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SOME TOPOLOGICAL PROPERTIES
OF A NONCONVEX INTEGRAL INCLUSION
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Abstract. We consider a conconvex parametrized integral inclusion and
we prove that the solution set is a retract of Banach space.

1. Introduction

This paper is concerned with the following integral inclusion system

x(t) =
∫ t

0

f(t, τ, u(τ)) dτ,(1.1)

u(t) ∈ F (t, V (x)(t), s) a.e. I := [0, T ], for all s ∈ S,(1.2)

where F : I ×X × S → P(X), f : I × I ×X → X, V : C(I,X) → C(I,X) are
given mappings.

The aim of this paper is to prove that the solution set of the problem (1.1)–
(1.2) is a retract of a Banach space. At the same time this result provides the
existence of continuous selections of the solution set multifunction. Moreover, we
prove that any two continuous selections from the solution map are homotopic.

Several results concerning problem (1.1)–(1.2) as a relaxation theorem and
the continuous dependence of the set of relaxed solutions on various parameters
may be found in [7], where additional references may also be found.
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In our approach we use a result of Bressan, Cellina and Fryszkowski ([5])
concerning the existence of a retraction of a Banach space on the set of the fixed
points of a contractive set-valued map, at the same way as this result was used
in [3], [4] by Blasi, Pianigiani and Staicu to obtain similar topological proper-
ties for hyperbolic differential inclusions and semilinear differential inclusions,
respectively.

The paper is organized as follows: in Section 2 we present the notations,
definitions to be used in the sequel, and in Section 3 we prove the main results.

2. Notations, definitions and preliminary results

Let T > 0, I := [0, T ] and denote by L(I) the σ-algebra of all Lebesgue
measurable subsets of I. Let X be a real separable Banach space with the norm
| · | and let (S, d) be a separable metric space. Denote by P(X) the family of
all nonempty subsets of X, by B(X) the family of all Borel subsets of X and
by L(X,X) the space of bounded linear operators from X to X. If A ⊂ I then
χA( · ) : I → {0, 1} denotes the characteristic function of A. For any subset
A ⊂ X we denote by cl(A) the closure of A.

In what follows, as usual, we denote by C(I,X) the Banach space of all
continuous functions x( · ) : I → X endowed with the norm |x( · )|C(I,X) =
supt∈I |x(t)| and by L1(I,X) the Banach space of all (Bochner) integrable func-
tions x( · ) : I → X endowed with the norm |x( · )|L1(I,X) =

∫ T

0
|x(t)| dt.

We recall first several preliminary results we shall use in this section.

Definition 2.1. A subset D ⊂ L1(I,X) is said to be decomposable if for
any u( · ), v( · ) ∈ D and any subset A ∈ L(I) one has uχA + vχB ∈ D, where
B = I \A.

We denote by D(I,X) the family of all decomposable nonempty closed sub-
sets of L1(I,X) and by D1(I,X) the family of all decomposable nonempty closed
bounded subsets of L1(I,X).

Definition 2.2. Let Y be a Hausdorff topological space. A subspace X
of Y is called retract of Y if there is a continuous map h : Y → X such that
h(x) = x, for all x ∈ X.

Let M , N be metric spaces with distances dM , resp. dN . We denote by
K(M) the space of all nonempty closed bounded subsets of M endowed with the
Hausdorff metric dM , given by

dM (x, y) = max{supy∈Y dM (y,X), supx∈XdM (x, Y )}, x, y ∈ K(M).

By BM (x, r) we denote the open ball in M centred at x with radius r > 0.
A multifunction F : N → K(M) is called Hausdorff lower (resp. upper) semi-
continuous if for all x0 ∈ N and ε > 0 there exists δ > 0 such that F (x0) ⊂
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{y ∈ M | dM (y, F (x)) < ε} (resp. F (x) ⊂ {y ∈ M | dM (y, F (x0)) < ε}) for
every x ∈ BN (x0, δ). F is called Hausdorff continuous if it is Hausdorff lower
and upper semicontinuous.

In what follows we shall use the following result.

Theorem 2.3 ([5]). Let E be a measure space with a finite, positive, non-
atomic measure µ and let L1 := L1(E,X) be the Banach space of all Bochner
integrable functions u : E → X with the norm

‖u‖1 =
∫

E

|u(t)| dµ(t).

We assume that L1 is separable. Let a( · , · ) : S×L1 → D1(E,X) be a Hausdorff
continuous multifunction, that is contractive with respect to u. Consider the set
of fixed points

Fs := {u | u ∈ a(s, u)}.

Then there exists a continuous mapping g : S × L1 → L1 such that:

g(s, u) ∈ Fs for all u ∈ L1, g(s, u) = u for all u ∈ Fs.

We note first that the apparently more general problem:

x(t) =
∫ t

0

f(t, τ, u(τ)) dτ +Q(t),(2.1)

u(t) ∈ F (t, V (x)(t), s) a.e. I for all s ∈ S,(2.2)

defined by the mappings f : I×I×X → X, Q : I → X, F : I×X×S → P(X),
may be reduced to the one in (1.1)–(1.2).

As it is easy to see, if (x( · ), u( · )) is a solution pair of (2.1)–(2.2) then
(x1( · ), u( · )), x1( · ) := x( · ) − Q( · ) is a solution of (1.1)–(1.2) defined by
V (x1) := V (x1 + Q) and by the same mappings f and F ; therefore any re-
sult for the problem (1.1)–(1.2) may be translated into a corresponding result
for (2.1)–(2.2).

System (2.1)–(2.2) encompasses a large variety of differential inclusions and
control systems and, in particular, those defined by partial differential equations.

Example 2.4. Set f(t, τ, u) = G(t − τ)u, V (x) = x, Q(t) = G(t)x0 where
{G(t)}t≥0 is a C0-semigroup with an infinitesimal generator A. Then a solution
of system (2.1)–(2.2) represents a mild solution of

(2.3) x′(t) ∈ Ax(t) + F (t, x(t), s), x(0) = x0.

In particular, this problem includes control systems governed by parabolic partial
differential equations as a special case. When A = 0, relation (2.3) reduces to
classical differential inclusions.
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To simplify the notations, we set

(2.4) φ(u)(t) =
∫ t

0

f(t, τ, u(τ)) dτ, t ∈ I.

Then the integral inclusion system (1.1)–(1.2) becames

(2.5) x(t) = φ(u)(t), u(t) ∈ F (t, V (x)(t), s) a.e. (I)

which may be written in the more “compact” form

u(t) ∈ F (t, V (φ(u))(t), s) a.e. (I)

but the integral operator φ( · ) in (2.4) plays a certain role in the proofs of our
main results.

Definition 2.5. A pair of functions (x, u) is called a solution pair of (2.5),
if x( · ) ∈ C(I,X), u( · ) ∈ L1(I,X) and relation (2.5) holds.

In what follows we assume the following:

Hypothesis 2.6.

(i) F ( · , · ) : D ⊂ R ×X × S → P(X) has nonempty closed values and is
L(I)⊗ B(X × S) measurable.

(ii) The set-valued map s→F (t, x, s) is lower semicontinuous for all (t, x) ∈
I ×X.

(iii) There exists L( · ) ∈ L1(I,R+) such that, for almost all t ∈ I and for
any s ∈ S, F (t, · , s) is L(t)-Lipschitz in the sense that

d(F (t, x, s), F (t, y, s)) ≤ L(t)|x− y| for all x, y ∈ X.

(iv) The mapping f : I × I × X → X is continuous and there exist the
constants M1,M2 > 0 such that

|f(t, s, u1)− f(t, s, u2)| ≤M1|u1 − u2| for all u1, u2 ∈ X,
|V (x1)(t)− V (x2)(t)| ≤M2|x1(t)− x2(t)| for all t ∈ I.

3. The main results

In order to prove some topological properties of the solution set of the integral
inclusion (2.5), we need some additional assumptions.

In what follows S is a separable metric space and the following hypothesis is
satisfied.
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Hypothesis 3.1. Hypothesis (2.5) is satisfied. Moreover, one has:

(i) For each (t, x, s) ∈ I ×X × S, F (t, x, s) ∈ K(X) and for each (t, x) ∈
I ×X the set-valued map s→ F (t, x, s) is Hausdorff continuous on S.

(ii) d({0}, F (t, x, s)) ≤ L(t) for all (t, x, s) ∈ I ×X × S.
(iii) f(t, s, u) = K(t, s)u, for all (t, s) ∈ I × I, u ∈ X, where K( · , · ) : I ×

I → L(X,X) is a continuous mapping such that for any t ∈ I K(t, t)
is nonsingular and for any s ∈ I K( · , s) is C1.

Denote M1 := max(t,s)∈I×I |K(t, s)|. On L1 := L1(I,X) we consider the
following norm

(3.1) |u|1 =
∫ T

0

exp(−2Mm(t))|u(t)| dt, M := M1M2,m(t) =
∫ t

0

L(τ) dτ

which is clearly equivalent with the usual one. We put:

A(s, v) := {g ∈ L1 | g(t) ∈ F (t, V (φ(v))(t), s), a.e. (I)},(3.2)

B(s) := {g ∈ L1 | g ∈ A(s, g)},(3.3)

E := {φ(v) | v ∈ L1} = φ(L1).

Proposition 3.2. Let Hypothesis 3.1 be satisfied. Then the operator φ( · ) :
L1 → E is a one-to-one mapping.

Proof. If there exist v1, v2 ∈ L1 such that φ(v1) = φ(v2), then∫ t

0

K(t, s)[v1(s)− v2(s)] ds = 0, t ∈ I.

Put v(t) = v1(t) − v2(t), t ∈ I. For any Lebesque point of the map t →
K(t, t)v(t), according to Hypothesis 3.1(iii) one has

K(t, t)v(t) +
∫ t

0

D1K(t, s)v(s) ds = 0,

and hence

v(t) =
∫ t

0

(K(t, t))−1D1K(t, s)v(s) ds, a.e. (I),

thus there exists M3 > 0 such that

|v(t)| ≤M3

∫ t

0

|v(s)| ds a.e. (I).

We define

g(t) := exp(−M3t)
∫ t

0

|v(s)| ds

for any t ∈ I. Obviously, g( · ) is an absolutely continuous mapping and g′(t) ≤
0 a.e. (I). We infer that g(t) ≤ g(0) = 0, hence v(t) = 0 a.e. (I).
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For arbitrary v ∈ L1 we set

(3.4) |φ(v)|E = |φ(v)|C(I,X) + |v|1

where |v|1 is given by (3.1). Denote by T (s) the solution set of (2.5). Using
Proposition 3.2 it is easy to check that (3.4) defines a norm on E. and T (s) ⊂
E, for all s ∈ S. �

Proposition 3.3. Let Hypothesis 3.1 be satisfied. Then E = φ(L1) with the
norm given by (3.4) is a Banach space.

Proof. Let the sequence {φ(vn)} be Cauchy in E. For n,m ∈ N we have

|φ(vn)− φ(vm)|E = |φ(vn)− φ(vm)|C(I,X) + |vn − vm|1.

It follows that {vn} converges to some v in L1. The sequence {φ(vn)} converges
to φ(v) in C(I,X) since, for each t ∈ I one has:

|φ(vn)(t)− φ(v)(t)| =
∣∣∣∣ ∫ t

0

K(t, s)(vn(s)− v(s)) ds
∣∣∣∣

≤M1

∫ t

0

|vn(s)− v(s)| ds ≤M1exp(2Mm(T ))|vn − v|1.

Hence {φ(vn)} converges to {φ(v)} in E and so E is complete. �

Theorem 3.4. Let Hypothesis 3.1 be satisfied. Then there exists a continu-
ous mapping ψ : S × E → E satisfying the following properties:

ψ(s, x) ∈ T (s) for all x ∈ E, s ∈ S,(3.5)

ψ(s, x) = x for all x ∈ T (s), s ∈ S.(3.6)

Proof. It is easy to verify that for any (s, v) ∈ S×L1, A(s, v) defined in (3.2)
is a nonempty closed bounded subset of L1, thus (3.2) defines a multifunction
A( · , · ) : S × L1 → D1(L1).

We prove first that A : S × L1 → D1(L1) defined by (3.2) is Hausdorff
continuous.

Let us suposse that A is not Hausdorff lower semicontinuous. Then there
exist an ε > 0, a sequence (sn, vn) ∈ S × L1, converging to (s0, v0) in S × L1,
and a sequence gn ∈ L1, gn ∈ A(s0, v0), for all n ∈ N, such that

(3.7) d1(gn, A(sn, vn)) ≥ ε, for all n ∈ N.

For n ∈ N define Gn : I → P(X)

Gn(t) := F (t, V (xvn)(t), sn) ∩B(gn(t), d(gn(t), F (t, V (xvn)(t), sn))).

As Gn is measurable, there exists a measurable selection gn ∈ A(sn, vn), such
that

|gn(t)− gn(t)| = d(gn(t), F (t, V (φ(vn))(t), sn) a.e. (I).
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Since gn(t) ∈ F (t, V (φ(v0))(t), s0), one has∫ T

0

exp(− 2Mm(t))|gn(t)− gn(t)| dt

≤
∫ T

0

d(gn(t), F (t, V (φ(vn))(t), sn)

≤
∫ T

0

d(F (t, V (φ(v0))(t), s0), F (t, V (φ(vn))(t), sn) dt

≤
∫ T

0

d(F (t, V (φ(v0))(t), sn), F (t, V (φ(v0))(t), s0) dt

+
∫ T

0

d(F (t, V (φ(vn))(t), sn), F (t, V (φ(v0))(t), sn)) dt.

Therefore, one has

|gn − gn|1 ≤
∫ t

0

d(F (t, V (φ(v0))(t), sn), F (t, V (φ(v0))(t), s0) dt

+
∫ T

0

M2L(t)|φ(vn)(t)− φ(v0)(t)| dt.

Let n→∞. The second integral vanishes for φ(vn) converges to φ(v0) in C(I,X).
The first integral also vanishes because of the Lebesque dominated convergence
theorem and of Hypothesis 3.1(ii). Therefore, there exists n0 ∈ N such that
|gn − gn| < 1/2ε for all n ≥ n0. In particular,

d1(gn, A(sn, vn)) < ε/2 for all n ≥ n0,

which contradicts (3.7). Hence A( · , · ) is Hausdorff lower semicontinuous. The
proof that A( · , · ) is Hausdorff upper semicontinuous is similar. Consequently,
A( · , · ) is Hausdorff continuous.

We prove next that, for every s ∈ S, A(s, · ) is a contraction on L1. If
vi ∈ L1, i = 1, 2 one has

(3.8) |φ(v1)(t)− φ(v2)(t)| ≤
∫ t

0

M1|v1(t)− v2(t)| dt.

Let g1 ∈ A(s, v1) be arbitrary. Take g2 ∈ A(s, v2) such that

|g1(t)− g2(t)| = d(g1(t), F (t, V (φ(v2))(t), s) a.e. (I).

Using (3.8), one has

|g1 − g2|1 ≤
∫ T

0

exp(−2Mm(t))d(F (t, V (φ(v1))(t), s), F (t, V (φ(v2))(t), s)) dt

≤
∫ T

4

exp(−2Mm(t))M2L(t)|φ(v1)(t)− φ(v2)(t)| dt
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≤
∫ T

0

exp(−2Mm(t))M1M2L(t)
( ∫ t

0

|v1(τ)− v2(τ)|dτ
)
dt

=
∫ T

0

|v1(τ)− v2(τ)|
( ∫ T

τ

exp(−2Mm(t))ML(t) dt
)
dτ <

1
2
|v1 − v2|1.

It follows d1(g1, A(s, v1)) < |v1−v2|1/2 and thus, since g1 ∈ A(s, v1) is arbitrary

sup
g1∈A(s,v1)

<
1
2
|v1 − v2|1.

From this and from the analogus inequality obtained by interchanging the roles
of v1 and v2, we infer that A(s, · ) is a contraction.

By Theorem 2.3 there exists a continuous map θ : S × L1 → L1 satisfying
for each s ∈ S the following properties

θ(s, v) ∈ B(s) for all v ∈ L1,(3.9)

θ(s, v) = v for all v ∈ B(s).(3.10)

Let (s, x) ∈ S × E be arbitrary. Since x ∈ E, for some v ∈ L1 we have
x = φ(v). Hence (s, x) = (s, φ(v)). Let ψ(s, φ(v)) : I → X be given by

(3.11) ψ(s, φ(v))(t) := φ(θ(s, v))(t).

Since ψ(s, φ(v)) = φ(θ(s, v)), this equality defines a map ψ : S × E → E.
Finally, we prove the continuity of ψ, (3.5) and (3.6).

Let (s1, φ(v1)), (s2, φ(v2)) ∈ S × E be arbitrary. One has

|ψ(s1, φ(v1))− ψ(s2, φ(v2))|C = |φ(θ(s1, v1))− φ(θ(s2, v2))|C(I,X)

+ |θ(s1, v1)− θ(s2, v2)|1
≤ (M1exp(2Mm(T ) + 1)|θ(s1, v1)− θ(s2, v2)|1.

Since θ is continuous, from the last inequality it follows that ψ is continuous.
Let s ∈ S, x ∈ E be arbitrary, thus x = φ(v) for some v ∈ L1. By (3.9)

θ(s, v) ∈ B(s) and hence φ(θ(s, v)) ∈ T (s). Since ψ(s, φ(v)) = φ(θ(s, v)), it
follows that ψ(s, φ(v)) ∈ T (s), proving (3.5).

Let s ∈ S, x ∈ T (s), i.e. x = φ(v) for some v ∈ A(s, v) and so, by (3.10),
θ(s, v) = v. From (3.10) it follows that

ψ(s, x) = ψ(s, φ(v)) = φ(θ(s, v)) = φ(v) = x

and the proof is complete. �

Remark 3.5. Theorem 3.4 may be considered as an extension to the more
general problem (1.1)–(1.2) of the results in [4], namely Theorem 3.1, that are
obtained in the particular case of the differential inclusion (2.3).
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Corollary 3.6. If the assumptions in Theorem 3.4 are satisfied and if we
define α : S → E, α(s) = ψ(s, φ(0)), with ψ defined in Theorem 3.4, then α( · )
is a continuous selection of the set-valued map T ( · ).

Moreover, if αi : S → E, i = 1, 2 are two continuous selections of T ( · ), then
α1 and α2 can be joined by a homotopy with values in T (s). Indeed, if β : S×I →
E, β(s, t) = ψ(s, (1 − t)α1(s) + tα2(s)), then β(s, 0) = α1(s), β(s, 1) = α2(s)
and β(s, t) ∈ T (s) for all (s, t) ∈ I × I.

Corollary 3.7. For any s ∈ S, the set T (s) of solutions of (2.5) is a retract
of the Banach space E.
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