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INVOLVING A CRITICAL SOBOLEV EXPONENT
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ABSTRACT. We consider the semilinear Schrédinger equation
A u+V(z)u = Q(:v)|u|2*_2u.

Assuming that V changes sign, we establish the existence of a solution u # 0

in the Sobolev space H}A v (RN). The solution is obtained by a min-max

type argument based on a topological linking. We also establish certain
regularity properties of solutions for a rather general class of equations
involving the operator —A 4.

1. Introduction
In this paper we consider the semilinear Schrodinger equation
(1.1) —Aqu+ V(= Q@) %u, we Hyy(®Y),

where —Ay = (—iV + A)?, w:RY — C, N >3, 2* := 2N/(N — 2) is the critical
Sobolev exponent. The coefficient V' is the scalar (or electric) potential and

A= (Ay,...,An):RY — R¥ the vector (or magnetic) potential. Throughout
this paper we assume that A € L2 (RY), V € L _(RV) and V— € LN/?(RV).
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Here V'~ is the negative part of V', that is V™ (z) = max(—V (z),0). It is assumed
that the coefficient @ is positive, continuous and bounded on R™. Further
assumptions on @) will be formulated later.

We now define some Sobolev spaces. By Dif (RN) we denote the Sobolev
space defined by

DYP(RY) = {u:ue L (RY), Vaue LA(RN)},

where V4 = (V +iA). The space D;*(RY) is a Hilbert space with the inner
product

VauV qvdzx.
RN

It is known that the space C5°(RY) is dense in DY*(RN) [8]. Equivalently
DY?(RN) can be defined as the closure of C5°(RY) with respect to the norm

Jullyys = [ | 9 u da.
RN
By H!

AV (R™) we denote the Sobolev space obtained as the closure of C§°(RY)

with respect to the norm
[[ull7 =/ (IVaul® + V7 (2)|ul?) de,
A,V+ RN

where V1 (z) = max(V(x),0). H}

AV (R™) is a Hilbert space with the inner

product
/ (VauVav + VH(2)uv) dz.
]RN

Obviously, we have a continuous embedding H} |, (RY) C D*(RV); hence in
particular, [u| € L2 (RY) whenever u € H . (RY).
We shall frequently use in this paper the diamagnetic inequality (see [11])

(1.2) IV|u|| < |Vau| ae. in RY,

This inequality implies that if v € H} . (RY), then |[u] € D"2(R"), where
DY2(RY) is the usual Sobolev space of real valued functions defined by

DY2(RN) = {u: Vu e L*(RY) and u € L*" (RV)}.

Solutions of (1.1) will be sought in the Sobolev space HY |, (RY) as critical
points of the functional

1

T =5 [ (VauP+ V@R =5 [ Q@ d.

It is easy to see that J is a C''-functional on H} |, (RY).
The paper is organized as follows. Section 2 is devoted to the regularity prop-
erties of solutions of (1.1). We show that solutions in Hix_v+ (RY) are bounded
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and decay to 0 at infinity. In Section 3 we establish the Palais—Smale condi-
tion for the variational functional J. The existence results for (1.1) are given in
Section 4. First we solve a weighted linear eigenvalue problem for the operator
—Ay + V7T, If the first eigenvalue p; > 1, then a solution is obtained through
a constrained minimization. This situation has already been envisaged in the
paper [1]. If y; <1 we employ a topological linking argument.

Problem (1.1) with A = 0 has an extensive literature. However, the interest
in the case A # 0 has arisen recently ([1], [7], [8], [10], [14]). The importance of
problem (1.1) in physics has been discussed in the paper [1].

In this paper we use standard notations. In a given Banach space X weak
convergence is denoted by “—” and strong convergence by “—7”.

2. The regularity of solutions involving the operator A4

1
loc

Let V be a nonnegative function in L (RY). We commence by establishing

the integrability properties of solutions of the equation
(2.1) —Aju+V(z)u=g(z)u inRY,
It is assumed that g:R™ — R is a measurable function satisfying
l9(2)] < a+b(z) onRY,
where a > 0 is a constant and b is a nonnegative function in LV/2(RN). Let
¢(z) = n(«)*u(z) min(|u(e)|”~*, L),

where 8 > 1 and L > 0 are constants, u € H} (R") and 7 is a C'-real valued
function which is bounded together with its derivatives.

In what follows, xqo denotes the characteristic function of the set ). By
straightforward computations we have

Vaé =2nVnamin(|u|®~, L) + 7°V qumin(|u|’~1, L)
+ (B = Dn*ulul’ 2V |ulx (ujp-1 <1y

and

VauV 4 = |V aul?n® min(|ul’~!, L) + 2nVnumin(|ul’~!, L)V 4u
+ (8 — Dl 2V ulx(jup-1 <}V au.

We now observe that

Re (uV au) = Re (Vu + iAu)u = Re (Vu) = |u|Re (hquu) = |u|V|ul.
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Taking the real part of V4uV 4¢ we obtain the following inequality:

(2.2) Re(VauVad) =|Vaul’n’ min(ju”", L) + 27V V |ul[u| min(|u/”, L)
+ (8 = V0P |ul* Y ul PX (s <y
> |V aul?n? min(|u|? 1, L) + 29V Vu|u| min(|u/?~', L).

LEMMA 2.1. Solutions of equation (2.1) in H}LV(RN) belong to LP(RYN) for
every p € [2%,00).

PrROOF. We adapt to our case an argument which may be found e.g. in [16,

Appendix B]. We test equation (2.1) with ¢ = umin(|u[?~1, L). It then follows
from inequality (2.2), with n = 1, that for every constant K > 0 we have

(2.3) /\vAu|2min(|u|ﬂ—1,L)dx
RN

Sa/ |u|2min(|u|ﬁ_1,L)dx—|—K/ lu|? min(|u|?~*, L) dz
RN b(z)<K

2/N
+ (/ bz)N/? d:r)
b(x)>K

([ minul =02 2227

|u|? min(|ul’~t, L) d + (/
N b(z)>K

(N-2)/N
. (/RN(|U| min(|u|#=1/2 [1/2))? dm) )

On the other hand, by the diamagnetic inequality we have

(N-2)/N

<(a+K) / b(z)N/? dx) o

R

(2.4) / |V|u\|2min(\u|ﬁ_1,L)dx§/ IV auf2 min(|u|~, L) dz.
RN RN
We also have
(2.5) / 19 (] min(ju] D72, L1/2)) 2 da
]RN
§2/ |V|u||? min(|u|®~t, L) dx
RN

(B—-1)? _
T IVl | X ugp-1 < 1y da
RN

< (2+(ﬁ_21)2)/ |V |u|[? min(|ul®~, L) dz.
RN
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Combining (2.3)—(2.5) we obtain
[ 19l min(lul 072, £12) s
RN

<t (24 CL0) [ w2,y o

(N—2)/N
([ ulminu =2 2y ac)
RN

N/2dx — 0 as K — oo, taking K sufficiently large and apply-

Since fb(z)>K b(x)
ing the Sobolev inequality to the left-hand side above, we obtain

2/2*
(2.6) (/ (|u|min(|u|<51>/2,L1/2))2*dx>
RN
gCl(K,B)/ (2 min(|ul®~", L) dz
RN

for some constant Cy(K,3) > 0. We now set §+ 1 = 2*. Letting L — oo we
derive from the above inequality that

2/2*
</ |u|(2*N)/(N—2) d.%‘) < Cl(K72*)/ |u‘2* dx
RN RN

and thus v € L(Q*N)/(N_2)(RN). A standard application of a boot-strap argu-
ment to (2.6) completes the proof. O

PROPOSITION 2.2. Ifu € H} ,(RY) is a solution of (2.1), then ue L>(RY)
and lim),| o u(z) = 0.

Proor. We follow some ideas from the proof of Theorem 8.17 in [9] (in par-
ticular, we use Moser’s iteration technique). Let 1 be a C''-function in RY with a
compact support. Testing (2.1) with ¢ = n?umin(ju|’~!, L) and using inequality
(2.2) we obtain the estimate

/ |V aul*n? min(|u|’~, L) da + 2/ nVnV|u|lu| min(ju|’ 1, L) da
RN RN
< / blu|*n? min(|ul’~t, L) dx + a/ lu|?n? min(|ju|®~!, L) dz.
RN RN
Hence by the diamagnetic inequality and since

1
ST VIull® = 2ul[Val* < 2|V ul[* + 2n|u| V]u|Va,
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we get

1
5 [ VIl min(ul? ! Lydo < [ bl mingl® 1, 1) de
RN ]RN

+2/ |V |ul? min(|ul®~!, L) dx—i—a/ [u*n® min(|ul?~1, L) da.
RN RN

Letting L — oo we obtain

1
! / 9l 22l dr < / bl 2 da
RN RN

2
+2/ |V 2 u)? dm+a/ lulT1n? dz.
RN RN

Substituting w = |u|®*1Y/2 in this inequality, we obtain

2
2.7) Vuw|*n? d
@D G L, Vulrds

§/ bwznzdx—i—Q/ \Vn|2w2dx+a/ w?n? du.
RN RN RN

We now observe that

/ |V(w77)|2dx§2/ |Vw|2n2dm+2/ |V |2w? du,

RN RN RN

which combined with (2.7) gives

/ |V (wn)|? dz < (8 + 1)2/ bw?n? dz
RN

RN

+2((B+1)2+1) /RN \Vn|?w? de + (8 + 1)%/}R nw? dz.

N

It then follows from the Holder and Sobolev inequalities that

(2.8) S(/RN (wn)?" da

2/N (N—2)/N
S(,3+1)2</RNIJN/2dx> (/RN(wn)Q* dx)

L@+ 07+ [ Vol de v+ 07 [ e ds
RN RN

)<N2>/N

where

S:inf{/ |Vu\2d;v:u€C§°(RN),/ u|2*dm:1}
RN RN

is the Sobolev constant. To proceed further we choose R > 0 so that

(6+1)2</ bN/2dx>2/N <3
|z|>R — 2
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Assuming that suppn C (|z| > R) we derive from (2.8) that

(2.9) S(/RN (wn)* dm)

(N—2)/N
<4((B+1)% + 1)/ Vnl2w? de
RN

+2a(B+1)2 / n*w? dx.
RN

We now make a more specific choice of n: n € CYRY,[0,1]), n(z) = 1 in
B(zg, 1), n(z) = 0 in RY — B(zq,72), |Vn(z)] < 2/(re —r1) in RY, 1 <y <
ro < 2. It is also assumed that B(zg,r2) C (Jz| > R). It then follows from (2.9)

that
1/2* 1/2
</ w? dx) < 714(6 ) (/ w? dz> )
B(iE(),T‘l) TQ - Tl B(l’o,’l"g)

where A is an absolute constant. Setting v = F+1=2* x = N/(N — 2) we get

1/vx A 2/y 1/~
</ |u|7X dx) < ( i ) (/ |u]” dm) .
B(zo,71) r2—n B(zo,72)

To iterate this inequality (which holds for any v > 2*), we take s, = 1+ 27™,

T1= 8m, s = Sm—1 and replace v = 2* by yx™ ', m =1,2,.... Then we get

o 1/(vx™)
</ |u|X 7dx>
B(xo,8m)

Ayl \ 20X o /(yx™™h)
< <7X> </ | ¥ w)
Sm—1 — Sm B(x0,5m—1)

= (A’Y>2/(’YXM71)2(2m)/('YXM71)X2(m—1)/(’YXm71)

o /(™)
(/ " o) |
B(xzo,5m—1)

and by induction,

. 1/(vx™)
</ |u)X ”dm)
B(x0,8m)

< (Ay)@/ St /X)) 92/7) Z}';Bl((j+1)/xj)x(2/v) SG/X)

1/v
. </ |u|” d:c)
B(CE(),S())

for each m > 1. Since sg = 2 and s, — 1, we deduce the following estimate
by letting m — oo: there exist constants R > 0 and C > 0 such that for every
B(zo,2) C (Jx] > R) we have

1/
sup Ju(x)| < C(/ |u|” dm) .
B(Io,l) B($0,2)
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This inequality yields lim|,|_ o [u(z)| = 0. To prove the boundedness of u in the
ball B(0, R) we fix T € B(0, R), choose r > 0 so that

N
(ﬁ+1)2</ bN/de>2/ < §
B(z,r) -2

and then let n have support in B(Z,r). We now repeat the previous argument
with a suitable rescaling in the ball B(Z,r) to obtain the boundedness of u in
B(z,r/2). By a standard compactness argument we show that u is bounded in
B(0, R). This combined with the first part of the proof shows that v € L>°. O

We now observe that any solution v € H }X,V+ (R™) of the equation
(2.10) —Au+V(z)u = f(x, |u])u,
where |f(z,|u])] < c(1 + |u|?> ~2), satisfies
(2.11) —Aqu+VT(@)u= (V" (2) + f(z,|u]))u = g(x)u.

Since |g(z)] < ¢+ (V~(2) + cju(z)]?* ~2) and V= € LN/2(RN), |u]* 2 <
L¥ /@ =2(RN) = LN/2(RY), we can state the following result:

COROLLARY 2.3. Letu € HY |, (RY), N > 3, be a solution of (2.10). Then
u € L=(RY) and

lim wu(z) =0

|z|—o00

(in the sense that limp .o ||ul| Lo @&~ —B(0,r)) = 0)-

REMARK 2.4. Let N = 2. If u € HX‘H(RZ) N L?(R?), then u € LP(R?)
for all p € [2,00) by the diamagnetic inequality and the Sobolev embedding
theorem. Suppose g(z) in (2.1) is such that b € LI(R?) for some ¢ € (1,2)
and u € H}x7v+ (R?*) N L?(R?) is a solution of (2.1). Then the conclusion of
Proposition 2.2 remains valid. Indeed, the argument employed there applies
except that the L? -norm in (2.8) should be replaced by the L7 -norm, where
qd = q/(qg—1), and one needs to take v = 8+ 1 = ¢, x = ¢'/2. Also the
conclusion of Corollary 2.3 remains valid if u € Hfll,‘” (R®) N L3(R?), V~ €
LY(R?) and |f(x,|ul)| < c(1+ |u|") for some ¢ € (1,2) and r > 0.

Note in particular that Corollary 2.3 (or Remark 2.4 if N = 2) applies to all
solutions found in [1], [8] as well as to the solutions found in Theorems 4.1, 4.2
and Corollary 4.3 below.

As an application of Corollary 2.3 and Remark 2.4 we establish an exponen-
tial decay of solutions of (2.10). However, we need additional assumptions on V
and f.
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PROPOSITION 2.5. Suppose that f > 0, f(z,0) =0, VT € LF (RN) and

V= € LP(RY) for some p > N/2. Moreover, assume that there exist constants
a >0 and R > 0 such that V(z) > a for || > R. Ifu € HY , (RY) is a solution
of (2.10), then

lu(z)] < Ce=®#l g.e. in RV,
where a® = a/2.
PROOF. Since V > a for |z| > R, it is easy to see that v € L?(RY), and

hence u € L4(R™N) for all 2 < ¢ < 0o according to Corollary 2.3 (or Remark 2.4).
Therefore there exists a unique solution v € H 1(RN ) of the equation

—Av + V+(IL')’U = (Vi(x) + f(wv |U|))|U|,

and by standard regularity theory and the maximum principle v is continuous
and > 0. Moreover, it follows from (2.11) and Theorem B.13.2 in [15] that
|u| < v a.e. (more precisely, one obtains this inequality by integrating (B41) of
[15] from ¢ = 0 to t = oo; the hypothesis that p > N/2 is used in order to
have v continuous and V+ € K¢, V= € Ky in the notation of [15]). Now it
remains to establish the exponential decay of v. We follow the argument used in
Proposition 4.4 from [17]. Since v satisfies

—Av+ V() < (V7 (x) + f(z,|ul))v inRY,

we have
—Av < (=V(2) + f(z, |u]))v < —gv for |z] > R
by taking R larger if necessary. Let

W(z) = Me=*0=I=8) and Q(L)={z: R < |z| < L and v(z) > W(z)},

where a constant M > 0 is chosen so that v(z) < W(z) for |z| = R. If % = a/2,
we get

on Q(L). By the maximum principle

W(z) —v(z) > min (W —v) > min(0, min (W —v)).

xz€dQ(L) |z|=L
Since lim|,|—o v(2) = lim;| oo W(x) = 0, letting L — oo, we deduce that

v(z) < W(x) = Me 2= for |z| > R. O
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3. Palais—Smale sequences

The following result is well-known, but we include it for the sake of com-
pleteness:

LEMMA 3.1. Let {un,} C H} 1 (RY) be a sequence such that

J'(um) =0 in Hyy (RY)  and J(up,) — c.

Then {uy,} is bounded in HY |, (RY).

PROOF. Arguing by contradiction, let {u,,} be unbounded in Hix,v+ (RM).
We set v,,, = Um/”“m”Hi‘ o We may assume that v,, — v in H}\,V+ (RV)
1OC(RN)ﬂfor each 2 < p < 2* and a.e. on RY. For every
XS H}x,w (RN) we have

and v,, — v in L?

1 - — . —
(3.1) ——m—— / (VavrmVad +Vu,d)de = / Qlvm|* “2vmbdr +o(1).
RN RN

u
Tl 2.

Hence
/ Qv|* “*vgdx =0
RN

for every ¢ € Hi‘ v+ (RY) and consequently v = 0 a.e. on RY (recall Q > 0).
Since V~ € LN/z(RN) we see that lim,,_ oo fRN V= |vm|?dx = 0. Therefore
substituting ¢ = v,, in (3.1) we get

||vm||§{1 E/ (|VAvm|2+V+|vm\2)d$= l|tm ?{*;2 / Q|vm‘2* dx +o(1).
A vt RN A vt JRN

Since J(uy,) — ¢, we also have

1 1
plomlin =5 [ (Vavnl+ Vo) do
A, v+ 2 RN
||um||§£2+ )
s W / Qlom[* da + o(1).
2 .
The last two relations imply that ||v,, || gt . — 0, which is impossible. O
A,V

In Proposition 3.2 below we determine the energy level of the functional J
below which the Palais—Smale condition holds. Let

Q= sup Q(x).

z€RN
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PROPOSITION 3.2. Let a sequence {up} C H} 1+ (RY) be such that
SN/2

W and Jl(um) —0 H_l (RN)

J(up) =< AVt

Then {un} is relatively compact in H} ., (RY).
ProOF. By Lemma 3.1 {u,, } is bounded. Therefore we may assume u,,, — u

in H.

Av+ (RN) and u,, — u a.e. Let u,, = vy, + u. Then

/(|vAum|2+v+|um|2)dx:/ (Y Avml? + VF [om]?) da
RN RN
+/ (|V au)? + VT |ul?) dz + o(1),
]RN
/ V_|um|2dx:/ V_|vm\2dac+/ V= |ul? dx + o(1)
RN RN RN

= / V" ul? dz 4 o(1)
RN

and by the Brézis—Lieb lemma [2], [18],

/ Qlup|? dz = / Qlom|? do +/ Qlul dz + o1).
RN RN RN
As u is a solution of (1.1), it follows that
o(1) = (J'(tm), tm) = (J'(Vm), vm) + (J'(u),u) + 0(1) = (J'(vm), vm) + o(1),
and thus

(3.2) lim (IV 4| + VF|um)?) dz = lim Qlom|* dx =1
]RN

m—00 RN m—00

after passing to a subsequence. It remains to show that | = 0. We have

T = Jw) = 57 w.0) = 5 [ Qi =0

and
c=J(um)+0(1) = J(vm) + J(u) + o(1) > J(vm) + o(1).
Hence, using (3.2),
! 11 SN/2
-— = - — S cl —————.
N \2 2 NQWN-2)/2

By the Sobolev and the diamagnetic inequalities,

S o
(/ lem|2*dm> ik (/ [ ? dsc)
RN RN

<STIQ¥* / (IV avm|® + VT v,|?) dz.
RN
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Letting m — oo we get [2/27 < 5_1@2/2*1, so either [ > S’N/2/@(N_2)/2 which
contradicts (3.3) or I = 0. O

4. Existence results — linking

First we study the linear eigenvalue problem
(4.1) ~Apu+VH(@)u=pV = (z)u in RV,

We assume that V= # 0. Since the functional u — [on V™~ |u|? dz is weakly
continuous in Hi\,v+ (RN), problem (4.1) has a sequence of eigenvalues p; <
o < pus < o.o.py — 00. Let us denote the corresponding orthonormal system
of eigenfunctions by ej(x), ea(x),. ... Since the first eigenvalue is defined by the
Rayleigh quotient

. Jav (IVaul® + VF [ul]?) do
1= . inf — )
weH . (RN)—{0} Jon V—lul? da

we see that p3 > 0. Indeed, the denominator is weakly continuous, so the
infimum is attained at some @ # 0. It follows from Proposition 2.2 that e; €
L>(RY) and limy o €i(r) =0,7=1,2,...

Following the paper [6] we distinguish two cases: (i) 1 > 1 and (ii) 0 < p; <
i S g1 <l <y <ol

In the proofs of the existence results in both cases, we shall use a family of

instantons
Usy(x) = s<N2>/2U<x€y>, e>0, yeRY,
(N(N —2))N=2)/4
(1 + o) =27

where U(z) =
It is known [18] that
—AU=U*"" inR".

Moreover, we have

/ |VU\2d:z::/ U? de = SN2,
RN RN

Let 1 be a C'-function such that ¢ (x) = 1 for |z — y| < §/2 and ¥ (z) = 0
for |z — y| > 6. We need the following asymptotic relations for we , = YU, 4:

[we,y 13- = SN2+ 0O(@EN),

(4.2) ||Vw€,y||§ — SN/2 +O(€N72)7
we y,[12:7F = O(eWN=2/2),
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Since V— € LN/2(RY), we also have

3 / V=ow,, de = O(eN 72/ loge|(N2)/N)
RN
Indeed,
“/RN V_wE,y dx < ||V_||N/2Hw€’y”1v/(N_2)
and
N/2
N/(N-2) N/(N—2) da < / 6761
w — w " c .
ey VNS = [ e <o
1
= N/Q/ — —  _dx < N/2|1
e T = C2€ oge|.
B(0,5/e) (1+]z[2)N/2 |

In case (i) (Jgn (IVau[?+V]u|?) dz)!/? is an equivalent norm in HY |, (RV).

Indeed, we have

/ (|V aul? + VTul?) dx 2/ (|V aul® 4+ V|u|?) dz
RN RN

1
> <1 - > / (|V aul® + VT |ul?) dz.
K1 RN

In this case the spectrum of the operator —A4 + V is contained in (0,00). So
we can obtain a solution of (1.1) as a multiple of a minimizer of the constrained

minimization problem

inf fRN(|VAU|2 + V0u|?) dz
uEH;,VJr (RN)_{O} (fRN Q(x)h/« 2" dI)(N_Q)/N

(4.4) So =

In fact, we have the following existence result:

THEOREM 4.1. Let N >4 and py > 1. Suppose that there exists an T € RY
such that Q(T) = Q, V(z) < —c < 0 in some neighbourhood of T, A is continuous
at T and

Q(x) = Q@)| = oz — 7[*)
for x close to T. Then the infimum of (4.4) is attained at some u € Hil,v+ (RM)

(and a multiple of w is a solution of (1.1)).

PROOF. First, we claim that
S < .
Q Q(N-2)/N

Without loss of generality we may assume that T = 0. Let

N
@) = =" A4, (0)z,.
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Then (A + V¥)(0) = 0 and by the continuity [(4 + VI)(z)|> < ¢ < ¢ for all
|x] < ¢ and sufficiently small §. Let u.(z) = weﬁo(x)ew(x). Letting U. = U<
and using (4.2) we obtain

[ (VaucP s ViPyde < [ (V@UP -+ 02090 4 AP - c0?U2) de
RN RN

<SVP 4 (¢ —c)/ U2 dz + O(N-2),
B(0,6/2)

It follows from the assumption on @ that

(4.5) / Qu? dzr = / Qluc?* da = SN2Q + o(e?),
RN RN
where w, = we o. For small € > 0 we have
) Ce?|loge| if N =4,
(4.6) / U dx >
(0,6/2) Ce? if N > 5.

Combining the last three relations our claim easily follows. Let {u,,} be a min-
imizing sequence for S such that [, Qlum|* dxr = 1. Let v, = SC(QN_2)/4um.
The rescaled sequence {v,,} is a Palais-Smale sequence for the functional J
at the level ¢ = (1/N)S, SN/? < gN/2 ) (NQW=2)/2) (cf. Theorem 2.1 in [13]
or Lemma 8.2.1 in [3]). By Proposition 3.2 {v,,} is relatively compact in
H}l v+ (RY) and the result easily follows. O

Therefore, it remains to consider the case (ii). In this case we use the topo-
logical linking. Let Y = span(ey,...,en 1), Z = Y+ and let z € Z — {0}.
Obviously, we have HY, |, (RY) =Y & Z. Define

M={u=y+AIz:y€Y, ||uHH;V+ <R, A >0},
Mo={u=y+rz:yeY, Jullgx =R, A>20tU{ueY :|ullgx <R}
Avt A vt
N={ueZ: Hu”Hix,v+ =r}.

First we check that

(4.7 Tnax Ju)=0< ulglfv J(u)

provided 0 < r < R are suitably chosen. To show (4.7) we note that on Z

<1—u;1>/ (V. auf? + V' [uf?) x——/ Q@)[uf* dz
RN
5—2*

,&
\%

v
N = N =

(1= g )l 7
AVt
Taking r > 0 sufficiently small we get

inf{J(u) : HU”H; L =T uE Z} > 0.
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Since Y @ Rz is finite dimensional and 2* > 2, it is easy to see that J(u) — —o0
as ||l g . — 00, ueY ®Rz. We choose R > 0 so that maxuen, J(u) =0.
AV

We now state and prove the existence theorem for problem (1.1) in case (ii).

THEOREM 4.2. Suppose that sup,cpn Q(x) = Q(T) for some T € RY and
Q(r) — Q(%) = o(|x — T|?) for x close to T. Further assume that V(z) < —c < 0
in some neighbourhood of T and that A is continuous at T.

(a) If pn—1 =1, then problem (1.1) has a solution for N > 17.

(b) If ip—1 < 1, then problem (1.1) has a solution for N > 5.

(¢) If t—1 < 1 and V— € LN/2(RN) N L9(B(7,6)) for some ¢ > N/2 and
d > 0, then problem (1.1) has a solution for N = 4.

ProoF. Without loss of generality we assume that C~2 = Q(0), that is, T = 0.
Let

= 1 J
¢ = minmax J(y(u)),

where I' = {y:v € C(M, Hil,\” (RM)), 7 |am, = id}. According to (4.7) and the
linking theorem [18], ¢ > 0 and there exists a Palais—Smale sequence for J at the
level c. So by Proposition 3.2 it suffices to show that

SN/2

(4.8) < —=———.
NQW-2)/2

We follow a modified argument from pp. 51-52 in [18] and from [5]. For u €
HY o (RY) with [on (|Vaul® + Vuf?) dz > 0, we have

1 (Jon (\Vaul® + Viul?) da) /2
2" dg)(N-2)/2

4.9 max J(su) =
(%9) p o) = N (o Qlu
As in the proof of Theorem 4.1, let ¥(z) = — Zjvzl A;(0)xz;. Then V(z) < —c

and (A + V) (2)]? < ¢ < ¢ for |z| < §, if 6 > 0 is sufficiently small. Let

+
€

ue be the function introduced in the proof of Theorem 4.1 and take z = u
in the definition of the set M, where ul is the projection of u. on Z. Then
Y @ Rue =Y @ Rul. According to (4.9) it is enough to show that

S
4.10 max Vaul? + Vi§u|?)de < =————.
(410) o[l Vi de <
fRN Q|u\2* dx=1
Suppose that the maximum above is attained at u = y+tu. = y+tul. It is clear
that ¢t > 0, and since Y is finite dimensional and e; € L>(R"), all LP-norms on

Y are equivalent for 2 < p < oco. Therefore ||u_

2= < aflug [z < arflucf2 — 0,
2. — SN/2 as ¢ — 0. Moreover, since @ is bounded away from 0 on
compact sets and suppu. C B(0,6), collull3e < [on Qul*” da < csllu
u €Y @& Rut and all € > 0. Using the inequality ||y

so [Juf
2. for all

o« < eql|ulla it is now easy
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to see that fRN Q|y\2 dz and t are bounded, uniformly in €. Since y € Y, we
have y = Z;:ll a,e; and by straightforward computations we get

(4.11) /(|vAu\2+V|u|2)dx
]RN
= [ (asP 4 VP ot [ (9 attu) P+ View ) do
RN RN
+ 2Re (/ (VayVa(tus) + Vytue) dm)
]RN
<U=p) [ (VagP + VP da
R

A, v+

+ / (IVa(tue)? + Vtue|?) da + O =272 log e| X =2/N) y |
RN

In estimating the last term on the right-hand side of the equality above we have
used the identity

/ (VaeiVau: +V'teu,)dr = ,ui/ V™ eiu, dx,
RN RN

the fact that the L°°- and the H}L‘H—norms are equivalent on Y and (4.3).

Recalling that u. = waew(’”), we see that

(4.12) /(|VAUE\2+V|UE|2)dx§/ (|Vwe|? + w2V + A]> — cw?) da
RN RN

< SN2 4 (¢ o) / w? de + O(=N2),
RN
Combining (4.11) and (4.12) we get

(4.13) /(|VAu|2+V\u|2)dx
RN

<A lolly, , +ESYE R o) [ et

+ 0N 22 1og e NN iy |

Avt’

Moreover, by the convexity of the mapping s — |sy + tu.|?,

1= / Qlul* dx > / Q(tw.)?* dx —2* / Qlyl(tw.)? ~ da
RN RN RN

> Q(tw.)? dx — O(‘ﬁ,‘(1\772)/2)||y“H§1

RN ,V+’
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and hence, using (4.2), (4.5) and (4.6),

(4.14) tQSN/2+t2(c'—c)/ w? da
RN

(SN2 4 (' —¢) Jaw w? dz)(Jg~ Q(tw:)* dx)*/*
(fan QuZ dx)2/?"
(SN2 4 (¢ = ) fon w2da)(1+ OEN=D/ )yl 1 )
(SN/2Q + 0(£2))2/2*

—d [ utdes o)+ O Iyl
RN A v+

S
- QW-2)/N

where d > 0. If p,—1 <1 and N > 7, the conclusion easily follows from (4.13),
(4.14) and (4.6). Suppose p,—1 < 1. Since

Avt

(4.15) (1= 2 )llyllFy  + O 22 log e N2y 41

< O(5N72| 10g6|2(N72)/N)

in this case, the conclusion remains valid for N = 5 and 6. If N = 4 and
V= e LN/2(RN) N L(B(0,4)), then [ox V™ u.dz = O(eN=2/2) = O(¢) by an
argument similar to that of (4.3), so the right-hand side above is O(¢?) and the
conclusion follows again. O

We remark that if 4,1 < 1 and N = 4 in Theorem 4.2, then we may assume
Q(z) — Q(T) = O(]z — T|?) because in this case it suffices to have O(¢?) instead
of 0(¢?) in (4.14).

COROLLARY 4.3. Suppose that sup,cpny Q(z) = Q(T) for some T € RN and
Q(r)—Q(Z) = O(|x —7|?) for x close to T. Further assume that there are o > 0,
¢ > 0 such that V= (z) > ¢/|x — Z| in a neighbourhood of T and A is continuous
at T. Then problem (1.1) has a solution u # 0 in each of the following cases:

(a) 1 =1, N>26 and 0 < o < 2,
(b) pn1 =1, N=3,4 0orb5and (6—N)/2<a<?2,
(¢) 1 <1, N>4and 0 < a <2,
(d) pn—1 <1, N=3andl <a<2.

Note that since V=~ € LN/2(RV), 0 < a < 2.

PrOOF. We may asssume T = 0. A small change is needed in the argument
of Theorem 4.2. Now in (4.12) we have

2
(4.16) / (IVauel? + Vue|?) dz < SN2 — E/ Y= dz+ 0=V 2).
RN 2 RN |x|oz
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Moreover,

2 U2
(4.17) / = / S o
Ry 2] B(Oﬁ/2)|x|

1627 4 eV 72 if N#3ora#1,

>

| celloge| if N=3and a=1.
So the conclusion follows using (4.13)—(4.15) and taking into account the changes
prompted by (4.16), (4.17). Note that since Q(x) — Q(0) = O(|z|?), o(g?) is
replaced by O(e?) in (4.14). O

As a final remark we would like to mention that combining the above es-
timates with those appearing in [4], it is possible to show the existence of a
nontrivial solution of (1.1) also if Q = lim ;| —oe Q(z) and Q(r) < Q for all
x € RY. However, since the assumptions we would need to make on V, @, A
and the dimension N are rather restrictive (in particular, we need A globally
Lipschitzian and V'~ (x) > ¢/|z|* for some « > 2 and all large |z|), we omit the
details.
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