢,v(0) + ¢ — 1]. By comparing
coefficients in (5.16) we thus see that cy_, > 2 for all k € [¢,~v(0) + ¢ — 1].
Hence, for every v € [0,7(0) — 1] we have at least two equilibria of (5.10) with
renormalized Morse index . This proves the second part of the theorem. O
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