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A COINCIDENCE THEORY INVOLVING FREDHOLM
OPERATORS OF NONNEGATIVE INDEX

Dorota Gabor — Wojciech Kryszewski

Dedicated to the memory of Juliusz P. Schauder

Abstract. We construct a homotopy invariant appropriate for studying
the existence of coincidence points of Fredholm operators of nonnegative
index and multivalued admissible maps. Cohomotopy methods are used
as a more suitable tool than homological ones. Both finite and infinite
dimensional cases are investigated.

1. Introduction

The need of an algebraic homotopy invariant responsible for the existence of
coincidence points of continuous maps f, g : X → Y , where X , Y are topological
spaces, is clear and stems from its possible applications.

In the present paper we shall deal with a bit more general situation. Namely
consider a diagram of continuous maps

Γ
p↙ ↘q

X −−−−−−−−→
F

Y

where Γ is a space and p is a surjection. Intuitively and vaguely speaking one
expects that if maps F ◦ p and q meet a transversality condition of sorts, then
their graphs must intersect yielding a coincidence point of either F ◦ p and q or
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F and the set-valued map X � x �→ q(p−1(x)) ⊂ Y which is stable with respect
to small perturbations of the considered maps.

In the simplest situation when Γ = Dm(0, 1) is the closed unit disc in the
Euclidean space R

m (m ≥ 1), X = Γ, p = id is the identity, Y = R
m and F = j :

Dm(0, 1)→ R
m is the inclusion, then the Brouwer degree degB(j−q, Dm(0, 1), 0)

(if defined) provides an algebraic measure of the geometric situation between the
graph of q and the diagonal. If, however Y = R

n (n �= m) and F is no longer
the inclusion but, say, a linear map, then the situation changes dramatically. If
n > m, then there are arbitrarily small perturbations of q without coincidence
points with F ; if n < m, then q may still have homotopically stable coincidences
with F but their existence cannot be detected by the behaviour of the homology
class of the cycle q(Sm−1) since it is trivial. The passage to cohomology would
hardly help if this dimension defect occurs.

The approach we shall present relies on the cohomotopy methods rather and
provides an invariant taking values in the (m − n)th stable homotopy group
of spheres. We shall apply this altitude to an infinite dimensional setting, too.
Namely, we shall assume that X , Y are Banach spaces, F is a Fredholm operator
of index i(F ) > 0 (observe, that above i(F ) = m − n) and p : Γ → X is a
Vietoris map (that is, so to say, a proper surjection with acyclic fibres). A
coincidence index to be defined constitutes an algebraic count of solutions to the
inclusion (multivalued equation) F (x) ∈ ϕ(x) := q(p−1(x)), x ∈ X , as well as of
coincidence points of F ◦p and q. Regarding the set-valued setting move natural
and appropriate for our purposes, we thus obtain an index which generalize
invariants introduced in e.g. [18] where ϕ was single–valued and i(F ) = 0; [19]
where ϕ had compact convex values and again i(F ) = 0; and those implicitly
contained in [8] where i(F ) ≥ 0 but ϕ was single–valued and compact (in this
context see also [22], [3]).

All topological spaces considered in the paper are metric and single–valued
maps are continuous.

If V is a subset of a space, then cl V , int V , and bd V denote the closure, the
interior and the boundary of V , respectively. If V is a subset of a Banach space,
then conv V stands for its convex hull and conv V = cl conv V . For z ∈ R

n,
ε > 0, let Bn(z, ε) = {x ∈ R

n | ‖x − z‖ < ε}, Dn(z, ε) = cl Bn(z, ε), Bn =
Bn(0, 1) and Dn = Dn(0, 1). Similarly if z belongs to a Banach space E, then
BE(z, ε) = {x ∈ E | ‖x − z‖ < ε}, DE(z, ε) = cl BE(z, ε), BE = BE(0, 1) and
DE = DE(0, 1).

2. Preliminaries

Let (Sn, s0), n ≥ 0, be the unit sphere in R
n+1 with a chosen base point s0,

e.g. put s0 = (1, 0, . . . , 0) ∈ R
n+1. Given a space X and its closed subset A, the
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set [X, A; Sn, s0] of all homotopy classes [w] of maps w : (X, A) → (Sn, s0) is
usually denoted by πn(X, A)1. If f : (X, A) → (Y, B), where B is closed in a
space Y , then the induced transformation f# : πn(Y, B) → πn(X, A) is defined
via f#[w] = [w ◦ f ] for any [w] ∈ πn(Y, B). It is clear that homotopic maps
induce the same transformation while homotopy equivalences induce bijections.
It is well-known (see [1]), that the map f on X which collapses A to a point, i.e.
f : (X, A) → (X/A, {A}) induces a bijection f# : πn(X/A, {A}) → πn(X, A).
Therefore πn(Dm, Sm−1) is equal (up to bijection) to πn(Sm). Hence if n = m,
one may identify πn(Sn) with the group of integers and distinguish the class,
denoted further by 1, represented by the identity Sn → Sn; if n > m, then
πn(Sm) is trivial and contains only one homotopy class, denoted 0, represented
by the constant map Sm → s0; and if n < m, then the set πn(Sm) is nontrivial
in general. By the Freudenthal suspension theorem (see [21]), if n ≤ m < 2n−1,
then πn(Sm) = πm(Sn) = Πm−n is the (m − n)th stable homotopy group of
spheres (i.e. Πm−n := lim−→

k→∞
πm−n+k(Sk)).

If A, B are closed subspaces of X , then the coboundary operator δ : πn(A, A∩
B)→ πn+1(X, A) is defined. Moreover, it is straightforward to get the following
excision property.

Proposition 2.1. The transformation l# : πn(A ∪ B, B) → πn(A, A ∩ B),
induced by the inclusion l : (A, A ∩B)→ (A ∪B, B), is bijective.

In particular, πn(Rm, Rm \B(z, ε)) ∼= πn(Dm, Sm−1) ∼= πn(Sm).
For further reasons we shall need the notion of the Mayer–Vietoris coboun-

dary operator of a relative triad. Suppose X = X+ ∪X− where X± are closed,
A± := A∩X± and let X0 := X+ ∩X−, A0 := A+ ∩A− = A∩X0. We are going
to define a transformation ∆ : πn−1(X0, A0) → πn(X, A), n ≥ 1. Although it
admits a rigorous algebraic definition (see [8] or [15]) we give here only its simple
geometric description. The space R

n treated as a subspace of R
n+1 cuts it into

two closed halfspaces denoted, according to the given orientation by R
n+1
+ and

R
n+1
− , respectively. Treating Sn−1 as an equator in Sn, R

n+1
± determine the north

and the south hemispheres Sn
± in Sn. Given α ∈ πn−1(X0, A0) represented by

w0 : (X0, A0)→ (Sn−1, s0), we take its arbitrary extension w : (X, A)→ (Sn, s0)
such that w(X±) ⊂ R

n+1
± (since both Sn

± are contractible, this extension does
exist) and put ∆(α) = [w].

It is well–known that if X is compact, the covering dimension dim X < ∞
and the Čech cohomology (with integer coefficients) H̆q(X, A) = 0 for q ≥ 2m−1
(m ≥ 1), then πn(X, A) admits the structure of an abelian group by the usual
Borsuk method (see [17], [20] and [11]) for n ≥ m. It holds, in particular if
dim X < 2m − 1. Essentially by the same methods one may introduce the

1In case A = ∅, πn(X) = [X;Sn].
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group structure to πn(X, A) if X is only paracompact but still H̆q(X, A) = 0
for q ≥ 2m− 1 and n ≥ m. In this case δ and the induced transformations are
homomorphisms.

Let X , Y be spaces. By a set-valued map ϕ from X to Y we understand an
upper semicontinuous transformation which assigns to a point x ∈ X a compact
nonempty set ϕ(x) ⊂ Y (with regard generalities on set-valued maps — see [10]).
Observe that ϕ : X � Y may be represented by the formula

ϕ(x) = qϕ(p−1
ϕ (x)), x ∈ X,

where X
pϕ←− Γ(ϕ)

qϕ−→ Y , Γ(ϕ) = {(x, y) ∈ X × Y | y ∈ ϕ(x)} is the graph of
ϕ and pϕ, qϕ are respective projections onto X and into Y , respectively. Note
that, in view of the upper semicontinuity of ϕ, pϕ is a proper surjection as a
closed map with compact fibers p−1

ϕ (x), x ∈ X .
Clearly ϕ may admit other factorizations of the form X

p←− Γ
q−→ Y , where

Γ is a space and p, q are no longer projections, but p is still a proper surjection.
On the other hand any pair (p, q) of that type, determines a set-valued map

X � x �→ q(p−1(x)) = ϕ(x), but without additional assumptions concerning p

and q we have no sufficient information about the structure of ϕ.

Definition 2.2. We say that a pair (p, q) of maps from the diagram

X
p←− Γ

q−→ Y,

is admissible if p is a Vietoris map i.e.:

(i) p is a proper surjection with fibres acyclic with respect to the Čech
cohomology (i.e. H̆∗(p−1(x)) = H̆∗(pt), where pt is a one-point space);

(ii) dim p := sup dim p−1(x) <∞.2

Remark 2.3. (i) Observe that if dim Γ <∞, then condition (ii) above holds
automatically; conversely if p is a Vietoris map and dim X <∞, then dim Γ <∞,
too.

(ii) The values of the set-valued map ϕ(x) = q(p−1(x)), x ∈ X , determined
by an admissible pair (p, q), are continuous images of acyclic sets. Such maps
are also called admissible and have been studied intensively in many papers (see
[10], [12] and others). The class of admissible maps is large and closed under
compositions (see [10]). For instance, it contains compact convex–valued maps
as well as those with acyclic or contractible values.

One of the main reasons to study admissible pairs (and set-valued maps deter-
mined by them) follows from the famous Vietoris—Begle theorem (see e.g. [21])

2The notion of admissibility may be generalized to that of n-admissibility, n ≥ 1, in the
spirit of [12], [15]. For some applications, condition (ii) is not necessary.
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which states that if p : Γ → X is a Vietoris map, then the induced homomor-
phism p∗ : H∗(X)→ H∗(Γ) is an isomorphism. This result however seems to be
useless in our framework, where no standard (co)homological issues play a role.
Therefore we state (a simplified form of) a cohomotopy version of the Vietoris
theorem due to the second author (comp. [13], [14]).

Theorem 2.4. Let Y ′ ⊂ Y be path-connected ANRs (absolute neighbourhood
retracts) such that the pair (Y, Y ′) is 1-connected and Y , Y ′ have homotopy types
of compact polyhedra. If p : (Γ, Γ′)→ (X, X ′), where Γ′ ⊂ Γ, X ′ ⊂ X are closed
and Γ′ = p−1(X ′), is a Vietoris map and dim X <∞, then the transformation

p# : [X, X ′; Y, Y ′]→ [Γ, Γ′; Y, Y ′],

induced by p is bijective.

Corollary 2.5. If dim X < ∞ and p : (Γ, Γ′) → (X, X ′) is as in Theo-
rem 2.4, then for any n ≥ 0, z ∈ R

n+1 and ε > 0, the transformations

p# : πn(X, X ′) → πn(Γ, Γ′),

p# : [X, X ′; Rn+1, Rn+1 \Bn+1(z, ε)] → [Γ, Γ′; Rn+1, Rn+1 \Bn+1(z, ε)],

p# : [X, X ′; Dn+1, Sn] → [Γ, Γ′; Dn+1, Sn],

induced by p are bijective.

Proof. The case n ≥ 1 follows from Theorem 2.4 and if n = 0, then the
assertion is trivial. �

Definition 2.6. We say that two admissible pairs X
p0←− Γ0

q0−→ Y and
X

p1←− Γ1
q1−→ Y are homotopic if there exists an admissible pair X× [0, 1] R←− Γ

S−→ Y such that Γ0, Γ1 ⊂ Γ (up to the homeomorphisms jk : Γk → Γ, k = 0, 1
embedding Γk as a subset in Γ) and the following diagram is commutative

X
p0←−−−− Γ0

i0

� j0

� ↘q0

X × I
R←−−−− Γ S−→ Y

i1

� j1

� ↗q1

X ←−−−−
p1

Γ1

where ik(x) = (x, k), k = 0, 1, x ∈ X . We write also (R, S) : (p0, q0) � (p1, q1).

Example 2.7. (i) If X
p0←− Γ0

q0−→ Y , X
p1←− Γ1

q1−→ Y and Γ = Γ0 = Γ1,
there is a Vietoris map R : Γ× [0, 1]→ X × [0, 1] such that R(ω, k) = (pk(ω), k),
k = 0, 1, and the maps q0, q1 are homotopic (i.e. there is S : q0 � q1 : Γ× [0, 1]→
Y ), then (R, S) : (p0, q0) � (p1, q1). In particular if p0 = p1, then defining
R(ω, t) = (p0(ω), t), y ∈ Γ, t ∈ [0, 1], we get the same result.
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(ii) If p : (Γ, Γ′)→ (X, X ′) is a Vietoris map (p−1(X ′) = Γ′) and q : (Γ, Γ′)→
(Y, Y ′), where Y , Y ′ satisfy assumptions of Theorem 2.4, then there is a unique
(up to a homotopy) map f : (X, X ′) → (Y, Y ′) such that h : f ◦ p � q. Then
admissible pairs (p, q) and (p, f ◦ p) are homotopic.

Proposition 2.8. Let p : (Γ, Γ′) → (X, X ′) be a Vietoris map and q :
(Γ, Γ′)→ (Y, Y ′), where Y is a space and Y ′ is closed. Then, for any n ≥ 0, the
formula

(p, q)# := (p#)−1 ◦ q#

correctly defines the transformation

(p, q)# : πn(Y, Y ′)→ πn(X, X ′).

If (p0, q0) � (p1, q1), then (p0, q0)# = (p1, q1)#.

Proof. The correctness follows from Corollary 2.5, the last assertion from
Definition 2.6 and the fact that i#

0 = i#
1 . �

3. Finite dimensional case

Let U be an open bounded subset of R
m and cl U

p←− Γ
q−→ R

n, m ≥ n ≥ 1 be
an admissible pair (by Remark 2.3, dim Γ <∞) and suppose that 0 �∈ q(p−1(x))
for x ∈ bd U . It implies that there is ε > 0 such that q(p−1(bd U)) ⊂ R

n \
Bn(0, ε).

Consider the following sequence of maps:

(Rn, Rn \Bn(0, ε))
q←− (p−1(cl U), p−1(bd U))

p−→ (cl U, bd U)
i1−→ (Rm, Rm \ U) i2←− (Rm, Rm \Bm(0, r)),

where r > 0 is such that U ⊂ Bm(0, r) and i1, i2 are inclusions. By the excision
property (2.1), i#

1 is a bijection. Hence, in view of Proposition 2.8, we have
defined the transformation

(1) K := i#
2 ◦ (i#

1 )−1 ◦ (p, q)# : πn(Sn) = πn(Rn, Rn \Bn(0, ε))

→ πn(Rm, Rm \Bm(0, r)) = πn(Sm).

Definition 3.1. By the generalized degree of the pair (p, q) on U we under-
stand the element

deg((p, q), U, 0) := K (1) ∈ πn(Sm).

(Recall that 1 denotes the generator of πn(Sn) ∼= Z.)

It is clear that this definition does not depend on the choice of ε and r.

Remark 3.2. It is not difficult to check that if n = m, then deg((p, q), U, 0) ∈
πn(Sn) is nothing else but the ordinary degree of the pair as constructed in
e.g. [10].
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Theorem 3.3. The generalized degree has the following properties:

(i) (Existence) If deg((p, q), U, 0) �= 0 ∈ πn(Sm), then there is x ∈ U such
that 0 ∈ q(p−1(x)) (and p(ω) = q(ω) for some ω ∈ p−1(U)).

(ii) (Localization) If U1 is open and 0 �∈ q(p−1(cl U \ U1)), then deg((p, q),
U1, 0) is defined and equal to deg((p, q), U, 0).

(iii) (Homotopy Invariance) If pairs

cl U
p0←− Γ0

q0−→ R
n and cl U

p1←− Γ1
q1−→ R

n

are homotopic, i.e. (R, S) : (p0, q0) � (p1, q1) and 0 �∈ S(R−1(x, t)) for
x ∈ bd U , t ∈ [0, 1], then deg((p0, q0), U, 0) = deg((p1, q1), U, 0).

(iv) (Additivity) Assume that m < 2n− 1. If U1, U2 are open subsets of U

such that U1 ∩ U2 = ∅ and 0 �∈ q(p−1(x)) for x ∈ U \ (U1 ∪ U2), then

deg((p, q), U, 0) = deg((p, q), U1, 0) + deg((p, q), U2, 0).

Proof. (i) Assume to the contrary that 0 �∈ q(p−1(U)). Then

q(p−1(cl U), p−1(bd U))→ (Rn, Rn \Bn(0, ε)),

factorizes through (Rn\{0}, Rn\Bn(0, ε)) and, consequently, the transformation
(p, q)# is trivial, hence so is K and deg((p, q), U, 0) = 0 ∈ πn(Sm).

(ii) Changing ε if necessary we may assume that B = Bn(0, ε)∩ q(p−1(cl U \
U1)) = ∅. Consider the diagram:

πn(Rn, Rn \B)
(p,q)#↙ (p,q)#

� (p1,q1)#↘
πn(cl U, bd U) ←− πn(cl U, U \ U1) −→ πn(cl U1, bd U1)� � �

πn(Rm, Rm \ U) = πn(Rm, Rm \ U) ←− πn(Rm, Rm \ U1)

↘
� ↙

πn(Rm, Rm \ C)

where C = Bm(0, r), r is such that U ⊂ C, p := p|(p−1(cl U),p−1(cl U\U1)), q :=
q|(p−1(cl U),p−1(cl U\U1)), p1 := p|(p−1(cl U1),p−1(bd U1)), q1 := q|(p−1(cl U1),p−1(bd U1))

and all unmarked arrows are induced by inclusions. This diagram is commuta-
tive. Its first “column” corresponds to K while the third one to deg((p, q), U1, 0).
Hence the assertion.

(iii) Changing ε we may assume that Bn(0, ε) ∩ S(R−1(bd U × [0, 1])) = ∅.
The assertion follows from the second part of Proposition 2.8.
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(iv) Without loss of generality we may assume that

q : (p−1(cl U), p−1(bd U))→ (Rn, Rn \Bn(0, 1)).

Moreover, by (ii), let U = U1 ∪ U2.
Define for i = 1, 2 two maps qi : (Γ, Γ′)→ (Rn, Rn \Bn(0, 1)) as follows:

qi(w) =

{
q(w) for w ∈ p−1(Ui),

s0 for w ∈ p−1(cl U \ Ui),

where s0 = (1, 0, . . . , 0) ∈ R
n. Of course in view of our assumptions they both

are continuous.
One can immediately show that deg((p, qi), U, 0) = deg((p, q), Ui, 0).
Let v ∈ 1 (comp. Definition 3.1). Obviously, to prove the property, it is

sufficient to check that

[v ◦ q] = [v ◦ q1] + [v ◦ q2],

where the addition ” + ” in πn(Γ, Γ′) is defined following [11] (it is in fact the
same addition as the one defined by the bijection p#, so we do not need any
assumption concerning a dimension of Γ). We omit this not difficult, technical
verification. �

4. Infinite dimensional case

Let E, E′ be Banach spaces and let F : E → E′ be a Fredholm operator
(i.e. bounded linear and such that its kernel Ker (F ) and cokernel Coker (F ) :=
E′/Im (F ), where Im (F ) is the image of F , are finite dimensional) with index

i(F ) := dim Ker (F )− dim Coker (F ) = k ≥ 0.3

Since both Ker (F ) and Im (F ) are direct summands in E and E′, respectively,
we may consider continuous linear projections P : E → E and Q : E′ → E′, such
that Ker F = Im (P ) and Ker Q = Im (F ). Clearly E, E′ split into (topological)
direct sums

Ker (P )⊕Ker (F ) = E, Im (Q)⊕ Im (F ) = E′.

Moreover, since Im (F ) is a closed subspace of E′, F |Ker P is a linear homeo-
morphism onto Im (F ). Note also that F is proper when restricted to a closed
bounded set.

Let X ⊂ E be open and consider an admissible pair X
p←− Γ

q−→ E′ such
that q is locally compact (i.e. each point ω ∈ Γ has a neighbourhood Vω such that
cl q(Vω) is compact) and the set C := {x ∈ X |F (x) ∈ q(p−1(x))} is compact.
The collection of such pairs will be denoted by Dc(X, F ).

3Observe that if F : Rm → Rn is linear, then F is Fredholm and i(F ) = m − n.
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It follows that the set A := {ω ∈ Γ | F ◦ p(ω) = q(ω)} being closed and
contained in p−1(C) is compact, too. Therefore, in view of the local compactness
of q, there is an open set V ⊃ A such that cl q(V ) is compact.

Choose a bounded open set U ⊂ E, such that

C ⊂ U ⊂ cl U ⊂ X and p−1(U) ⊂ V.

There is ε0 > 0 such that

{y ∈ E′ | ∃x∈bd U y ∈ F (x) − q(p−1(x))} ∩BE′
(0, 2ε0) = ∅.

Take ε ∈ (0, ε0] and let lε : cl q(p−1(U)) → E′ be a Schauder projection of the
compact set K := cl q(p−1(U)) into a finite dimensional subspace Z of E′, such
that ||lε(y)− y||E′ < ε for y ∈ cl q(p−1(U)). Denote by L′ the finite dimensional
subspace of Im (F ) such that Z ⊂ L = L′ ⊕ Im (Q). Put T := F −1(L), UL =
U ∩ T . It is clear that the closure cl UL (in T ) is contained in cl U ∩ T and
its boundary bd UL (relative T ) in bd U ∩ T . Further let pL = p|p−1(cl UL),
qL = lε ◦ q|p−1(cl UL) and G = F |T : T → L. Observe, that pL is a Vietoris map
and G is a Fredholm operator of index

i(G) = dim T − dim L = k.

Enlarging L′ if necessary we may assume that dim L := n ≥ k + 2. Putting
dim T = m = n + k we arrive in a situation discussed in Section 2.

Definition 4.1. By the generalized index of a pair (p, q) ∈ Dc(X, F ) we
understand the element

IndF ((p, q), X) = deg((pL, G ◦ pL − qL), UL, 0) ∈ Πk.

By definition deg((pL, G ◦ pL− qL), UL, 0) belongs to πn(Sm) but since m <

2n− 1 we know that πn(Sm) ∼= Πk.
Let us now prove, that this definition is correct, i.e. does not depend on the

choice of U , ε ∈ (0, ε0], lε and L′. First assume that U , ε and lε are fixed and
let N ′ = L′ ⊕ Y , where Y ⊂ Im (F ) and dim Y = 1. Put N := N ′ ⊕ Im (Q),
M := F −1(N) and UN := U ∩ M , pN := p|p−1(cl UN ), qN := lε ◦ q|p−1(cl UN )

and G′ = F |M . Introduce an orientation in N and observe that L cuts N into
two closed halfspaces denoted, according to the orientation, by N+ and N−,
respectively. Then N+ ∪N− = N , N+ ∩N− = L,

L \BE′
(0, ε) = (N+ \BE′

(0, ε)) ∩ (N− \BE′
(0, ε))

and

N \BE′
(0, ε) = (N+ \BE′

(0, ε)) ∪ (N− \BE′
(0, ε)).
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Hence the Mayer–Vietoris operator

∆1 : πn(L, L \BE′
(0, ε))→ πn+1(N, N \BE′

(0, ε))

is well defined. It is easy to check that ∆1 is a bijection.
In a similar manner M = M+∪M−, where M± = F −1(N±), T = M+∩M−;

T \BE(0, r) = (M+ \BE(0, r)) ∩ (M− \BE(0, r))

and
M \BE(0, r) = (M+ \BE(0, r)) ∪ (M− \BE(0, r)),

where r > 0 is such that U ⊂ BE(0, r). Hence again we have defined

∆2 : πn(T, T \BE(0, r))→ πn+1(M, M \BE(0, r))

being a bijection. Further U+
N ∪U−

N = UN , where U±
N = U ∩M±, U+

N ∩U−
N = UL,

bd UN = (bd U+
N \N−)∪(bd U−

N \N+) and bd UL = (bd U+
N \N−)∩(bd U−

N \N+).
The Mayer–Vietoris map

∆ : πn(cl UL, bd UL)→ πn+1(cl UN , bd UN)

is defined. In order to show that deg((pL, G ◦ pL − qL), UL, 0) = deg((pN , G ◦
pN − qN ), UN , 0) we have to show that the following diagram is commutative
(recall Definition 3.1)

πn(L, L \BE′
)

(pl,G◦pL−qL)#

−−−−−−−−−→ πn(cl UL, bd UL)
i#
1←− πn(T, T \ UL)

∆1

� (1)
�∆ (2)

πn+1(N, N \BE′
)

(pN ,G′◦pN −qN )#

−−−−−−−−−−→πn+1(cl UN , bd UN ) i1
#

←− πn+1(M, M \ UN )

i#
2−→ πn(T, T \BE)�∆2

i2
#

−→ πn+1(M, M \BE)

where BE′
:= BE′

(0, ε), BE := BE(0, r), i#
1 , i#

2 , i1
#

and i2
#

are induced by
the inclusions.

The commutativity of “box” (2) is easy to check. To prove it for “box” (1)
observe that by Theorem 2.4 and Corollary 2.5, there are unique maps fL :
(cl UL, bd UL)→ (L, L \BE′

) and fN : (cl UN , bd UN)→ (N, N \BE′
) such that

fL ◦ pL � G ◦ pL − qL and fN ◦ pN � G′ ◦ pN − qN . Hence

f#
L = (pL, G ◦ pL − qL)# : πn(L, L \BE′

)→ πn(cl UL, bd UL)

and

f#
N = (pN , G′ ◦ pN − qN )# : πn+1(N, N \BE′

)→ πn+1(cl UN , bd UN ).
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It, therefore, remains to show that ∆ ◦ f#
L = f#

N ◦∆1. To that end define a new
map f ′

N : (cl UN , bd UN )→ (N, N \ BE′
) as follows. Observe that M = T ⊕ Y ′

where Y ′ = (F |Ker P )−1(Y ). If x = x1 + x2, x1 ∈ T , x2 ∈ Y ′, then put f ′
N (x) =

fL(x1) + F (x2). Let

hL : (p−1(cl UL), p−1(bd UL))× [0, 1]→ (L, L \BE′
)

be a homotopy joining fL ◦ pL to G ◦ pL − qL and consider the map

h : p−1(cl UN )× {0, 1} ∪ p−1(cl UL)× [0, 1]→ N

given by the formula

h(ω, t) =




f ′
N ◦ pN (ω) for ω ∈ p−1(cl UN ), t = 0,

G′ ◦ pN (ω)− qN (ω) for ω ∈ p−1(cl UN ), t = 1,

hL(ω, t) for ω ∈ p−1(cl UL), t ∈ [0, 1].

Note that if ω ∈ p−1(bd UN) and t = 0, 1 or ω ∈ p−1(bd UL) and t ∈ [0, 1], then
h(ω, t) �∈ BE′

. Moreover if ω ∈ p−1(cl U±
N ), t = 0, 1, then h(ω, t) ∈ N± (for

qN (ω) ∈ L). Hence there exists an extension hN of h onto : p−1(cl UN ) × [0, 1]
such that hN : (p−1(cl UN), p−1(bd UN )) × [0, 1] → (N, N \ BE′

) yielding a
homotopy joining f ′

N ◦ pN to G′ ◦ pN − qN . In view of the homotopy uniqueness
of fN we gather that fN � f ′

N . Now, having the definition of ∆ and ∆1 in mind
we easily see that indeed ∆ ◦ f#

L = f ′
N

# ◦∆1 = f#
N ◦∆1.

If L′ is replaced by a space L′′ = L′ ⊕ Y ′ where Y ′ ⊂ Im (F ) and 1 <

dim Y ′ < ∞, the iterating above procedure we see indeed that our definition
does not depend upon the choice of L′.

Now we shall show an independence of our definition of ε and lε. Suppose
ε′ ∈ (0, ε0] and let lε′ : K → Z ′ ⊂ E′ be another Schauder projection, such that
||lε′(y)− y||E′ < ε′ on K. Take a finite dimensional subspace L′ in Im (Q) such
that L = L′ ⊕ Im (Q) contains both Z and Z ′. If q′

L = lε′ ◦ (q|p−1(cl UL)), then
S(w, t) = (1− t)qL(ω)+ tq′

L(ω) for ω ∈ p−1(cl UL) provides a homotopy between
qL and q′

L such that G ◦ pL(ω) �= S(ω, t) for ω ∈ p−1(bd UL) and t ∈ [0, 1].
Hence in view of Example 2.7(i), pairs (pL, G ◦ pL − qL) and (pL, G ◦ pL − qL)
are homotopic and the homotopy invariance of deg shows that deg((pL, G◦ pL−
qL), UL, 0) = deg((pL, G ◦ pL − q′

L), UL, 0).
An independence of U follows as a consequence of the localization property

of deg.

Definition 4.2. Given admissible pairs (p0, q0), (p1, q1) we say that they
are homotopic in Dc(X, F ) if there is (R, S) : (p0, q0) � (p1, q1) such that S is
locally compact and the set {x ∈ X | f(x) ∈ S(R−1(x, t)) for some t ∈ [0, 1]} is
compact.

It is clear that pairs homotopic in Dc(X, F ) belong to Dc(X, F ), too.
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Theorem 4.3. The generalized coincidence index of pairs from Dc(X, F )
has the following properties (like earlier C = {x ∈ X |F (x) ∈ q(p−1(x))}):

(i) (Existence) If IndF ((p, q), X) �= 0, then there is x ∈ X such that F (x) ∈
q(p−1(x)).

(ii) (Localization) If X ′ ⊂ X is open and C ⊂ X ′, then = IndF ((p, q), X ′)
is defined and equal to IndF ((p, q), X).

(iii) (Homotopy Invariance) If (p0, q0), (p1, q1) are homotopic in Dc(X, F ),
then IndF ((p0, q0), X) = IndF ((p1, q1), X).

(iv) (Additivity) If X1, X2 are open disjoint subsets of X such that C ⊂
X1 ∪X2, then

IndF ((p, q), X) = IndF ((p, q), X1) + IndF ((p, q), X2).

(v) (Restriction) If q(p−1(X)) ⊂ Y , where Y is a closed subspace of E′, then
IndF ((p, q), X) = IndG((p′q′), X ∩ T ), where T := F −1(Y ⊕ Im (Q)),
p′ = p|p−1(cl X∩T ), q′ = qp−1(cl X∩T ) and G = F |T .

Proof. (i) By definition IndF ((p, q), X) = deg((pLn , Gn ◦ pLn − qLn), ULn),
where Ln, ln, Gn and ULn = U ∩F −1(Ln) correspond to a choice of εn ∈ (0, ε0]
such that limn→∞ εn = 0. By the existence property of deg, there is a sequence
xn ∈ ULn such that F (xn) ∈ qLn(p−1

Ln
(xn)) = ln ◦ q(p−1(xn)). Hence there is a

sequence ωn ∈ p−1(xn) such that ||F (xn) − q(ωn)|| < εn → 0. But since q is
compact in p−1(U), after passing to a subsequence if necessary, q(ωn)→ z ∈ E′.
Since F restricted to cl U is proper, we gather again, without loss of generality,
that xn → x ∈ X . The upper semicontinuity of q(p−1( · )) implies that F (x) ∈
q(p−1(x)).

Properties (ii)–(iv) follow directly from the definition and respective proper-
ties of deg.

Property (v) follows easily from the definition since (p′, q′) ∈ Dc(X ∩ T, G),
i(G) = k and an “admissible” space L from Definition 4.1 may be chosen in
Y ⊕ Im (Q). �

5. F -fundamentally restrictible maps

Let E, E′, X and F be as in Section 4. Let ϕ : X � E′ be a set-valued map.

Definition 5.1. A closed convex set K ⊂ E′ is called F -fundamental for ϕ,
provided

(i) ϕ(F −1(K) ∩X) ⊂ K, and
(ii) if for x ∈ X , F (x) ∈ conv (ϕ(x) ∪K), then F (x) ∈ K.

It is clear that for any ϕ some F -fundamental set exists.
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Observe that if E = E′ and F = idE is the identity on E, then K is nothing
else but a fundamental set for ϕ in the sense of e.g. [4] (see also references
therein).

Some properties of F -fundamental sets are summarized in the following result
(comp. [6]).

Proposition 5.2.

(i) If K is an F -fundamental set for ϕ, then {x ∈ X | F (x) ∈ ϕ(x)} ⊂
F −1(K).

(ii) If K1, K2 are F -fundamental sets for ϕ, then so is K = K1 ∩K2.
(iii) If P ⊂ K and K is an F -fundamental set for ϕ, then so is K ′ =

conv (ϕ(F −1(K) ∩X) ∪ P ).
(iv) If K is the intersection of all F -fundamental sets for ϕ, then K =

conv (ϕ(F −1(K) ∩X)).
(v) For any A ⊂ E′, there exists an F -fundamental set K such that K =

conv (ϕ(F −1(K) ∩X) ∪A).

Definition 5.3. We say that ϕ is an F -fundamentally restrictible map if
there exists a compact F -fundamental set for ϕ.

Let us collect some important examples of F -fundamentally restrictible set-
valued maps.

Example 5.4. Let F : E → E′ be an arbitrary Fredholm operator.
(a) If ϕ : X → E′ is compact (i.e. cl ϕ(X) is compact), then K = conv (ϕ(X))

is a compact F - fundamental set for ϕ; hence ϕ is F -fundamentally restrictible.
(b) Let µ be a measure of noncompactness in E′ having usual properties (see

e.g. [1]) and let ϕ be F -condensing in the sense that, for any bounded set A ⊂ X ,
if µ(ϕ(A)) ≥ µ(F (A)), then A is compact. If ϕ is bounded, then one shows that
an F -fundamental set K, satisfying K = conv (ϕ(F −1(K) ∩X) ∪ {y}) for some
y ∈ E′ (see Proposition 5.2) is compact; hence ϕ is F -fundamentally restrictible.

(c) If ϕ is an F -set contraction (i.e. there exists k ∈ (0, 1), such that for any
bounded A ⊂ X , µ(ϕ(A)) ≤ kµ(F (A))), then ϕ is F -condensing and therefore
F -fundamentally restrictible.

Some other examples one can find in [6] and in [7].

Definition 5.5.

(i) Let X
p←− Γ

q←− E′ be an admissible pair. A closed convex set K

is called F -fundamental for (p, q) if it is so for the set-valued map
ϕ(x) = q(p−1(x)).

(ii) The pair (p, q) is F -fundamentally restrictible if so is the above map ϕ

and if K, K ′ are two compact disjoint F -fundamental sets for (p, q), then
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there exists a finite number of compact F -fundamental sets K1, . . . , Kn

for ϕ such that K ∩ K1 �= ∅, Kn ∩K ′ �= ∅ and Ki ∩ Ki+1 �= ∅ for all
1 ≤ i ≤ n− 1.

Remark 5.6. Observe that if a priori we knew that {x ∈ X | F (x) ∈
q(p−1(x))} �= ∅, then any two F -fundamental sets intersect. Moreover, any
admissible pair (p, q) determining a set-valued map belonging to any of classes
discussed in Example 5.4 (and some others, too) satisfies this condition (see [6]).

Now we are going to define a generalized index of coincidence between F

and an F -fundamentally restrictible pair X
p←− Γ

q−→ E′. Suppose that C :=
{x ∈ X | F (x) ∈ q(p−1(x))} is bounded and closed. The class of such pairs will
be denoted by D(X, F ). Therefore there is an open bounded set U such that
C ⊂ U ⊂ cl U . Let K0 be any compact F -fundamental set for (p, q). In view of
Proposition 5.2(i), C is contained in F −1(K0) ∩ cl U . Since F |cl U is proper, we
gather that C being obviously closed is also compact. Now let consider a map

q|p−1(F −1(K0)∩X) : p−1(F −1(K0) ∩X)→ E,

According to Definition 5.1, the range of this map is contained in K0. Hence it
has a compact extension q : Γ→ K0.4

It is clear that {x ∈ X | F (x) ∈ q(p−1(x))} = C. Hence (p, q) ∈ Dc(X, F )
and we are in a position to define an index via methods from Section 3.

Definition 5.7. By the generalized index of (p, q) ∈ D(X, F ) we under-
stand the element

IndF ((p, q), X) := IndF ((p, q), X) ∈ Πk.

Let us show that this definition is correct, i.e. does not depend on the choice of
a compact F -fundamental set K0 and an extension q of q|p−1(F −1(K0)∩X). Assume
that K1 is another compact F -fundamental set for (p, q) and let q1 : Γ→ K1 be a
compact extension of q|p−1(F −1(K1)∩X). In view of Definition 5.5 we can assume
without loss of generality that K2 = K1 ∩K0 �= ∅. By Proposition 5.2(ii), K2

is a compact F -fundamental set for (p, q), too. Let ri : E′ → Ki, i = 0, 1, 2 be
retractions and consider a map S : Γ× [0, 1] given by

S(w, t) =




(1− 4t)q(w) + 4t(r0 ◦ q)(w) for t ∈ [0, 1/4],

(2− 4t)(r0 ◦ q)(w) + (4t− 1)(r2 ◦ q)(w) for t ∈ (1/4, 1/2],

(3− 4t)(r2 ◦ q)(w) + (4t− 2)(r1 ◦ q)(w) for t ∈ (1/2, 3/4],

(4− 4t)(r1 ◦ q)(w) + (4t− 3)q1(w) for t ∈ (3/4, 1].

and w ∈ Γ. It is clear that S(Γ× [0, 1]) ⊂ K0 ∪K1 and therefore S is compact.
Moreover, S( · , 0) = q, S( · , 1) = q1. Hence, introducing R : Γ×[0, 1]→ X×[0, 1]

4For instance one can take any retraction r : E′ → K0 and define q := r ◦ q.
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by R(w, t) = (p(w), t) for w ∈ Γ, t ∈ [0, 1], we see that (R, S) : (p, q) � (p, q1).
Assume that F (x) ∈ S(R−1(x, t)) for some x ∈ X and t ∈ [0, 1]. It is easy to
check, using properties (i) and (ii) of Definition 5.1, that x ∈ C; hence {x ∈
X |F (x) ∈ S(R−1(x, t)) for some t ∈ [0, 1]} is compact and, by the homotopy
invariance (see Theorem 4.3(iii)), IndF ((p, q), X) = IndF ((p, q1), X).

Definition 5.8. Given F -fundamentally restrictible pairs (p0, q0), (p1, q1)
we say that they are (F, K)–homotopic (written (p0, q0) �K (p1, q1)) if there
is a homotopy (R, S) : (p0, q0) � (p1, q1) such that the set {x ∈ X | F (x) ∈
S(R−1(x, t)) for some t ∈ [0, 1]} is bounded and closed in E and K is a compact
F -fundamental set for any map X � x �→ S(R−1(x, t)) where t ∈ [0, 1].

At first glance the above definition of homotopic pairs is enough for our next
considerations (comp. Theorem 5.10), but in applications we need more general
one (which e.g. guarantees equivalence relation in D(X, F )).

Definition 5.9. Two F -fundamentally restrictible pairs (p0, q0), (p1, q1)
are homotopic in D(X, F ) if there is a finite number of compact convex sets
K1, . . . , Kn and F -fundamentally restrictible pairs (r1, s1), . . . , (rn−1, sn−1) such
that

(p0, q0) �K1 (r1, s1) �K2 . . . �Kn−1 (rn−1, sn−1) �Kn (p1, q1).

It is clear that F -fundamentally restrictible pairs (p0, q0), (p1, q1) homotopic
in D(X, F ) belong to D(X, F ), too.

Theorem 5.10. The generalized index IndF on D(X, F ) has all properties
from Theorem 4.3 (with some obvious adjustments).

Proof. Properties (i), (ii) and (iv) follow from the very definition and re-
spective properties of IndF ((p, q), X) (we sustain here the notation from the
paragraph preceding Definition 5.7).

As concerns (iii), without loss of generality we can prove this property only for
pairs being (F, K)-homotopic, where K is a compact convex subset of E′. Sup-
pose that (R, S) : (p0, q0) �K (p1, q1). By Definition 5.8, S(R−1((F −1(K)∩X)×
[0, 1])) ⊂ K; take an arbitrary extension S : Γ → K of S|R−1((F −1(K)∩X)×[0,1]).
It is then clear that ql = S◦jl, l = 0, 1 (see Definition 5.8) is a compact extension
of ql|p−1

l (F −1(K)∩X) onto Γl (l = 0, 1). Moreover (R, S) : (p0, q0) � (p1, q1) in
Dc(X, F ). Hence

IndF ((p0, q0), X) = IndF ((p0, q0), X) = IndF ((p1, q1), X) = IndF ((p1, q1), X).

(v) Under the assumptions and notations of (v) from Theorem 4.3, first
observe that, if K is a compact F -fundamental set for (p, q), then K∩(Y ⊕Im (Q))
is G-fundamental for (p′, q′); therefore (p′, q′) ∈ D(X ∩ T, G). Let q : Γ →
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K ∩ Y be a compact extension of q|p−1(F −1(K)∩X). Then by definition and
Theorem 4.3(v),

IndF ((p, q), X) = IndF ((p, q), X) = IndG((p′, q′), X),

where q′ = q|p−1(X∩T ). But one easily sees that q′ is a compact extension of
q′|p′−1(G−1(K∩Y ⊕Im (Q))∩X∩T ) and, hence,

IndG((p′, q′), X) = IndG((p′, q′), X). �

6. Final remarks

The idea how to define the coincidence index from Section 3 follows from [15].
Here however we presented a direct and more natural approach avoiding tedious
and technical applications of the so-called “infinite dimensional” cohomotopy.
Observe moreover that in Sections 3, 4, the standing assumption that p is a
Vietoris map may be slightly generalized. Namely one may assume that p has the
following property: for any finite-dimensional subspace Y ′ ⊂ E′, p|p−1(X∩F −1(Y ))

is a Vietoris map. Of course it does not change anything as concerns the fibres
of p but relaxes a bit condition (ii) of Definition 2.2.

If one wants to get rid of any assumptions concerning the dimensionality
of the preimages of p, then one has to admit a different geometric assumption
concerning fibres. Recall that a proper surjection p : Γ → X is cell-like if, for
any x ∈ X , the fibre p−1(x) is a cell-like set, i.e. for any embedding of p−1(x)
into an ANR, it is contractible in each of its neighbourhoods (see [16], [2]). It
is clear that the fibres of a cell-like map are acyclic and, for instance, a proper
surjection with contractible fibres is cell-like.

A result, implicitly contained in [5] (comp. [14], [15]) and similar to that of
Theorem 2.4 says that: given a cell-like map p : Γ → X, closed sets Γ′ ⊂ Γ,
X ′ ⊂ X such that p−1(X ′) = Γ′ and a pair (Y, Y ′) of ANR, the transformation
p#[X, X ′; Y, Y ′]→ [Γ, Γ′; Y, Y ′], induced by p, is bijective provided dim X <∞.

We see that it complements Theorem 2.4 in the case when dim Γ =∞.
All results of the paper may be put into the context of pairs (p, q), where

p is a cell-like mapping. This is important from the view-point of applications,
where we often meet set-valued maps of such form.
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