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SYMMETRY BREAKING SOLUTIONS
OF NONLINEAR ELLIPTIC SYSTEMS

Javier Bracho — Mónica Clapp — Wac law Marzantowicz

Abstract. We consider nonlinear elliptic systems with Dirichlet boundary

condition on a bounded domain in RN which is invariant with respect
to the action of some group G of orthogonal transformations. For every

subgroup K of G we give a simple criterion for the existence of infinitely

many solutions which are K-invariant but not G-invariant. We include
a detailed discussion of the case N = 3.

1. Introduction

Consider the elliptic system

(℘)

{
−∆u = Fu(x, u) in Ω,

u = 0 on ∂Ω,

where Ω is a bounded smooth domain in RN , and F : Ω × Rd → R is a C1-
function. A solution to this problem is a vector-valued function u = (u1, . . . , ud) :
Ω → Rd which satisfies (℘).

If Ω is a ball or an annulus and F is radial in x one may ask whether
this problem has infinitely many nonradial solutions. This question has been
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extensively studied, see for example [1], [4], [5], [8]–[10], [17], [18], [21], [22],
[25], [28], [29]. One can also ask the question whether the problem has infinitely
many solutions which are nonradial but which possess some other specific type
of symmetry. For a single equation and some special nonlinearities Kajikiya
recently gave a characterization of those symmetries for which this question has
a positive answer [19], [20].

Here we address the following question: Assume that Ω is invariant with
respect to the action of some closed subgroup G of the group O(N) of orthogonal
transformations of RN , that is, gx ∈ Ω for every x ∈ Ω, g ∈ G. Moreover, assume
that

(SG) F (gx, u) = F (x, u) for every g ∈ G, x ∈ Ω, u ∈ Rd.

Given a subgroup K of G, are there infinitely many solutions u of (℘) which
are K-invariant but not G-invariant? In other words, are there infinitely many
solutions u which satisfy u(gx) = u(x) for every g ∈ K, x ∈ Ω, but for which
there exist g0 ∈ G, x0 ∈ Ω with u(g0x0) 6= u(x0)?

If G is not the whole orthogonal group O(N) this turns out to be, in gen-
eral, a harder question than the one about existence of K-invariant nonradial
solutions. The existence of infinitely many nonradial solutions requires careful
estimates on the growth of the energy levels of the radial solutions, which are
obtained using ODE-methods (see for example [1], [19]). These methods do not
apply to other symmetry groups G.

Here we give some positive answers to this question based merely on group
theoretical methods. We exploit an interplay between the given orthogonal ac-
tion of G on the domain Ω ⊂ RN and some properly chosen orthogonal represen-
tation structure ρ:G → O(d) on the space Rd of values of the function u. Our
results provide criteria for the existence of infinitely many K-invariant solutions
which are not G-invariant, in terms of the groups themselves, under the usual
growth conditions on the nonlinearity F . These criteria are easy to check. We
include a detailled discussion for the case N = 3.

Our methods apply also to other types of elliptic systems, including Hamil-
tonian systems. But since the goal of this paper is to study the symmetry
breaking phenomenon, we have chosen to restrict ourselves to the simplest type,
that of gradient systems (℘), to avoid additional technicalities. Our approach
should also be useful in the study of bifurcation of symmetry breaking solutions
of nonlinear problems, as considered in [14], [26], [27], [28].

2. Statement of results

Before stating our main results we recall some basic facts about transfor-
mation groups and introduce some notation. Details may be found for example
in [6], and [15].
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Let G be a closed subgroup of the orthogonal group O(N). The G-orbit of
a point x ∈ RN is the set Gx = {gx ∈ RN : g ∈ G}. It is G-homeomorphic to
the homogeneous space G/Gx, where Gx is the isotropy group Gx = {g ∈ G :
gx = x} of x. The isotropy groups of two points in the same orbit are conjugate.
The conjugacy class (Gx) of Gx is called an isotropy class. There exists a unique
isotropy class (PG) such that {x ∈ RN : (Gx) = (PG)} is open and dense in RN .
Any other isotropy class satisfies (PG) ≤ (Gx), i.e. PG ⊂ gGxg

−1 for some g ∈ G.
(PG) is called the principal isotropy class and G/PG is called the principal orbit
type of G.

Given a closed subgroup K of G we denote by NGK = {g ∈ G : gKg−1 = K}
the normalizer of K in G. The Weyl group of K in G is the quotient group

WGK = NGK/K.

For every subgroup Γ of WGK we write

Γ̃ := q−1(Γ)

where q:NGK →WGK is the natural epimorphism.
We assume the following standard conditions on F :

(F1) If N ≥ 3 there are constants 2 < p < 2∗ := 2N/(N − 2) and c > 0 such
that for every x ∈ Ω, u ∈ Rd,

|Fu(x, u)| ≤ c(1 + |u|p−1).

If N = 2 this assumption can be weakened, if N = 1 it can be omitted.
(F2) There are constants µ > 2 and R > 0 such that for every x ∈ Ω, u ∈ Rd,

|u| ≥ R,
0 < µF (x, u) ≤ u · Fu(x, u).

(S) F (x,−u) = F (x, u) for every x ∈ Ω, u ∈ Rd.

If d = 2s we identify Rd ≡ Cs. We say that F is toroidal in u = (z1, . . . , zi,
. . . , zs) if F (x, z1, . . . , zi, . . . , zs) = F (x, z1, . . . , |zi| , . . . , zs) for every x ∈ Ω,
zi ∈ C, i = 1, . . . , s.

The following result gives an easy criterion for the existence of symmetry
breaking solutions.

Theorem 2.1. Let Ω be G-invariant and let K be a closed subgroup of G.
Assume that F satisfies (F1), (F2), (S) and (SG).

(a) If WGK contains a subgroup Γ of order 2 such that P
eΓ ⊂ K, then

problem (℘) has infinitely many solutions which are K-invariant but
not G-invariant.

(b) If WGK contains a nontrivial subgroup Γ such that P
eΓ ⊂ K, and if

d = 2s and F is toroidal in u, then problem (℘) has infinitely many
solutions which are K-invariant but not G-invariant.
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The criteria given by this theorem depend merely on the subgroups K ⊂ G

of O(N) and are easy to check. We shall study the case N = 3 in detail and see
which subgroups K ⊂ G of O(3) satisfy this criteria. Notice that a necessary
condition for the existence of solutions which areK-invariant but not G-invariant
is that the K-orbit and the G-orbit of some point in Ω do not coincide. We shall
show that this condition is also sufficient if G 6= O(3) and the Weyl group WGK

contains an element of order 2. More precisely, we shall prove the following.

Theorem 2.2. Let K ⊂ G be proper closed subgroups of O(3) such that
Kx 6= Gx for some x ∈ R3. Assume that Ω ⊂ R3 is G-invariant and that F
satisfies (F1), (F2), (S) and (SG).

(a) If WGK contains an element of order 2, then problem (℘) has infinitely
many solutions which are K-invariant but not G-invariant.

(b) If WGK is nontrivial, d = 2s and F is toroidal in u, then problem (℘)
has infinitely many solutions which are K-invariant but not G-invariant.

For G = O(3) we obtain the following.

Theorem 2.3. Let K be a closed subgroup of O(3) such that K 6= O(3),
SO(3), O(2) × Zc

2, O(2), I × Zc
2, O × Zc

2. Let Ω ⊂ R3 be a ball or an annulus,
and assume that F satisfies (F1), (F2), (SNO(3)K) and (S) then problem (℘) has
infinitely many nonradial solutions which are K-invariant.

For d = 1 and F (x, u) = |u|p Kajikiya [19] showed that there are infinitely
many nonradial K-invariant solutions of (℘) on a ball or an annulus in RN if
and only if K acts nontransitively on SN−1. That is, if N = 3, problem (℘)
has infinitely many nonradial K-invariant solutions for every K 6= O(3), SO(3).
Theorem 2.3 does not cover all of Kajikiya’s cases: It does not include the groups
K = O(2) × Zc

2, O(2), I × Zc
2, O × Zc

2. On the other hand, it applies to more
general nonlinearities and, as we shall see below, the proof is quite elementary.
Kajikiya’s proof involves delicate arguments, including a careful analysis of the
asymptotic growth of the radial critical values of the associated functional, which
cannot be extended to groups other than O(N).

Our method provides, in addition, precise information on how the symme-
tries are broken (see our remarks in the following section, after the proof of
Theorem 2.1).

3. Intertwining solutions

In this section we prove Theorem 2.1. We shall obtain it as a consequence of
a multiplicity result for solutions of (℘) having specific symmetries.

Let G be a closed subgroup of O(N) and let ρ be a d-dimensional orthogonal
representation of G, that is, a homomorphism ρ:G → O(d). Let Ω ⊂ RN be
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G-invariant. A function u: Ω → Rd which satisfies

u(gx) = ρ(g)u(x) for all g ∈ G, x ∈ Ω,

will be called a ρ-intertwining function.
As in the previous section, we denote by (PG) the principal isotropy class

of G. We shall prove the following

Theorem 3.1. Let Ω ⊂ RN be G-invariant, and let ρ:G → O(d) be an
orthogonal representation such that PG ⊂ ker ρ. Assume that F satisfies (F1),
(F2), (S) and

(SG
ρ ) F (gx, ρ(g)u) = F (x, u) for every g ∈ G, x ∈ Ω, u ∈ Rd.

Then problem (℘) has infinitely many ρ-intertwining solutions.

Before giving the proof let us consider some easy consequences of this result.
If ρ is the trivial representation ρ ≡ 1 ∈ O(d), then a ρ-intertwining solution is
just a G-invariant solution. The trivial representation obviously satisfies PG ⊂
ker ρ = G. So Theorem 3.1 supplies, in particular, G-invariant solutions:

Corollary 3.2. Let Ω ⊂ RN be G-invariant. Assume that F satisfies (F1),
(F2), (S) and (SG). Then problem (℘) has infinitely many G-invariant solutions.

Theorem 3.1 also supplies noninvariant solutions. For example, if Ω is sym-
metric with respect to the origin, that is, x ∈ Ω if and only if −x ∈ Ω, we
may take G = {±1} and ρ(−1) = −1. Then 1 = PG = ker ρ. A ρ-intertwining
solution is just an odd solution, so we obtain the following.

Corollary 3.3. Assume that Ω is symmetric with respect to the origin, and
that F satisfies (F1), (F2), and F (−x, u) = F (x, u) = F (x,−u) for every x ∈ Ω,
u ∈ Rd. Then problem (℘) has infinitely many even solutions and infinitely many
odd solutions.

If d = 1, looking for odd solutions is a convenient way for obtaining sign
changing solutions, see for example [7].

We may also apply Theorem 3.1 to obtain solutions which are K-invariant
but not G-invariant. Recall that a representation ρ:G→ O(d) is said to be fixed
point free if for every 0 6= u ∈ Rd there is a g ∈ G such that ρ(g)u 6= u.

Corollary 3.4. Let Ω be G-invariant and let K be a closed subgroup of G.
Assume that there exists a fixed point free representation ρ:G→ O(d) such that
PG ⊂ ker ρ whose restriction to K is the trivial representation. Assume further
that F satisfies (F1), (F2), (S) and (SG

ρ ). Then problem (℘) has infinitely many
solutions which are K-invariant but not G-invariant.

Proof. By Theorem 3.1 there are infinitely many ρ-intertwining solutions.
Let u 6= 0 be such a solution. Then, since ρ(g) = 1 for every g ∈ K, it follows
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that u is K-invariant. Moreover, since ρ is fixed point free, given x0 ∈ Ω such
that u(x0) 6= 0 there is a g0 ∈ G such that u(g0x0) = ρ(g0)u(x0) 6= u(x0), that
is, u is not G-invariant. �

In order to apply Corollary 3.4 we need to look for fixed point free extensions
of the trivial representation of K. An easy case where such an extension exists
is when the K-fixed point space (RN )K = {x ∈ RN : gx = x for all g ∈ K} is
nontrivial. Then, any nontrivial orthogonal involution τ of V = (RN )K (that is,
any τ ∈ O(N) such that τ 6= 1, τ2 = 1 and τ(x) = x for every x ∈ V ⊥) satisfies
gτ = τg for every g ∈ K, and the group G = K ∪ {τ} admits a representation
ρ:G → O(d) which is trivial on K and ρ(τ) = −1. Thus, if (RN )K 6= {0}, Ω is
a ball or an annulus, and F satisfies (F1), (F2), (S) and (SO(N)) then problem
(℘) has infinitely many nonradial K-invariant solutions.

In general, a natural way to look for fixed point free extensions of the trivial
representation of K is by looking at fixed point free representations of the Weyl
group of K in G. This is the main idea involved in the proof of Theorem 2.1.
As in the previous section, for every subgroup Γ of WGK we write Γ̃ := q−1(Γ),
where q:NGK → WGK is the natural epimorphism of the normalizer onto the
Weyl group.

Proof of Theorem 2.1. If there exists a fixed point free representation
ρ: Γ → O(d) then ρ̃ = ρ ◦ q → Γ̃ → O(d) is a fixed point free representation
whose restriction to K is trivial. Our hypotheses imply that the assumptions
of Corollary 3.4 hold for G = Γ̃. Hence we need only to show the existence of
such a ρ. If Γ = {1, τ} the representation ρ: Γ → O(d) given by ρ(τ) = −1 is
fixed point free. If Γ contains an element ζ of order n, we may assume that
Γ is the cyclic group {1, ζ, . . . , ζn−1} which admits a fixed point free unitary
representation ρ: Γ → U(s). �

Note that the solutions given by Theorem 2.1 are K-invariant but not
(NGK)-invariant. In fact, they are not Γ̃-invariant, for some cyclic subgroup
Γ ∼= Zn of the Weyl group WGK. Moreover, they are ρ̃-intertwining for ρ̃ = ρ◦ q
where ρ:Zn → O(d) may be chosen to be any sum of nontrivial irreducible
representations of Zn.

Proof of Theorem 3.1. Assumptions (F1), (F2) and (S) guarantee that

Φ(u) =
1
2

∫
Ω

|∇u|2 dx−
∫

Ω

F (x, u)dx

is a well defined even functional of class C1 on H1
0 (Ω,Rd) and that it satisfies

the Palais–Smale condition and all other conditions of the symmetric mountain
pass theorem of Ambrosetti and Rabinowitz [2], [24]. The critical points of this
functional are the solutions of problem (℘). As usual, H1

0 (Ω,Rd) is endowed
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with the scalar product

〈u, v〉 =
d∑

i=1

∫
Ω

∇ui · ∇vi dx.

We define an action of G on H1
0 (Ω,Rd) as follows:

(3.1) (gu)(x) = ρ(g)u(g−1x), u ∈ H1
0 (Ω,Rd).

This is an orthogonal action, that is, 〈gu, gv〉 = 〈u, v〉 for every g ∈ G, u, v ∈
H1

0 (Ω,Rd). The ρ-intertwining solutions of (℘) belong to the G-fixed point set

H1
0 (Ω,Rd)G

ρ ={u ∈ H1
0 (Ω,Rd) : gu = u for every g ∈ G}

={u ∈ H1
0 (Ω,Rd) : u(gx) = ρ(g)u(x) for every g ∈ G}.

Assumption (SG
ρ ) guarantees that the functional Φ is G-invariant, that is,

Φ(gu) = Φ(u) for every g ∈ G, u ∈ H1
0 (Ω,Rd). Therefore ∇Φ(gu) = g∇Φ(u).

In particular, ∇Φ(u) ∈ H1
0 (Ω,Rd)G

ρ if u ∈ H1
0 (Ω,Rd)G

ρ . This implies that the
critical points of the restriction

Φ:H1
0 (Ω,Rd)G

ρ → R

of Φ to H1
0 (Ω,Rd)G

ρ are the ρ-intertwining solutions of (℘) (this property is
usually refered to as the principle of symmetric criticallity, see [23]), and that
Φ:H1

0 (Ω,Rd)G
ρ → R satisfies the Palais–Smale condition. We shall show that

H1
0 (Ω,Rd)G

ρ is infinite dimensional. Then the symmetric mountain pass theorem
of Ambrosetti and Rabinowitz [24, Theorem 9.12] asserts the existence of an
unbounded sequence of critical values of Φ:H1

0 (Ω,Rd)G
ρ → R.

Let P = PG be the principal isotropy class of G. The set Ω(P ) = {x ∈ Ω :
(Gx) = (P )} is open and dense in Ω. Moreover, the projection ϕ: Ω(P ) → Ω̂(P )

onto its orbit space Ω̂(P ) = {Gx : x ∈ Ω(P )} is a smooth fibre bundle with fibre
G/P [15, Theorem I.5.14]. Let ξ ∈ Ω̂(P ) and let δ > 0 be small enough so that
this bundle is trivial over the open ball B = Bδ(ξ) of radius δ centered at ξ
in Ω̂(P ). Since P ⊂ ker ρ, the function

C∞c (B,Rd) → C∞c (B × (G/P ),Rd)G
ρ
∼= C∞c (ϕ−1(B),Rd)G

ρ

given by w 7→ w̃, w̃(ζ, gP ) = ρ(g)w(ζ), is well defined and a linear isomorphism.
Therefore, H1

0 (ϕ−1(B),Rd)G
ρ is infinite dimensional and, since H1

0 (ϕ−1(B),Rd)G
ρ

is a subspace of H1
0 (Ω,Rd)G

ρ , this last space is also infinite dimensional. This
concludes the proof of Theorem 3.1. �

Note that the interplay between the given orthogonal action of G on the
domain Ω ⊂ RN and the orthogonal representation structure ρ:G → O(d) on
the space Rd is reflected by the infinite dimensional representation structure on
H1

0 (Ω,Rd) given by (3.1). As we have just seen, condition (SG
ρ ) guarantees that
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Φ is G-invariant and allows us to reduce our problem to finding critical points of
the restriction of Φ to the G-fixed point space H1

0 (Ω,Rd)G
ρ . The crucial step in

the proof of Theorem 3.1 is to show that this space is infinite dimensional. This
is guaranteed by the assumption that PG ⊂ ker ρ. In fact, one can show that, if
H1

0 (Ω,Rd)G
ρ 6= {0}, then it is infinite dimensional. Conditions (F1), (F2) and (S)

are the standard ones which are used to prove the existence of infinitely many
solutions for the gradient system (℘).

Thus, similar results may be obtained for other types of elliptic systems
under appropriate growth conditions on the nonlinearity. For example, one may
consider Hamiltonian systems (see for example [16] and the references therein), or
systems where the symmetries are perturbed either by adding to the nonlinearity
a noneven lower order term, or by a nonhomogeneus boundary condition (see for
example [13], [12] and the references therein).

One may also replace condition (S) by a condition which involves the action
of another group T on Rd as in [13] where F is required to be ρ̃-invariant in u

with respect to a representation ρ̃:T → O(d) of a torus, a p-torus or a cyclic p-
group T . In this case one should also assume that the representation ρ:G→ O(d)
commutes with ρ̃, that is, ρ(g)ρ̃(t)x = ρ̃(t)ρ(g)x for each g ∈ G, t ∈ T , x ∈ Rd.

As was shown in the proof of Corollary 3.4, if ρ is fixed point free, the
solutions provided by Theorem 3.1 are not G-invariant but they will be K-
invariant for every subgroup K of G such that K ⊂ ker ρ. It is worthwhile
to emphazise that Theorem 3.1 may be used to obtain solutions of a special
analytical form. We illustrate this with the following example.

Let Ω = D2 = {z ∈ C : |z| < 1} be the unit disk in the complex plane C, and
let G = SO(2) ⊂ O(2) be the group of rotations of the plane R2. The action of
the rotation (

cos θ − sin θ
sin θ cos θ

)
, 0 ≤ θ < 2π,

on R2 is the same as multiplication with the unit complex number eiθ ∈ S1 ≡
SO(2) on C ≡ R2. This is a free action on D2 \ {0}, therefore, PS1 = 1. It is well
known that every irreducible representation of S1 is either the one-dimensional
trivial representation ρ0(eiθ) = 1 or one of the countably many two-dimensional
representations ρn:S1 → SO(2) given by the formula

ρn(eiθ) =
(

cosnθ − sinnθ
sinnθ cosnθ

)
, n ≥ 1.

That is, ρn(eiθ) acts on C ≡ R2 by multiplication with einθ ∈ S1. For d = 2s, we
denote again by ρn:S1 → SO(d) the direct sum of s copies of the representation
ρn defined above. If we write u ∈ H1

0 (D2,Rd) in polar coordinates, u(r, ϕ),
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0 ≤ r < 1, 0 ≤ ϕ < 2π, and expand it in Fourier series with respect to ϕ,

u(r, ϕ) =
∞∑

k=0

ak(r)eikϕ, with ak(r) =
1

2πi

∫ 2π

0

u(r, θ)eikθdθ ∈ Cs,

then, by definition, u is ρn-intertwining if and only if
∞∑

k=0

ak(r)eik(ϕ+θ) = u(r, ϕ+ θ) = ρn(eiθ)u(r, ϕ) =
∞∑

k=0

ak(r)ei(kϕ+nθ).

Therefore, u is ρn-intertwining if and only if ak ≡ 0 for every k 6= n, that is,
if and only if u is of the form u(r, ϕ) = an(r)einϕ. From this discussion and
Theorem 3.1 we conclude the following.

Proposition 3.5. Let Ω = D2 be the open unit disk in R2. Assume that d =
2s and that F satisfies (F1), (F2), and (S), and is such that F (eiθz0, e

inθz1, . . . ,

einθzs) = F (z0, z1, . . . , zs) for every 0 ≤ θ ≤ 2π, z0 ∈ Ω, zi ∈ C, i = 1, . . . , s.
Then problem (℘) has infinitely many solutions of the form u(r, ϕ) = a(r)einϕ,
with a ∈ H1

0 ([0, 1],Rd). In particular, if F safisfies (F1), (F2), (SG) and is
toroidal then this assumption is satisfied for all n and consequently for each
n ∈ N problem (℘) has infinitely many solutions of the above form.

4. The case N = 3

Now we shall investigate which subgroups K ⊂ G of O(3) satisfy the hy-
potheses of Theorem 2.1. We recall some well known facts on the subgroups of
O(3). Details may be found in [3, Section 8.2], [11], and the references therein.

The orthogonal group O(3) consists of all 3×3 matrices g such that gt = g−1.
The special orthogonal group SO(3) is the subgroup of those matrices whose
determinant is 1. The center of O(3) is the group Zc

2 = {±1}. We identify O(3)
with SO(3)× Zc

2 via the isomorphism

SO(3)× Zc
2
∼= O(3), (g, t) 7→ t · g.

As usual, we think of O(2) as being the subgroup of SO(3) generated by the
matrices

θ =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 , κ =

 1 0 0
0 −1 0
0 0 −1

 ,

θ ∈ [0, 2π), and denote by Zm the cyclic group with m elements and by Dm the
dihedral group with 2m elements.

The subgroups of O(3) are well known. Up to conjugacy they fall into three
classes:

(I) Subgroups of SO(3). The proper subgroups of SO(3) are the planar
groups O(2), SO(2), Dm (m ≥ 2), and Zm (m ≥ 1), and the oriented symmetry
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groups I of the icosahedron, O of the octahedron and T of the tetrahedron. I
is isomorphic to the alternating group A5, O to the symmetric group S4 and T

to the alternating group A4. Their normalizers and Weyl groups in O(3) are as
follows:

K NO(3)K WO(3)K

SO(3) O(3) Z2

O(2) O(2)× Zc
2 Z2

SO(2) O(2)× Zc
2 Z2 × Z2

Dm,m ≥ 3 D2m × Zc
2 Z2 × Z2

D2 O × Zc
2 D3 × Z2

Zm,m ≥ 2 O(2)× Zc
2 O(2)× Z2

I I × Zc
2 Z2

O O × Zc
2 Z2

T O × Zc
2 Z2 × Z2

(II) Subgroups of O(3) which contain −1. These are of the form K = H×Zc
2

where Zc
2 = {±1}. Their normalizers are NO(3)K = NO(3)H.

(III) Subgroups of O(3) not contained in SO(3) which do not contain −1.
These are determined by their intersection K ∩ SO(3) with SO(3) and their
projection ψ(K) ⊂ SO(3) where ψ:O(3) → SO(3) is given by ψ(±1 · g) = g for
every g ∈ SO(3). Their normalizers and Weyl groups in O(3) are as follows.

K ψ(K) K ∩ SO(3) NO(3)K WO(3)K

O(2)− O(2) SO(2) O(2)× Zc
2 Z2

Dd
2m(m ≥ 2) D2m Dm D2m × Zc

2 Z2

Dz
m(m ≥ 2) Dm Zm D2m × Zc

2 Z2 × Z2

Z−2m(m ≥ 1) Z2m Zm O(2)× Zc
2 O(2)

O− O T O × Zc
2 Z2

We shall need the following lemmas.

Lemma 4.1. If G is a finite subgroup of O(N) then its principal isotropy
class is PG = 1.

Proof. dim ker(g − 1) ≤ N − 1 for every g ∈ G, g 6= 1. Since G is finite,⋃
{ker(g − 1) : 1 6= g ∈ G} 6= RN . In other words, there is an x ∈ RN such that

gx 6= x for every g ∈ G\{1}. �

Lemma 4.2. The principal isotropy class of a subgroup G of O(3) is

(a) PG = 1 if G 6= O(3), SO(3), O(2)× Zc
2, and O(2)−,
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(b) PO(2)×Zc
2

= PO(2)− = {1,−1 · κ},
(c) PSO(3) = SO(2) and
(d) PO(3) = SO(2)× Zc

2.

Proof. For the finite subgroups of O(3) the result follows from Lemma 4.1.
The infinite ones are O(3), SO(3), SO(2), SO(2) × Zc

2, O(2), O(2) × Zc
2 and

O(2)− for which the assertion can be easily verified. �

Proof of Theorem 2.3. By Theorem 2.1 it suffices to show that for every
such K there is a subgroup Γ of WO(3)K of order two such that P

eΓ ⊂ K. If
K is in class (I) then, by assumption, K 6= SO(3), O(2). If K = Dm, I, O or T
its normalizer is finite and, by Lemma 4.1, any subgroup Γ of WO(3)K satisfies
P
eΓ = 1. If K = SO(2) the epimorphism

q:O(2)× Zc
2 → Z2 × Z2

of the normalizer onto the Weyl group is given by q(θ) = (1, 1), q(κ) = (−1, 1),
q(−1) = (1,−1). By Lemma 4.2 any subgroup Γ not containing q(−1 · κ) =
(−1,−1) satisfies P

eΓ = 1. If K = Zm the epimorphism

qm:O(2)× Zc
2 → O(2)× Z2

is given by qm(θ) = (θm, 1), qm(κ) = (κ, 1), qm(−1) = (1,−1). So any subgroup
Γ not containing qm(−1 ·κ) = (κ,−1) satisfies P

eΓ = 1. If K is in class (II) then,
by assumption, K 6= O(2)× Zc

2, I × Zc
2, O × Zc

2. The groups K = Dm × Zc
2 and

T × Zc
2 have a finite normalizer so again any subgroup Γ of WO(3)K satisfies

P
eΓ = 1. For K = SO(2) × Zc

2 we take Γ = Z2, and for K = Zm × Zc
2 we

may take any subgroup Γ of order two of O(2). In both cases Γ̃ ⊂ O(2) and,
hence, P

eΓ = PO(2) = 1. If K is in class (III) and K = Dd
2m, D

z
m or O−,

then it has a finite normalizer and any subgroup Γ of WO(3)K satisfies P
eΓ = 1.

For K = O(2)− we take Γ = Z2. Then Γ̃ = O(2) × Zc
2 and, by Lemma 4.2,

P
eΓ = {1,−κ} ⊂ O(2)−. Finally, for K = Z−2m the projection

q−m:O(2)× Zc
2 → O(2)

is given by q−m(θ) = θm, q−m(κ) = κ, q−m(−1) = π. By Lemma 4.2 any subgroup
Γ not containing q−m(−1 · κ) = πκ will satisfy P

eΓ = 1. �

Note that the groups K excluded by Theorem 2.3 are precisely those which
satisfy that Kx = (NO(3)K)x for every x ∈ R3. This is a necessary condition for
applying Theorem 2.1. Indeed, recall that the solutions provided by Theorem
2.1, and hence those given by Theorem 2.3, are K invariant but not (NO(3)K)-
invariant.

Proof of Theorem 2.2. Let K ⊂ G  O(3). If NGK 6= SO(3), O(2) ×
Zc

2, O(2)− then, by Lemma 4.2, every subgroup Γ of WGK satifies P
eΓ = 1. If
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WGK contains an element τ of order 2 we take Γ = {1, τ}. In any case WGK

contains a nontrivial subgroup, so Theorem 2.1 gives the result. Observe that
NGK = NO(3)K ∩ G. So we are left with the cases NO(3)K = O(2) × Zc

2 and
G = O(2)×Zc

2 or O(2)−. If G = O(2)×Zc
2 = NO(3)K then NGK = NO(3)K = G

and Theorem 2.3 gives the result. If G = O(2)− and NO(3)K = O(2)× Zc
2 then

NO(2)−K = O(2)− and K = SO(2) or Zm. Since K = SO(2) has the same
orbits as G = O(2)− this case should be excluded. For K = Zm the quotient
map qm:NO(2)−Zm = O(2)− → O(2)− = WO(2)−Zm satisfies qm(−1 ·κ) = −1 ·κ.
So P

eΓ = 1 if Γ = {1, π}. �
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E-mail address: roli@matem.unam.mx

Mónica Clapp

Instituto de Matemáticas, UNAM
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