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Rδ-SET OF SOLUTIONS
TO A BOUNDARY VALUE PROBLEM

Valter Šeda

Abstract. In the paper a sufficient condition for the existence of an Rδ-
set of solutions to a generalized boundary value problem on a compact

interval is established. The proof is based on the Browder-Gupta theorem
on the existence of an Rδ-set of solutions of an operator equation and on

the relation between boundary value problems and Fredholm operators.

Similar result is obtained by means of the Vidossich theorem.

1. Browder–Gupta and Vidossich theorems

In the theory of differential equations the Peano phenomenon of the existence
of a continuum of solutions of the initial value problem for ordinary differential
systems is well-known. This phenomenon has been studied in a less or more
general setting by many authors (see e.g. [1]–[3], [6]–[7], [9]–[11], [14], [15], [22])
and one of its abstract versions is the Browder–Gupta theorem (Theorem 7 in
[6, p. 394]) which has been improved by L. Górniewicz in [7, pp. 347–349]. The
Górniewicz theorem will be presented here as Proposition 1. First of all let us
recall the following notions. Let X be a metric space, (E, ‖ · ‖) a real Banach
space. A nonempty subset A ⊂ X is called a retract of X if there exists a
retraction r : X → A, i.e. r is continuous and r(x) = x for every x ∈ A.

2000 Mathematics Subject Classification. 34B15, 47H15, 47N20, 54C10.

Key words and phrases. Compact Rδ-set, generalized boundary value problem, Fredholm

operator, proper mapping, Browder-Gupta theorem, Vidossich theorem.
Supported by grant no. 1/7176/20 of the Scientific Grant Agency VEGA of Slovak Republic.

c©2000 Juliusz Schauder Center for Nonlinear Studies

93



94 V. Šeda

A nonempty compact subset B of X is called a compact absolute retract if
and only if for any metric space Y and for any homeomorphism h : B → Y the
set h(B) is a retract of Y . A nonempty convex compact subset of the space E
is a compact absolute retract.
A nonempty subset C of X is a compact Rδ-set in the space X if C is homeo-

morphic to the intersection of a decreasing sequence of compact absolute retracts.
A connected set D ⊂ X is assumed to be nonempty. A compact Rδ-set is a

special case of a compact connected set.

Proposition 1. Let X be a metric space, (E, ‖ · ‖) a real Banach space and
f : X → E a proper map, i.e. f is continuous and for every compact K ⊂ E the
set f−1(K) is compact. Assume further that there exists a sequence of positive
numbers εk with the property limk→∞ εk = 0 and a sequence of proper maps
fk : X → E, k = 1, 2, . . . such that the following conditions are satisfied:
(i) ‖fk(x)− f(x)‖ < εk for every x ∈ X,
(ii) for any u ∈ E such that ‖u‖ ≤ εk the equation

(1) fk(x) = u

has exactly one solution.

Then the set S = f−1(0) is a compact Rδ-set.

Our considerations will be also based on the Vidossich theorem (Theorem 2.2
in [22, pp. 606–607]) which has been improved by S. Szufla in [14, p. 972]. The
Szufla theorem is given here in a weaker modification as

Proposition 2. Let X be a metric space, (E, ‖ · ‖) a real Banach space and
f : X → E a proper map. Assume further that there exists a sequence of positive
numbers εk such that limk→∞ εk = 0, a positive number r and a sequence of
proper maps fk : X → E, k = 1, 2, . . . with the following properties:
(i) ‖fk(x)− f(x)‖ < εk for every x ∈ X,
(ii’) for any u ∈ E such that ‖u‖ ≤ r the set of all solutions of the equa-
tion (1) is connected.

Then the set S = f−1(0) is compact and connected.

From now on let X and Y be two real Banach spaces with the norms ‖ · ‖X
and ‖ · ‖Y , respectively. Let q ∈ Y be an element. In the whole paper B(q, ε)
will mean the closed ball centered at q with radius r. The following theorem
represents a special case of the Górniewicz theorem.

Theorem 1. Suppose that there exists a map f = A + B : X → Y and a
sequence of mappings fk = Ak +Bk : X → Y , k = 1, 2, . . . such that
(A.1) A and Ak, k = 1, 2, . . . are linear bounded Fredholm operators of index

zero,
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(A.2) B and Bk, k = 1, 2, . . . are completely continuous,
(A.3) there exists a sequence of positive numbers εk with the property

lim
k→∞
εk = 0

and a bounded closed subset Tq in X such that the following three con-
ditions are satisfied:
(i) ‖fk(x)− f(x)‖Y < εk for every x ∈ Tq,
(ii) for any u ∈ Y such that ‖u‖Y ≤ εk the equation

(2) fk(x) = q + u

has exactly one solution,
(iii) Tk = f−1k (B(q, εk))) ⊂ Tq.

Then the set Sq = f−1(q) ⊂ Tq and is a compact Rδ-set.

Proof. (i) implies that fk(Sq) ⊂ B(q, εk) and hence Sq ⊂ Tk ⊂ Tq for each
k = 1, 2, . . . . As Tq ⊂ X is a bounded closed set, by Proposition 2.2 and 2.3 in
[19, pp. 20–21], (A.1) and (A.2) guarantee that the restrictions of the mappings f
and fk, k = 1, 2, . . . , to Tq are proper mappings. Denote these restrictions again
by f and fk, k = 1, 2, . . . , respectively. Then the maps f? = f − q : Tq → Y ,
f?k = fk−q : Tq → Y , k = 1, 2, . . . , are proper, too and satisfy conditions (i) and
(ii), (iii) for q = 0, Tq being kept. Then the Górniewicz theorem (Proposition 1)
implies that Sq = (f?)−1(0) is a compact Rδ-set. �

Theorem 2. Suppose that there exists a map f = A + B : X → Y and
a sequence of mappings fk = Ak + Bk : X → Y , k = 1, 2, . . . such that the
assumptions (A.1), (A.2) hold and the following assumption

(A.4) (i) limk→∞ fk(x) = f(x) uniformly on each bounded closed subset
in X,

(ii) for any u ∈ Y , k = 1, 2, . . . , the equation (1) has at most one
solution,

(iii) for each bounded S ∈ Y there exists a bounded closed subset TS
in X such that Tk = f−1k (S) ⊂ TS, k = 1, 2, . . . , is true.

Then for each q ∈ Y the set Sq = f−1(q) is a compact Rδ-set.

Proof. By (iii) each fk, k = 1, 2, . . . is coercive (see Definition 2.1 in [19,
p. 20] and hence, in view of Proposition 2.2, [19, p. 20], it is also proper on X.
Assumption (ii) implies that each fk is locally injective and thus, by Lemma 3.1,
[19, p. 23], it is locally invertible at any x ∈ X. By the Global Inversion The-
orem (Proposition 2.4, [19, p. 21]), fk is a homeomorphism of X onto Y for
k = 1, 2, . . .Thus (1) has exactly one solution for each u ∈ Y . Let q ∈ Y be an ar-
bitrary but fixed element. Choose the sequence εk = 1/k, k = 1, 2, . . . of positive
numbers and the set TB(q,1). Then (i) implies that there exists a subsequence{fl}
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of {fk} such that ‖fl(x)−f(x)‖ < 1/l, l = 1, 2, . . . , for every x ∈ TB(q,1). We see
that assumption (A.4) implies that assumption (A.3) is fulfilled for the sequence
{fl} and by Theorem 1 the statement of this theorem follows. �

Theorem 3. Suppose that there exist a map f = A + B : X → Y and
a sequence of mappings fk = Ak + Bk : X → Y , k = 1, 2, . . . such that the
assumptions (A.1), (A.2) and the following assumption holds:

(A.5) there exists a sequence of positive numbers εk having limk→∞ εk = 0,
a positive number r and a bounded closed subset T0 in X such that for
each k = 1, 2, . . . the following three conditions are satisfied:
(i) ‖fk(x)− f(x)‖ < εk for every x ∈ T0,
(ii) for any u ∈ Y such that ‖u‖ ≤ r the set of all solutions of the
equation (1) is connected,

(iii) Tk = f−1k (B(0, r)) ⊂ T0.

Then the set S0 = f−1(0) ⊂ T0 and is a compact and connected set.

Proof. Similarly as in the proof of Theorem 1 we obtain that S0 ⊂ Tk ⊂ T0
for each k, k = 1, 2, . . . and the restrictions of the mappings f and fk, k = 1, 2, . . .
to T0 are proper mappings. We denote these restrictions again by f and fk,
k = 1, 2, . . . , respectively. Then these maps satisfy conditions (i) and (ii’) of the
Szufla theorem on T0 and by this theorem, S0 is compact and connected. �

.

2. Generalized boundary value problem

Consider the generalized BVP

(3) x(n) + p1(t)x(n−1) + . . .+ pn(t)x+ f(t, x, . . . , x(m)) = q(t), a ≤ t ≤ b,

(4) li(x) = 0, i = 1, . . . , n

where n = 1, 0 ≤ m ≤ n−1, −∞ < a < b <∞, pk, q ∈ C([a, b]), k = 1, 2, . . . , f :
[a, b]× Rm+1 → R is continuous, li : Cn−1([a, b])→ R, i = 1, . . . , n, are linearly
independent linear continuous functionals. The topology in Cn−1 is given by the
norm ‖ · ‖n−1 whereby ‖x‖l = maxk=0,...,l{‖x(k)‖0} for each x ∈ Cl = Cl([a, b]),
l = 1, . . . , n and ‖x‖0 = supa≤t≤b |x(t)| for each x ∈ C0 = C([a, b]).
Let A : D(A) ⊂ Cn → C0 be the linear operator

(5) Ax = x(n) + p1(t)x(n−1) + . . .+ pn(t)x,

where

(6) D(A) = {x ∈ Cn : li(x) = 0, i = 1, . . . , n}.
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As the functionals li are also continuous in Cn, D(A) is a closed subspace of Cn

and hence X0 = (D(A), ‖ · ‖n) is a Banach space. Further A : X0 → Y0, where
Y0 = C0, is a linear bounded operator. In view of the Rudolf theorem [12, p. 56],
Lemma 4.1 in [19, p. 28] implies that dimX0 = ∞ and A : X0 → Y0 is a linear
bounded operator which is Fredholm of index zero.
By Lemma 4.2, [19, p. 29], continuity of f implies that the corresponding

Nemitskij operator B : X0 → Y0 which is defined by

(7) B(x) = f ◦ x for x ∈ X0,

is completely continuous. Thus the operator

(8) F = A+B : X0 → Y0

where A is defined by (5), (6) and B is defined by (7), satisfies the assumptions
(A.1), (A.2).
Consider a sequence of differential equations

(3k) x(n)+p1(t)x(n−1)+ . . .+pn(t)x+fk(t, x, . . . , x(m)) = q(t), for a ≤ t ≤ b,

where fk : [a, b]× Rm+1 → R is continuous, k = 1, 2, . . . .
If the Nemitskĭı operator Bk : X0 → Y0 is determined by

(7k) Bk(x) = fk ◦ x for x ∈ X0, k = 1, 2, . . . ,

then the operator

(8k) Fk = A+Bk : X0 → Y0 for k = 1, 2, . . .

also satisfies the assumptions (A.1) and (A.2).
Consider the corresponding homogeneous BVP to (3), (4), that is, the prob-

lem (4),

(9) x(n) + p1(t)x(n−1) + . . .+ pn(t)x = 0 for a ≤ t ≤ b.

By Rudolf’s theorem there exists a differential equation

(10) x(n) + r1(t)x(n−1) + . . .+ rn(t)x = 0 for a ≤ t ≤ b

with continuous coefficients rk, k = 1, 2, . . . in [a, b] such that the BVP (10),
(4) has only the trivial solution. Of course, in some cases the problem (9), (4)
already has this property. Comparing the equations (9) and (10) we can come to
an integer l which we will call an admissible integer for the problem (9), (4) and
which is defined in this way: l, 0 ≤ l ≤ n−2, is an integer such that rk(t) ≡ pk(t)
on [a, b] for k = 1, . . . , n− l − 1, rn−l(t) 6≡ pn−l(t), l = 0 if also all rk(t) ≡ pk(t)
and l = n− 1 if already r1(t) 6≡ p1(t) in [a, b].
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Of course, there may exist many admissible integers for a given boundary
value problem. In any case there is a unique minimal admissible integer for that
problem.

Theorem 4. Suppose that the following assumption holds:

(H.1) (i) for each bounded closed subset M in Rm+1 it holds

lim
k→∞
fk(t, x1, . . . , xm+1) = f(t, x1, . . . , xm+1) uniformly on [a, b]×M,

(ii) the BVP (3k), (4) has at most one solution for each q ∈ Y0 and
k = 1, 2, . . . ,

(iii) for each bounded S ⊂ Y0 there is an R > 0 such that all possible
solutions x of the problem (3k), (4), k = 1, 2, . . . with q ∈ S satisfy
the inequality

‖x‖j ≤ R for j = max(m, l)

where l is the minimal admissible integer for the problem (9), (4).

Then for each q ∈ Y0 the set Sq of all solutions of the BVP (3), (4) is a compact
Rδ-set.

Proof. Assumptions (i), (ii) from (H.1) imply that the operators F = f ,
Fk = fk, k = 1, 2, . . . clearly satisfy (i), (ii) in (A.4). From the proof of
Lemma 4.3 [19, p. 30] it follows that if (iii) in (H.1) is satisfied, then F−1k (S) is
bounded not only in the norm ‖ · ‖j , but also in the norm ‖ · ‖n−1 and hence
in X0. Also, the bounding constants do not depend on k. Thus (A.4), (iii) is
fulfilled and by Theorem 2 this theorem follows. �

By Theorem 3 the following theorem is true.

Theorem 5. Suppose that the assumption is fulfilled:

(H.2) (i) For each bounded closed subset M in Rm+1 it holds

lim
k→∞
fk(t, x1, . . . , xm+1) = f(t, x1, . . . , xm+1) uniformly on [a, b]×M,

(ii) the BVP (3k), (4) has a connected set of solutions for each q ∈ Y0
and each k = 1, 2, . . . ,

(iii) for each u ∈ Y0 there exist positive constants ru and Ru such that
all possible solutions x of the problem (3k), (4), k = 1, 2, . . . with
q ∈ B(u, ru) satisfy the inequality

‖x‖j ≤ Ru for j = max(m, l),

where l is the minimal admissible integer for the problem (9), (4).
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Then for each q ∈ Y0 the set Sq of all solutions of the BVP (3), (4) is a compact
connected set.

Proof. Putting the function q into the left-hand side of (3) and (3k), k =
1, 2, . . . , we see that it is sufficient to consider the special case q = 0. Similarly
as in the proof of Theorem 4, (iii) implies that there exists an R1 = R0 such that
‖x‖n ≤ R1 is true for all solutions of (3k), (4), k = 1, 2, . . . with q ∈ B(0, r0).
Hence in assumption (A.5) (iii) is satisfied with T0 = {x ∈ X0 : ‖x‖n ≤ R1}.
Clearly (i) and (ii) from (A.5) are fulfilled, too, and by Theorem 3 this theorem
follows. �

3. Second-order boundary value problem

Now we apply Theorem 4 to the boundary value problem

(11) x′′ + f(t, x, x′) = q(t), x(a) = x(b) = 0.

J. W. Bebernes in [4] and L. K. Jackson in [8] have proved a sufficient condition
for the existence of a unique solution to (11) as well as an apriori estimate for
this solution. Their result (see also [16, p. 231]) is given here as

Proposition 3. Suppose that a < b are two real numbers, q is continuous
on [a, b], f = f(t, x, y) is continuous on E = [a, b]× R2 and is such that

(p) f(t, · , y) is nonincreasing in R for each (t, y) ∈ [a, b]× R,
(q) there is a constant k > 0 such that |f(t, 0, y)− f(t, 0, 0)| ≤ k|y| on [a, b]
for all y,

(r) f satisfies a Lipschitz condition with respect to y on each compact subset
of E.

Then the boundary value problem (11) has a unique solution x ∈ C2([a, b]).
Furthermore, on [a, b]

|x(t)| ≤ M
k2

[
exp k(b− a)− exp 1

2
k(b− a)− 1

2
k(b− a)

]
and

|x′(t)| ≤ M
k
[exp k(b− a)− 1]

where M = maxt∈[a,b] |f(t, 0, 0)− q(t)|.

The condition (r) can be dropped out and the uniqueness of the solution to
(11) will be replaced by the statement that the set of all solutions to (11) is a
compact Rδ-set. To that aim we shall need the Stone theorem in the following
formulation [17, p. 184].



100 V. Šeda

Theorem (Stone’s theorem). Let M be a compact set in a metric space,
f ∈ C0(M) and let A be a lattice of continuous functions onM with the following
property:

(a) For every pair x, y, x 6= y of points of M , there exists a function g ∈ A
such that g(x) = f(x), g(y) = f(y).

Then there exists a sequence {fk} of functions fk ∈ A which uniformly converges
to f on M .

By means of the Stone theorem the following proposition has been proved
([16, p. 232]).

Proposition 4. Suppose that a < b are two real numbers, f = f(t, x, y) is
continuous on E = [a, b]× R2 and satisfies the conditions (p) and (q) of Propo-
sition 3. Then there exists a sequence {fk} of functions fk ∈ C0(E) satisfying
the conditions (p)–(r) of that proposition which uniformly converges to f on each
compact subset of E.

By Theorem 4 we obtain from Propositions 3 and 4 the following

Theorem 6. Suppose that a < b are two real numbers, f = f(t, x, y) is
continuous on E = [a, b]× R2 and satisfies the conditions (p) and (q) of Propo-
sition 3. Then for each q ∈ C([a, b]) the set Sq of all solutions of the BVP (11)
is a compact Rδ-set.
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