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EXISTENCE OF NONMINIMAL QUASIPERIODIC SOLUTIONS
FOR SECOND ORDER EQUATIONS

Pablo Padilla

Abstract. We consider the motion of n particles under the action of a po-

tential F . Imposing appropriate conditions on F we obtain quasiperiodic
solutions using variational methods. A Diophantine condition on the fre-

quency similar to those encountered in KAM theory allows us to establish

the necessary properties of the corresponding functional. The solutions are
then obtained by means of the mountain pass theorem on a suitable convex

subset.

1. Introduction

The study of the qualitative behaviour of solutions of Hamiltonian systems
goes back to Poincaré ([12]). Since this behaviour can be very complicated, as
Poincaré himself realized, the study of invariant manifolds plays an important
role.

Apart from equilibrium points, the simplest invariant manifolds correspond
to special solutions, for instance, periodic, heteroclinic or parabolic-like solutions.

In recent years, considerable progress in this direction has been made using
variational techniques, motivated to a great extent by the work iniciated by
Rabinowitz ([14]). We refer to [1], [5], [6], [9] and [15] and references therein,
just to provide some important works where a more complete bibliography can
be found, since it would be impossible to survey it here.
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The next step in the study of invariant manifolds is trying to find invariant
tori, which is motivated also by the completely integrable case and KAM theory.
A particular consequence, for Hamiltonian systems which are perturbations of
integrable ones, is the existence of quasiperiodic solutions. We also mention the
work by Moser, who specifically addressed the problem of quasiperiodic solutions
of differential equations ([7]) and also investigated the relationship with other
geometric problems ([8]).

Variational methods have also been used in this case, for example by Aubry
and Mather ([6]), Percival ([10]), Percival and Pomphrey ([11]) in several appli-
cations. We mention that in the work by Mather, Percival’s variational principle
is used in order to establish existence of quasiperiodic orbits of all frequencies for
area preserving twist homeomorphisms of the annulus. Closer to our approach is
a series of very original papers by Berger and Zhang ([2], [3] and [4]) where a new
setting is used in order to obtain quasiperiodic solutions for some forced second
order equations. Moreover, in these papers, the authors succeed in getting rid of
the usual Diophatine condition which is needed in order to apply KAM theory.

In this paper we consider the system

(1.1) ü = −∇F (u).

and look for invariant sets as quasiperiodic solutions with a given frequency
vector ω. In a nondegenerate situation, one would like to conclude that such a
quasiperiodic solution belongs to an invariant torus. However, there are several
delicate issues concerning the actual nondegeneracy of this solution that make
the analysis difficult. Therefore, we limit ourselves to establish the existence of
quasiperiodic solutions. We use a variational formulation of the problem, still
imposing a Diophantine condition of the type

(1.2) |(k · ω)| ≥ C

|k|s
, for all k ∈ Zm \ {0}, for some s > 0.

We apply Struwe’s critical point theory on convex sets to the energy functional

(1.3) E(u) =
∫

T m

(
1
2
|u̇|2 − F (u)

)
dx,

where u =
∑

k∈Zm akeik·x, Tm is the m-dimensional torus and

u̇(x) =
du

dt
(x) =

m∑
i=1

ωi
∂u

∂xi
(x),

i.e. the directional derivative of u in the direction of ω and ω = (ω1, . . . , ωm)
satisfying (1.2).

The main difficulty in obtaining critical points of E is finding a suitable
function space. The natural choice is the Sobolev space of square integrable
functions with square integrable derivatives. However, the kinetic energy of E
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does not provide good control on the norm in this space. This is true even if we
impose condition (1.2) on ω (in this case some control is gained, although in a
very weak norm).

This fact is related to the well known small divisors problem, that appears
when one is looking for quasiperiodic solutions by means of formal series expan-
sions. However, we can consider the problem restricted to a convex subset in
which the term ∫

T m

1
2
|u̇|2

is in fact equivalent to the usual norm in H1(Tm). Once this is done, the exis-
tence of cricital points, and therefore, of quasiperiodic solutions can be proved.

The main goal of this paper is to present an instance in which Percival’s varia-
tional principle can be used to rigourously establish the existence of quasiperiodic
solutions using minimax methods, specifically, the mountain pass lemma. We
remark that even when we use a Diophantine condition, our approach works for
autonomous equations, and in this respect, it differs from the results by Berger
and Zhang.

We now state the main result.

Theorem 1.1. Let ω ∈ Rm, m > 1, ω = (ω1, . . . , ωm), |ω| = 1 and ωi > 0,
1 ≤ i ≤ m. Suppose further that ω satisfies the Diophantine condition (1.2).
Assume that F ∈ C1(Rn, R) satisfies

(a) |∇F (u)| = o(|u|) as u → 0.
(b) There exists A > 0 and p > 1 (p ∈ (1, (m + 2)/(m− 2)) in case m > 2)

such that

|∇F (u)| ≤ A(|u|p + 1) for all u ∈ Rn.

(3) There exists µ > 2, ρ > 0 such that, for |u| ≥ ρ,

0 < µF (u) ≤ u · ∇F (u).

Then there is a positive number s0 such that if r − s ≥ s0, (1.1) has at least
one quasiperiodic solution with frequency ω in Mr (see Section 2). That is, there
exists u ∈ H1(Tm, Rn), Tm the m-dimensional torus, such that u(ω1t, . . . , ωmt)
satisfies (1.1).

This paper is organized as follows. In Section 2 we introduce some notation,
define the convex set where the variational problem is formulated and present
some estimates we need in the proof of Theorem 1.1. In Section 3 we recall
the results we use from the calculus of variations on convex sets as developed
by Struwe ([15]). In Section 4 we give the proof of Theorem 1.1. Section 5
is devoted to some concluding remarks related to the regularity of solutions,
specific examples, applications and open questions.
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2. Preliminary estimates

We begin by introducing some standard notation. As usual, we identify
the m-dimensional torus with the square [−π, π]m. Then functions on Tm are
represented by functions on Rm which are 2π-periodic in all their arguments. It
will be useful to consider for u in H1(Tm, Rn) its representation in Fourier series

u =
∑

k∈Zm

akeik·x, ak ∈ C n

where x = (x1, . . . , xm). Inequalities for vectors are to be understood compo-
nentwise. We then denote by V the subspace of even functions. That is, those
for which ak = a−k. For a fixed r > 0, let Mr be the set of functions in V that
satisfy the following conditions:

(c0) a0 = 0, that is, functions with zero mean,
(ck) ak 6= 0, for all k 6= 0 and there are constants D0, D1 (which may

depend on u) and 0 < λ ≤ 1 and d∗ > 0 (both independent of u) such
that λD1 ≤ D0, D0 > d∗ and

D0

|k|r
≤ ak ≤

D1

|k|r
.

Since the functions we will work with have zero mean, we can take ‖∇u‖L2 as
an equivalent norm in H1 The estimates we need are presented in the following
lemma.

Lemma 2.1. There is a positive number s0 such that if s, as in (1.2), satisfies
s + r > s0, then

(a) d0|u|H1 ≤ |u̇|L2 ≤ d1|u|H1 ,
(b) d′0|u̇|L2 ≤ |u|L2 ≤ d′1|u̇|L2 ,

for all u ∈ Mr; where d0, d
′
0, d1, d

′
1 are all positive constants independent of u.

Remark 2.2. Before giving the proof, we observe that in any finite dimen-
sional subspace and for ω an irrational direction (that is, satisfying ω · k 6= 0
for all k ∈ Zm \ {0}), the above inequalities are immediate. In some sense, the
Diophantine condition and conditions (c0) and (ck) allow us to maintain the
equivalence of the norms in Mr.

Proof of Lemma 2.1. The right hand side inequality in (a) is immediate
from Schwarz inequality:

|u̇|2L2 =
∑

k∈Zm

|(ω · k)|2 = |ak|2 ≤ |ω|2
∑

k∈Zm

|k|2|ak|2,

and since a0 = 0, the last term is less than or equal to C = |u|2H1 .
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Now we show the right hand side inequality in (b).

|u|2L2 =
∑

k∈Zm

|ak|2

≤ D2
1

∑
k 6=0∈Zm

1
|k|2r

by (ck)

≤ 1
λ2

D2
0

∑
k 6=0∈Zm

1
|k|2r

again by (ck).

The sum in the last inequality is finite provided r > s0 for some s0 sufficiently
large. So we have

(2.1) D2
0 ≥ C|u|2L2 ,

with C independent of u. On the other hand,

|u̇|2L2 =
∑

k 6=0∈Zm

|(ω · k)|2 = |ak|2

≥
∑

k 6=0∈Zm

C

|k|2s
= |ak|2 by the Diophantine condition

≥ C

( ∑
k 6=0∈Zm

1
|k|2(r+s)

)
D2

0 by (ck),

this last sum being finite for s + r ≥ s0 with large s0. Then this last inequality
and (2.1) imply the result.

Before proving the left hand-side inequalities in (a) and (b), we need an
auxiliary reversed Sobolev inequality:

(2.2) |u|H1 ≤ C|u|L2 ,

for C independent of u. Indeed,

(2.3) |∇u|2L2 ≤
∑

k 6=0∈Zm

|k|2|ak|2 ≤
∑

k 6=0∈Zm

|k|2 D2
1

|k|2r
≤ CD2

1.

The constant C is finite for s0 sufficiently big with r > s0, and independent of u.
If we use the fact that λD1 ≤ D0, we have

(2.4) |u|2L2 ≥
∑

k 6=0∈Zm

D2
0

|k|2r
≥ λ2

∑
k 6=0∈Zm

D2
1

|k|2r
≥ CD2

1.

(2.3) and (2.4) give (2.2), since |∇u| ≥ C|u|H1 (recall a0 = 0). Then the left
hand side of (a) follows from (2.2) and the right hand side of (b). Finally, (2.2)
and the right hand side of (a) imply the left hand side of (b), completing the
proof of the lemma. �
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Remark 2.3. (a) Observe that in fact Mr is weakly closed. Indeed, if ui is
a sequence in Mr converging to u, we may assume, by the Sobolev embedding
theorem that ui also converges to u in Lq, q less than (m + 2)/(m − 2), since
by weak convergence it has to be bounded. Then (c0) follow immediatelly from
this. In order to verify (cr), since ak 6= 0 for all elements in the sequence (we are
dropping the index i for the sake of clarity) and observing that we may assume
the corresponding constants Di

0 and Di
1 for ui to be bounded. Therefore, up to

a subsequence, they converge to some D0 and D1 respectively. Passing to the
limit we obtain the desired conclusion.

(b) Notice also that the right inequality in (a) of the previous lemma holds
for any u ∈ H1.

3. Lusternik–Schnirelman theory on convex sets

Here we recall the variational facts from critical point theory as applied to
functionals defined on convex sets of Banach spaces. This theory was system-
atically developed by Struwe, and we refer the reader to [15] for the proofs and
further details.

Suppose that M is a closed convex subset of a Banach space V , and assume
further that E:M → R possesses an extension E ∈ C1(V, R) to V . For u ∈ M

define
g(u) = sup

v∈M
‖u−v‖<1

(u− v,DE(u)).

Then, if E ∈ C1(V ), the function g is continuous in M (see [15, Lemma 11.1,
Chapter II]).

Definition 3.1. A point is critical if g(u) = 0, otherwise u is regular. If
E(u) = β for some critical point u ∈ M of E, the value β is critical, otherwise
β is regular.

We use the conventional notation:

Mβ = {u ∈ M : E(u) < β},
Kβ = {u ∈ M : E(u) = β, g(u) = 0},

Nβ,δ = {u ∈ M : |E(u)− β| < δ, g(u) < δ},
Uβ,ρ = {u ∈ M : exists v ∈ Kβ such that ‖u− v‖ < ρ}.

Definition 3.2. E satisfies the Palais–Smale condition on M if the following
is true.

(PS)M Any sequence in M such that |E(um)| ≤ c uniformly, and g(um) → 0
(m →∞), is relatively compact.
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Definition 3.3. A locally Lipschitz vector field v: M̃ → V , with

M̃ = {u ∈ M ; g(u) 6= 0},

is a pseudogradient vector field for E on M if there exists c > 0 such that

(a) u + v(u) ∈ M ,
(b) ‖v(u)‖ < min{1, g(u)},
(b) (v(u), DE(u)) < −cmin{1, g(u)}g(u), for all u ∈ M̃ .

Then we have the following lemma.

Lemma 3.4. There exists a pseudogradient vector field v: M̃ → V , satisfying
(c) with c = 1/2. Moreover, v extends to a locally Lipschitz continuous vector
field on V \K, K = {u ∈ M : g(u) = 0}.

Using this result one can prove a deformation lemma ([15, Theorem 11.7]).

Theorem 3.5. Suppose M ⊂ V is closed and convex, E ∈ C1(V ) and it
satisfies the (PS) condition on M . Let β ∈ R, ε > 0 be given. Then for any
neighbourhood N of Kβ there exists ε ∈ (0, ε) and a continuous deformation
Φ: M × [0, 1] → M such that

(a) Φ(u, t) = u if g(0) = 0, or if t = 0, or if |E(u)− β| ≥ ε,
(b) E(Φ(u, t)) is nondecreasing in t, for any u ∈ M ,
(c) Φ(Mβ+ε, 1) ⊂ Mβ−ε ∪N , respectively Φ(Mβ+ε \N, 1) ⊂ Mβ−ε.

A version of the mountain pass theorem on convex sets is then proved in the
same way as the usual result.

Theorem 3.6. Suppose that M is a closed, convex subset of a Banach
space V , containing 0, E ∈ C1(V ) satisfies (PS)M . Assume further that

(a) E(0) = 0,
(b) there exists ρ > 0, α > 0 such that, if ‖u‖ = ρ for u ∈ M implies

E(u) ≥ α,
(c) there exists u1 ∈ M , ‖u1‖ > ρ with E(u1) < α.

Define
Γ = {p ∈ C0([0, 1];M) : p(0) = 0, p(1) = u1}.

Then β = infp∈Γ supt∈[0,1] E(p(t)) is a critical value of E in M .

4. Variational formulation

In this section we formulate problem (1.0) in a variational way and prove
Theorem 1.1.

We first consider the functional (1.3) in H1(Tm, Rn) and establish some
differentiability properties.
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Lemma 4.1. Let F ∈ C(Rn, R) satisfy assumption (b) of Theorem 1.1. Then
E ∈ C1(H1(Tm, Rn)) and

E′(u)φ =
∫

T m

(u̇ · φ̇−∇F (u)φ) dx for all φ ∈ H1.

Proof. The proof that
∫

F (u) is differentiable is given in [13] as part of
Proposition B.10.

Now, since |u̇|L2 ≤ C|u|H1 (see Remark 2.2(b)), the first term is differen-
tiable.

As a result, it is a direct computation to verify that the Euler–Lagrange
equations of E correspond to (1.1) and that critical points u ∈ H1(Tm, Rn)
restricted to the line x = ωt, are indeed quasiperiodic weak solutions of this
system.

In order to be able to apply the results of the previous section on Lusternik–
Schnirelman theory on convex sets, we need to check that a critical point of E

in Mr is also a critical point of E in V . We also have to verify that the (PS)Mr

condition holds. This is the content of the next lemmas. �

Lemma 4.2. With the same hypotheses as for Theorem 1.1, let u be a critical
point of E in Mr. Then it is also a critical point in V .

Proof. Consider the function

v+
k (x) = u + εRe(akeik·x).

We claim that for ε > 0 sufficiently small, u − v±k is in Mr. First, recall that
since (cr) is satisfied, ak 6= 0, for all k ∈ Zm different from zero. Let D0, D1 the
numbers defined in section 2 for u. For v+

k = u + εakRe(eik·x), we have that for
the Fourier coefficient corresponding to k

D′
0

|k|r
=

D0(1 + ε)
|k|r

≤ ak(1 + ε) ≤ D1(1 + ε)
|k|r

=
D′

1

|k|r
,

with D′
0 = D0(1 + ε), D′

1 = D1(1 + ε). Since λD1 ≤ D0

λD′
1 ≤ D′

0.

We also have D′
0 > D0 ≥ d∗ Similarly, define

v−k =
1

1− ε
uk −

εRe(akeik·x)
1− ε

and compute the corresponding Fourier coefficient

D0

|k|r
≤ ak ≤

D1

|k|r
.
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The other coefficients are the same as for u, except for a factor bigger than one.
Therefore, vk is also in Mr. We then have, according to the definition of a critical
point on Mr,

(DE(u), u− v±k ) ≤ 0,

which implies
(DE(u), Re(eik·x)) = 0 for all k ∈ Zm.

Thus DE(u) = 0 in V . This completes the proof. �

Finally we have

Lemma 4.3. With the same hypotheses as in Theorem 1.1, E satisfies the
(PS)Mr condition provided r − s is sufficiently large.

Proof. We use the same argument as in [13, Appendix B]. We present the
details for the sake of completeness. First notice that, formally, the inverse
operator of d/dt is given by(

d

dt

)−1

u =
∑

k∈Zm

ak

i(ω · k)
eik·x.

Besides, it is actually well defined in Mr provided r − s is sufficiently large.
Indeed, using the Diophantine condition (1.2) and the fact that u is in Mr∣∣∣∣( d

dt

)−1

u

∣∣∣∣2 =
∑

k∈Zm

|ak|2

(ω · k)2
≤ D2

1C
∑ |k|2s

|k|2r
< ∞,

provided r − s is sufficiently large. It is also immediate from the expression for
(d/dt)−1 that it is continuous in Mr.

Now we show that if (ui) is a bounded sequence in Mr and g(ui) → 0 (see
Section 3) as i →∞, then it admits a convergent subsequence.

Since the k-th Fourier coefficient of the i-th element of such a sequence sat-
isfies

(4.1) ai
k 6= 0 for all i ∈ N and for all k 6= 0 ∈ Zm,

using the same functions v±k as in the proof of Lemma 4.2, we have

(DE(ui), eik·x) ≥ εi, (DE(ui), eik·x) ≤ εi,

with εi → 0 with i. From the previous inequalities we conclude

(4.2) ‖DE(ui)‖ → 0

as i →∞. Thus (ui) is a (PS) sequence in V in the usual sense.
Denoting by K:V → V ∗ the map from V to its dual given by

(Ku)φ =
∫

T m

u̇ · φ̇ dx,
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we have

(4.3) K−1E′(u) = u−K−1J ′(u),

where J(u) =
∫

T m F (u) dx. K−1E′(u) is of the form Id − L, so the conclusion
follows if we can show that J ′(um) admits a convergent subsequence. This is due
to the continuity of K−1 (recall the observation at the beginning of the proof),
since from (4.2) and (4.3) we obtain

um = K−1E′(um) + K−1J ′(um) → K−1J ′(um).

But by our preliminary assumption um is bounded and J ′ is indeed compact (see
Proposition B.10 in [13]), so J ′(um) has a convergent subsequence.

It remains to show that a (PS)Mr sequence is bounded. Using Lemma 2.1,
the proof is the same as for the functional

I(u) =
1
2

∫
T m

(|∇u|2 − F (u)) dx,

which is presented in [13, p. 11].
Now the proof of Theorem 1.1 is a direct consequence of Theorem 3.6 and

Lemma 4.2. In fact, we only have to verify that conditions (a)–(c) in Theorem 3.2
hold. (a) is trivial and (b) and (c) follow in the standard way again using (a) in
Lemma 2.1. �

5. Concluding remarks

Once the existence of solutions has been established, their regularity follows
in the standard way, since the estimates provided in Lemma 2.1 allow us to use
elliptic regularity.

The extension of these ideas to the Hamiltonian case as well as to some other
problems like those involving singular potentials or to semilinear wave equations
is under current investigation.

Observe that in case some additional properties of the solutions obtained
here can be proved, these would provide more interesting invariant regions (e.g.
when the solution u is an embedding, then we would obtain an invariant torus).
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