
Topological Methods in Nonlinear Analysis
Journal of the Juliusz Schauder Center
Volume 32, 2008, 1–20

ATTRACTORS FOR SINGULARLY PERTURBED
DAMPED WAVE EQUATIONS
ON UNBOUNDED DOMAINS

Martino Prizzi — Krzysztof P. Rybakowski

Abstract. For an arbitrary unbounded domain Ω ⊂ R3 and for ε > 0, we

consider the damped hyperbolic equations

(Hε) εutt + ut + β(x)u−
X
ij

(aij(x)uxj )xi = f(x, u),

with Dirichlet boundary condition on ∂Ω, and their singular limit as ε→ 0.
Under suitable assumptions, (Hε) possesses a compact global attractor Aε

in H1
0 (Ω)×L2(Ω), while the limiting parabolic equation possesses a compact

global attractor fA0 in H1
0 (Ω), which can be embedded into a compact set

A0 ⊂ H1
0 (Ω) × L2(Ω). We show that, as ε → 0, the family (Aε)ε∈[0,∞[ is

upper semicontinuous with respect to the topology of H1
0 (Ω)×H−1(Ω).

1. Introduction

In their paper [13] Hale and Raugel considered the damped hyperbolic equa-
tions

εutt + ut −∆u = f(u) + g(x), x ∈ Ω, t ∈ [0,∞[ ,

u(x, t) = 0, x ∈ ∂Ω, t ∈ [0,∞[ .
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and their singular limit as ε → 0, i.e. the parabolic equation

ut −∆u = f(u) + g(x), x ∈ Ω, t ∈ [0,∞[ ,

u(x, t) = 0, x ∈ ∂Ω, t ∈ [0,∞[ .

In [13] the set Ω is a bounded smooth domain or a convex polyhedron, ε is
a positive constant, g ∈ L2(Ω) and f is a C2 function of subcritical growth such
that

lim sup
|u|→∞

f(u)
u

≤ 0.

Under these assumptions, for any fixed ε > 0 the corresponding hyperbolic
equation generates a global semiflow which possesses a compact global attractor
Aε in the phase space H1

0 (Ω)× L2(Ω) (see [2], [8], [12]). Moreover, the limiting
parabolic equation generates a global semiflow which possesses a compact global
attractor Ã0 in the phase space H1

0 (Ω) (see [5], [12]). Due to the smoothing
effect of parabolic equations, it turns out that Ã0 is actually a compact subset
of H2(Ω). Hence one can define the set

A0 = {(u, ∆u + f(u) + g) | u ∈ A0},

which is a compact subset of H1
0 (Ω) × L2(Ω). Hale and Raugel proved that

the family (Aε)ε∈[0,∞[ is upper semicontinuous with respect to the topology of
H1

0 (Ω)× L2(Ω), i.e.

lim
ε→0+

sup
y∈Aε

inf
z∈A0

|y − z|H1
0×L2 = 0.

In this paper we extend the result of Hale and Raugel in three directions:
firstly, we allow f to have critical growth; secondly, we let Ω be unbounded;
thirdly, we replace f(u) + g(x) by f(x, u) and −∆ by β(x)u−

∑
ij(aij(x)uxj )xi ,

without any smoothness assumption on ∂Ω, β( · ), aij( · ) and f( · , u).
In [13] the proof of the main result relies on some uniform (H2×H1)-estimates

for the attractors Aε, combined with the compactness of the Sobolev embedding
H1

0 (Ω) ⊂ L2(Ω). The uniform (H2×H1)-estimates are obtained through a boot-
strapping argument originally due to Haraux [14]. Such argument works only if
f is subcritical, and if Ω is such that the domain of the L2(Ω)-realization of −∆
is H2(Ω) ∩H1

0 (Ω) (e.g. if Ω is a convex polyhedron).
A different bootstrapping argument was proposed by Grasselli and Pata

in [10] and [11]. Their argument also works in the critical case, and is based on
certain a-priori estimates that can be obtained “within an appropriate Galerkin
approximation scheme”. Here, “appropriate” means “on a basis of eigenfunctions
of −∆”. Therefore, their approach cannot be used in the case of an unbounded
domain Ω. More recently, in [15] Pata and Zelik obtained (H2 ×H1)-estimates
for Aε without using bootstrapping arguments, but again their a-priori estimates
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are obtained “within an appropriate Galerkin approximation scheme”. We point
out that also in [10], [11], [15] Ω must have the property that the domain of the
L2(Ω)-realization of −∆ is H2(Ω) ∩ H1

0 (Ω). Moreover, the Nemitski operator
associated with f must be Lipschitz continuous from H2(Ω) ∩H1

0 (Ω) to H1(Ω)
in [15] and from D((−∆)(α+1)/2) to D((−∆)α/2) for all 0 ≤ α ≤ 1 in [10], [11].
Therefore, if one wants to replace f(u) + g(x) by f(x, u), one needs to impose
severe smoothness conditions on f(x, u) with respect to the space variable x.

If Ω is unbounded, the embedding H1
0 (Ω) ⊂ L2(Ω) is no longer compact, and

this poses some additional difficulties even for the existence proof of the attrac-
tors Aε. In [6], [7], Feireisl circumvented these difficulties by decomposing any
solution u(t, x) into the sum u1(t, x)+u2(t, x) of two functions, such that u1(t, · )
is asymptotically small, and u2(t, · ) has a compact support which propagates
with speed 1/ε2. As ε → 0, the speed of propagation tends to infinity, and,
indeed, the estimates obtained by Feireisl are not uniform with respect to ε. It
is therefore apparent that, if one wants to pass to the limit as ε → 0, a different
approach is needed.

In our previous paper [17] we proved the existence of compact global attrac-
tors for damped hyperbolic equations in unbounded domains using the method
of tail-estimates (introduced by Wang in [19] for parabolic equations), combined
with an argument due to Ball [3] and elaborated by Raugel in [18]. Here we
exploit the same techniques to establish an upper semicontinuity result similar
to that of Hale and Raugel, when Ω is an unbounded domain and f is criti-
cal. Our arguments do not rely on (H2 × H1)-estimates for the attractors Aε.
Therefore they also apply to the case of an open set Ω for which the domain of
the L2(Ω)-realization of −∆ is not H2(Ω) ∩ H1

0 (Ω) (e.g. if Ω is the exterior of
a convex polyhedron).

Before we describe in detail our assumptions and our results, we need to
introduce some notation. In this paper, N = 3 and Ω is an arbitrary open
subset of RN , bounded or not. For a and b ∈ Z we write [a. . b] to denote the
set of all m ∈ Z with a ≤ m ≤ b. Given a subset S of RN and a function
v:S → R we denote by ṽ: RN → R the trivial extension of v defined by ṽ(x) = 0
for x ∈ RN \ S. Given a function g: Ω × R → R, we denote by ĝ the Nemitski
operator which associates with every function u: Ω → R the function ĝ(u): Ω → R
defined by

ĝ(u)(x) = g(x, u(x)), x ∈ Ω.

Unless specified otherwise, given k ∈ N and functions g, h: Ω → Rk we write

〈g, h〉 :=
∫

Ω

k∑
m=1

gm(x)hm(x) dx,

whenever the integral on the right-hand side makes sense.
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If I ⊂ R, Y and X are normed spaces with Y ⊂ X and if u: I → Y is
a function which is differentiable as a function into X then we denote its X-
valued derivative by ∂(u;X). Similarly, if X is a Banach space and u: I → X

is integrable as a function into X, then we denote its X-valued integral by∫
I
(u(t);X) dt.

Assumption 1.1.

(a) a0, a1 ∈ ]0,∞[ are constants and aij : Ω → R, i, j ∈ [1. . N ] are functions
in L∞(Ω) such that aij = aji, i, j ∈ [1. . N ], and for every ξ ∈ RN and
a.e. x ∈ Ω, a0|ξ|2 ≤

∑N
i,j=1 aij(x)ξiξj ≤ a1|ξ|2. A(x) := (aij(x))N

i,j=1,
x ∈ Ω.

(b) β: Ω → R is a measurable function with the property that
(i) for every ε ∈ ]0,∞[ there is a Cε ∈ [0,∞[ with

∣∣|β|1/2u
∣∣2
L2 ≤

ε|u|2H1 + Cε|u|2L2 for all u ∈ H1
0 (Ω);

(ii) λ1 := inf{ 〈A∇u,∇u〉+ 〈βu, u〉 | u ∈ H1
0 (Ω), |u|L2 = 1 } > 0.

Remark. In [17], [16] we gave conditions on β, ensuring that (b) is satisfied.

Assumption 1.2.

(a) f : Ω × R → R is such that, for every u ∈ R, f( · , u) is (Lebesgue-)
measurable, f( · , 0) ∈ L2(Ω) and for a.e. x ∈ Ω, f(x, · ) is of class C2

and such that ∂uf( · , 0) ∈ L∞(Ω) and |∂uuf(x, u)| ≤ C(1+|u|) for some
constant C ∈ [0,∞[, every u ∈ R and a.e. x ∈ Ω;

(b) f(x, u)u− µF (x, u) ≤ c(x) and F (x, u) ≤ c(x) for a.e. x ∈ Ω and every
u ∈ R. Here, c ∈ L2(Ω) is a given function, µ ∈ ]0,∞[ is a constant
and F : Ω× R → R is defined, for (x, u) ∈ Ω× R, by

F (x, u) =
∫ u

0

f(x, s) ds,

whenever f(x, · ): R → R is continuous and F (x, u) = 0 otherwise.

Note that Assumptions 1.1 and 1.2 imply the hypotheses of [17].
Let D(Bε) be the set of all (u, v) ∈ H1

0 (Ω) × L2(Ω) such that v ∈ H1
0 (Ω)

and −βu+
∑

ij(aijuxj
)xi

(in the distributional sense) lies in L2(Ω). It turns out
that the operator

Bε(u, v) =
(
− v,

1
ε
v +

1
ε
βu− 1

ε

∑
ij

(aijuxj
)xi

)
, (u, v) ∈ D(Bε)

is the generator of a (C0)-semigroup e−Bεt, t ∈ [0,∞[ on H1
0 (Ω)×L2(Ω). More-

over, the Nemitski operator f̂ is a Lipschitzian map of H1
0 (Ω) to L2(Ω). Results
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in [4] then imply that the hyperbolic boundary value problem

εutt + ut + β(x)u−
∑
ij

(aij(x)uxj
)xi

= f(x, u), x ∈ Ω, t ∈ [0,∞[ ,

u(x, t) = 0, x ∈ ∂Ω, t ∈ [0,∞[

with Cauchy data at t = 0 has a unique (mild) solution z(t) = (u(t), v(t)) in
H1

0 (Ω)× L2(Ω), given by the “variation-of-constants” formula

z(t) = e−Bεtz(0) +
∫ t

0

e−Bε(t−s)

(
0,

1
ε
f̂(u(s))

)
ds.

For ε ∈ ]0,∞[ we define πε to be the local semiflow on H1
0 (Ω)×L2(Ω) generated

by the (mild) solutions of this hyperbolic boundary value problem. We can
summarize the results of [17] in the following:

Theorem 1.3. Under Assumptions 1.1 and 1.2, πε is a global semiflow and
it has a global attractor Aε.

Analogously, consider the parabolic boundary value problem

ut + β(x)u−
∑
ij

(aij(x)uxj )xi = f(x, u), x ∈ Ω, t ∈ [0,∞[ ,

u(x, t) = 0, x ∈ ∂Ω, t ∈ [0,∞[

with Cauchy data at t = 0. Letting A denote the sectorial operator on L2(Ω)
defined by the differential operator u 7→ βu−

∑
ij(aijuxj )xi , we have that D(A)

is the set of all u ∈ H1
0 (Ω) such that the distribution βu−

∑
ij(aijuxj

)xi
lies in

L2(Ω). Again, the Cauchy problem has a unique (mild) solution u(t) in H1
0 (Ω),

given by the “variation-of-constants” formula

u(t) = e−Atu(0) +
∫ t

0

e−A(t−s)f̂(u(s)) ds.

Let π̃ be the local semiflow on H1
0 (Ω) generated by the (mild) solutions of this

parabolic boundary value problem. Results in [16] imply that π̃ is a global
semiflow and has a global attractor Ã (see also [1]). Moreover, it is proved
in [16] that Ã ⊂ D(A) and Ã is compact in D(A) endowed with the graph
norm.

Let Γ:D(A) → H1
0 (Ω) × L2(Ω) be defined by Γ(u) = (u,Au + f̂(u)). Set

A0 := Γ(Ã). Then we have the following main result of this paper:

Theorem 1.4. The family (Aε)ε∈[0,∞[ is upper semicontinuous at ε = 0
with respect to the topology of H1

0 (Ω)×H−1(Ω), i.e.

lim
ε→0+

sup
y∈Aε

inf
z∈A0

|y − z|H1
0×H−1 = 0.

Actually a stronger result is established in Theorem 3.9 below.
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2. Preliminaries

In this section we collect a few preliminary results. We begin with an abstract
lemma established in [16]:

Lemma 2.1. Suppose (Y, 〈 · , · 〉Y ) and (X, 〈 · , · 〉X) are (real or complex)
Hilbert spaces such that Y ⊂ X, Y is dense in (X, 〈 · , · 〉X) and the inclusion
(Y, 〈 · , · 〉Y ) → (X, 〈 · , · 〉X) is continuous. Then for every u ∈ X there exists
a unique wu ∈ Y such that

〈v, wu〉Y = 〈v, u〉X for all v ∈ Y .

The map B:X → X, u 7→ wu is linear, symmetric and positive. Let B1/2 be
a square root of B, i.e. B1/2:X → X linear, symmetric and B1/2 ◦ B1/2 = B.
Then B and B1/2 are injective and R(B) is dense in Y . Set X1/2 = X

1/2
B =

R(B1/2) and B−1/2:X1/2 → X be the inverse of B1/2. On X1/2 the assignment
〈u, v〉1/2 := 〈B−1/2u, B−1/2v〉X is a complete scalar product. We have Y = X1/2

and 〈 · , · 〉Y = 〈 · , · 〉1/2.

Now let A be the sectorial operator on L2(Ω) defined by the differential
operator u 7→ βu−

∑
ij(aijuxj )xi . Then A generates a family Xα = Xα

A, α ∈ R,
of fractional power spaces with X−α being the dual of Xα for α ∈ ]0,∞[. We
write

Hα = Xα/2, α ∈ R.

For α ∈ R the operator A induces an operator Aα:Hα → Hα−2. In particular,
H0 = L2(Ω) and A = A2.

Note that, thanks to Assumption 1.1, the scalar product

〈u, v〉H1
0

= 〈A∇u,∇v〉+ 〈βu, v〉, u, v ∈ H1
0 (Ω)

on H1
0 (Ω) is equivalent to the usual scalar product on H1

0 (Ω). Moreover,

〈u, v〉H1
0

= 〈A2u, v〉, u ∈ D(A2), v ∈ H1
0 (Ω).

Corollary 2.2. H1 = H1
0 (Ω) with equivalent norms. Consequently H−1 =

H−1(Ω) with equivalent norms.

Proof. Set (X, 〈 · , · 〉X) = (L2(Ω), 〈 · , · 〉), (Y, 〈 · , · 〉Y ) = (H1
0 (Ω), 〈 · , · 〉H1

0
).

Then Y is dense in X and the inclusion Y → X is continuous. Let B2:X → X

be the inverse of A2. Then for all u ∈ X, B2u ∈ Y and for all v ∈ Y

〈v, u〉X = 〈v,B2u〉Y .

Thus B2 = B where B is as in Lemma 2.1. Now the lemma implies the corol-
lary. �
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Corollary 2.3. The linear operator A1:H1 → X := H−1 is self-adjoint
hence sectorial on X. Let Xα

1 , α ∈ [0,∞[, be the family of fractional powers
generated by A1. Then X1/2 = L2(Ω) with equivalent norms.

Proof. Set (X, 〈 · , · 〉X) = (H−1, 〈 · , · 〉H−1), (Y, 〈 · , · 〉Y ) = (H0, 〈 · , · 〉H0).
Then Y is dense in X and the inclusion Y → X is continuous. Let B1:X → X

be the inverse of A1. Then for all u ∈ X, B1u ∈ Y and for all v ∈ Y

〈v, u〉X = 〈B1v,B1u〉H1 = 〈v,B1u〉Y .

Thus B1 = B where B is as in Lemma 2.1. Now the lemma implies the corol-
lary. �

We end this section by quoting a result proved in [17], which can be used
to rigorously justify formal differentiation of various functionals along (mild)
solutions of semilinear evolution equations.

Theorem 2.4. Let Z be a Banach space and B:D(B) ⊂ Z → Z the infini-
tesimal generator of a (C0)-semigroup of linear operators e−Bt on Z, t ∈ [0,∞[.
Let U be open in Z, Y be a normed space and V :U → Y be a function which, as
a map from Z to Y , is continuous at each point of U and Fréchet differentiable
at each point of U ∩D(B). Moreover, let W :U ×Z → Y be a function which, as
a map from Z×Z to Y , is continuous and such that DV (z)(Bz +w) = W (z, w)
for z ∈ U ∩D(B) and w ∈ Z. Let τ ∈ ]0,∞[ and I := [0, τ ]. Let z ∈ U , g: I → Z

be continuous and z be a map from I to U such that

z(t) = e−Btz +
∫ t

0

e−B(t−s)g(s) ds, t ∈ I.

Then the map V ◦ z: I → Y is differentiable and

(V ◦ z)′(t) = W (z(t), g(t)), t ∈ I.

3. Proof of the main result

In order to establish our main result we need uniform estimates for the at-
tractors Aε in H1

0 (Ω)× L2(Ω).

Lemma 3.1. Let f be as in Assumption 1.2. Then there is a constant C ∈
[0,∞[ such that for all u, v ∈ R and for a.e. x ∈ Ω,

|∂uf(x, u)| ≤ C(1 + |u|2),
|∂uf(x, v)− ∂uf(x, u)| ≤ C(1 + |u|+ |v − u|)|v − u|,

|f(x, v)− f(x, u)− ∂uf(x, u)(v − u)| ≤ C(1 + |u|+ |v − u|)|v − u|2.
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Proof. For all u, v ∈ R and a.e. x ∈ Ω we have

∂uf(x, v)− ∂uf(x, u) =
∫ 1

0

∂uuf(x, u + s(v − u))(v − u) ds

and

f(x, v)− f(x, u)− ∂uf(x, u)(v − u)

= (v − u)2
∫ 1

0

θ

[ ∫ 1

0

∂uuf(x, u + rθ(v − u)) dr

]
dθ.

This easily implies the assertions of the lemma. �

Proposition 3.2. Let f and F be as in Assumption 1.2. Then, for every
measurable function v: Ω → R, both f̂(v) and F̂ (v) are measurable and for all
measurable functions u, h: Ω → R

|f̂(u)|L2 ≤ |f̂(0)|L2 + C(|u|L2 + |u|3L6),(3.1)

|f̂(u + h)− f̂(u)|L2 ≤C|h|L2 + C(|u|2L6 + |h|2L6)|h|L6 ,(3.2)

|F̂ (u)|L1 ≤C(|u|2L2/2 + |u|4L4/4) + |u|L2 |f̂(0)|L2 ,(3.3)

|F̂ (u + h)− F̂ (u)|L1 ≤ (|f̂(0)|L2 + C(|u|L2 + |h|L2)(3.4)

+ 4C(|u|3L6 + |h|3L6))|h|L2 ,

and

(3.5) |F̂ (u + h)− F̂ (u)− f̂(u)h|L1 ≤ (C|h|L2 + C(|u|2L6 + |h|2L6)|h|L6)|h|L2 .

Finally, for every r ∈ [3,∞[ there is a constant C(r) ∈ [0,∞[ such that for all
u, h ∈ H1

0 (Ω)

(3.6) |f̂(u + h)− f̂(u)|H−1 ≤ C(r)|h|L2 + C(r)(|u|2L6 + |h|2L6)|h|L2 .

Proof. Lemma 3.1 implies that f satisfies the hypotheses of [17, Proposi-
tion 3.11], to which the reader is referred for details. �

For s ∈ [2, 6] we denote by Cs ∈ [0,∞[ an imbedding constant of the inclusion
induced map from H1 to Ls(Ω).

Proposition 3.3. Let f be as in Assumption 1.2, I ⊂ R be an interval, u

be a continuous map from I to H1 such that u is continuously differentiable into
H0 with v := ∂(u;H0). Then the composite map f̂ ◦ u: I → H0 is defined, f̂ ◦ u

is continuously differentiable into H−1 and g := ∂(f̂ ◦ u;H−1) = (∂̂uf ◦ u) · v.
Moreover, for every t ∈ I,

(3.7) |g(t)|H−1 ≤ C(C2 + C6|u(t)|2L3)|v(t)|L2 ≤ C(C2 + C6C3|u(t)|2H1
)|v(t)|L2 .

Proof. It follows from Proposition 3.2 that for every w ∈ H1, f̂(w) ∈ H0.
Thus f̂ ◦ u is defined as a function from I to H0. Moreover, for every t ∈ I
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and ζ ∈ H1, the function ∂̂uf(u(t)) · v(t) · ζ: Ω → R is measurable and so by
Lemma 3.1 and Hölder’s inequality

|∂̂uf(u(t)) · v(t) · ζ|L1 ≤ C|v(t)|L2 |ζ|L2 + C| |u(t)|2 |L3 |v(t)|L2 |ζ|L6 .

It follows that for every t ∈ R, g(t) = ∂̂uf(u(t)) ·v(t) ∈ H−1 and (3.7) is satisfied.
Moreover, for s, t ∈ I,

|∂̂uf(u(t)) · v(t)− ∂̂uf(u(s)) · v(s)|H−1

= sup
ζ∈H1, |ζ|H1≤1

|∂̂uf(u(t)) · v(t) · ζ − ∂̂uf(u(s)) · v(s) · ζ|L1

≤ sup
ζ∈H1, |ζ|H1≤1

T1(t)(ζ) + sup
ζ∈H1, |ζ|H1≤1

T2(t)(ζ),

where

T1(t)(ζ) = |(∂̂uf(u(t))− ∂̂uf(u(s))) · v(t) · ζ|L1 ,

T2(t)(ζ) = |∂̂uf(u(s)) · (v(t) · ζ − v(s) · ζ)|L1 .

By Lemma 3.1 we obtain, for all ζ ∈ H1 with |ζ|1 ≤ 1,

T1(t)(ζ) ≤C|(1 + |u(s)|+ |u(t)− u(s)|) · |u(t)− u(s)| · ζ|L2 |v(t)|L2

≤C|u(t)− u(s)|L3 |v(t)|L2 |ζ|L6

+ C|u(s)|L6 |u(t)− u(s)|L6 |v(t)|L2 |ζ|L6

+ C|u(t)− u(s)|L6 |u(t)− u(s)|L6 |v(t)|L2 |ζ|L6

≤CC3C6|u(t)− u(s)|H1 |v(t)|L2 + CC3
6 |u(s)|H1 |u(t)− u(s)|H1 |v(t)|L2

+ CC3
6 |u(t)− u(s)|2H1

|v(t)|L2

T2(t)(ζ) ≤C|(1 + |u(s)|2) · ζ|L2 |v(t)− v(s)|L2

≤C(|ζ|L2 + | |u(s)|2 |L3 |ζ|L6)|v(t)− v(s)|L2

≤ C(C2 + C3
6 |u(s)|2H1

)|v(t)− v(s)|L2 .

Since u is continuous into H1 and v is continuous into H0 = L2(Ω) it follows
that

sup
ζ∈H1, |ζ|H1≤1

T1(t)(ζ) + sup
ζ∈H1, |ζ|H1≤1

T2(t)(ζ) → 0 as t → s

so the map (∂̂uf ◦ u) · v is continuous into H−1.
Now, for s, t ∈ I, t 6= s,

(t− s)−1|(f̂ ◦ u)(t)− (f̂ ◦ u)(s)− ∂̂uf(u(s)) · v(s)|H−1

= sup
ζ∈H1, |ζ|H1≤1

(t− s)−1|(f̂ ◦ u)(t) · ζ − (f̂ ◦ u)(s) · ζ − ∂̂uf(u(s)) · v(s) · ζ|L1

≤ (t− s)−1 sup
ζ∈H1, |ζ|H1≤1

T3(t)(ζ) + (t− s)−1 sup
ζ∈H1, |ζ|H1≤1

T4(t)(ζ)
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where T3(t)(ζ) = |gt,ζ |L1 with

gt,ζ = (f̂ ◦ u)(t) · ζ − (f̂ ◦ u)(s) · ζ − ∂̂uf(u(s)) · (u(t)− u(s)) · ζ

and

T4(t)(ζ) = |∂̂uf(u(s)) · (u(t)− u(s)− v(s)) · ζ|L1 .

Now, by Lemma 3.1, for all ζ ∈ H1 with |ζ|H1 ≤ 1 and for a.e. x ∈ Ω

|gt,ζ(x)| ≤ C(1 + |u(s)(x)|+ |u(t)(x)− u(s)(x)|)|u(t)(x)− u(s)(x)|2|ζ(x)|

so

(3.8) T3(t)(ζ) ≤C(|u(t)− u(s)|L3 |u(t)− u(s)|L2 |ζ|L6)

+ C(|u(s)|L6 |u(t)− u(s)|L6 |u(t)− u(s)|L2 |ζ|L6)

+ C(|u(t)− u(s)|L6 |u(t)− u(s)|L6 |u(t)− u(s)|L2 |ζ|L6)

≤CC6(C3|u(t)− u(s)|H1 |u(t)− u(s)|L2)

+ CC6(C2
6 |u(s)|H1 |u(t)− u(s)|H1 |u(t)− u(s)|L2)

+ CC6(C2
6 |u(t)− u(s)|2H1

|u(t)− u(s)|L2).

Since u is continuous into H1 and locally Lipschitzian into H0 = L2(Ω) it follows
from (3.8) that

(t− s)−1 sup
ζ∈H1, |ζ|H1≤1

T3(t)(ζ) → 0 as t → s.

We also have

T4(t)(ζ) ≤C|(1 + |u(s)|2) · ζ|L2 |u(t)− u(s)− v(s)|L2

≤ (C|ζ|L2 + C| |u(s)|2 |L3 |ζ|L6)|u(t)− u(s)− v(s)|L2

≤C(C2 + CC3
6 |u(s)|2H1

)|u(t)− u(s)− v(s)|L2 .

Since (t− s)−1|u(t)− u(s)− v(s)|L2 → 0 as t → s it follows that

(t− s)−1 sup
ζ∈H1, |ζ|H1≤1

T4(t)(ζ) → 0 as t → s.

It follows that f̂ ◦ u, as a map into H−1, is differentiable at s and

∂u(f̂ ◦ u;H−1)(s) = (∂̂uf ◦ u)(s) · v(s). �

Proposition 3.4. Let ε ∈ ]0,∞[ be arbitrary. Define the function Ṽ =
Ṽε:H1 ×H0 → R by

Ṽ (u, v) =
1
2
〈u, u〉H1 +

1
2
ε〈v, v〉 −

∫
Ω

F (x, u(x)) dx, (u, v) ∈ H1 ×H0.
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Let z: R → H1 ×H0, z(t) = (z1(t), z2(t)), t ∈ R, be a solution of πε. Then Ṽ ◦ z

is differentiable and (Ṽ ◦ z)′(t) = −|z2(t)|2L2 for t ∈ R.

Proof. This is an application of Theorem 2.4 (for the details see [17, Propo-
sition 4.1]). �

Proposition 3.5. Let ε ∈ ]0,∞[ be arbitrary. Define the function V =
Vε:H0 ×H−1 → R by

V (v, w) =
1
2
〈v, v〉+

1
2
ε〈w,w〉H−1 , (v, w) ∈ H0 ×H−1.

Let z: R → H1 × H0, z(t) = (z1(t), z2(t)), t ∈ R, be a solution of πε. Then
z = (z1, z2) is differentiable as a map into H0 × H−1 with z2 = ∂(z1;H0). Let
u = z1, v = z2, w = ∂(v;H−1) and g = (∂̂uf ◦u)·v. Then the function α: R → R,
t 7→ V (v(t), w(t)) is differentiable and for every t ∈ R

α′(t) = −〈w(t), w(t)〉H−1 + 〈g(t), w(t)〉H−1 .

Proof. For ε ∈ ]0,∞[ and κ ∈ R let Bε,κ:Hκ ×Hκ−1 → Hκ−1 ×Hκ−2 be
defined by

Bε,κ(z) =
(
− z2,

1
ε
(z2 + Aκz1)

)
, z = (z1, z2) ∈ Hκ ×Hκ−1.

It follows that −Bε,κ is m-dissipative on Hκ−1 ×Hκ−2 (cf. [17, proof of Propo-
sition 3.6]). Moreover, if z: R → H1 ×H0 is a solution of πε, then

z(t) = e−Bε,2(t−t0)z(t0) +
∫ t

t0

(
e−Bε,2(t−s)

(
0,

1
ε
f̂(z1(s))

)
;H1 ×H0

)
ds

= e−Bε,1(t−t0)z(t0) +
∫ t

t0

(
e−Bε,1(t−s)

(
0,

1
ε
f̂(z1(s))

)
;H0 ×H−1

)
ds,

for t, t0 ∈ R, t0 ≤ t. Since z(t0) ∈ D(Bε,1) and t 7→ (0, (1/ε)f̂(z1(s))) is
continuous into D(Bε,1) it follows from [9, proof of Theorem II.1.3 (i)] that
z = (u, v) is differentiable as a map into H0 × H−1 with v = ∂(u;H0). Now,
in H−1,

w = ∂(v;H−1) =
1
ε
(v −A1 ◦ u + f̂ ◦ u) =

1
ε
(v −A0 ◦ u + f̂ ◦ u).

It follows from Proposition 3.3 that w is differentiable into H−2 and

∂(w;H−2) =
1
ε
(w −A0 ◦ v + g).

Again [9, proof of Theorem II.1.3 (i)] implies that

(v, w)(t) = e−Bε,−1(t−t0)(v, w)(t0)(3.9)

+
∫ t

t0

(
e−Bε,−1(t−s)

(
0,

1
ε
g(s)

)
;H−2 ×H−3

)
ds
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= e−Bε,1(t−t0)(v, w)(t0)

+
∫ t

t0

(
e−Bε,1(t−s)

(
0,

1
ε
g(s)

)
;H0 ×H−1

)
ds,

for t, t0 ∈ R, t0 ≤ t. Now note that the function V = Vε is Fréchet differentiable
and

DV (v, w)(ṽ, w̃) = 〈v, ṽ〉H0 + ε〈w, w̃〉H−1 .

Thus for (u, v) ∈ D(−Bε,1) = H1 ×H0 and (ṽ, w̃) ∈ H0 ×H−1

DV (v, w)(−Bε,1(v, w) + (ṽ, w̃)) = 〈v, w + ṽ〉H0 + ε

〈
w,−1

ε
w − 1

ε
A1v + w̃

〉
H−1

= 〈v, ṽ〉H0 − 〈w,w〉H−1 + ε〈w, w̃〉H−1 .

Here we have used the fact that

〈w,A1v〉H−1 = 〈A−1
1 w,A−1

1 A1v〉H1 = 〈A−1
1 w, v〉H1 = 〈w, v〉H0

as A−1
1 w = A−1

2 w ∈ H2. Defining W : (H0 ×H−1)× (H0 ×H−1) → R by

W ((v, w), (ṽ, w̃)) = 〈v, ṽ〉H0 − 〈w,w〉H−1 + ε〈w, w̃〉H−1

we see that W is continuous. Now it follows from (3.9) and Theorem 2.4 that
α = Vε ◦ (v, w) is differentiable and

α′(t) = −〈w(t), w(t)〉H−1 + 〈w(t), g(t)〉H−1 , t ∈ R. �

Proposition 3.6. Let ε0 ∈ ]0,∞[ be arbitrary. Then for every r ∈ [0,∞[
there is a constant C(r, ε0) ∈ [0,∞[ such that whenever ε ∈ ]0, ε0] and z =
(u, v): R → H1×H0 is a solution of πε with supt∈R(|u(t)|2H1

+ ε|v(t)|2H0
) ≤ r and

w := ∂(v;H−1), then

sup
t∈R

(|v(t)|2H0
+ ε|w(t)|2H−1

) ≤ C(r, ε0).

Proof. By Ci(r) ∈ [0,∞[, resp. Ci(r, ε0) ∈ [0,∞[ we denote various con-
stants depending only on r, resp. on r and ε0, but independent of ε ∈ ]0, ε0] and
the choice of a solution z of πε with supt∈R(|u(t)|2H1

+ ε|v(t)|2H0
) ≤ r.

Let ε ∈ ]0, ε0] be arbitrary, α(t) = Vε(v(t), w(t)), t ∈ R, and g = (∂̂uf ◦u) · v.
Using (3.7) we see that

(3.10) |g(t)|H−1 ≤ C(1 + C6C
2
3r2)|v(t)|H0 , t ∈ R.

Proposition 3.5 implies that

α′(t) ≤ −|w(t)|2H−1
+

1
2
|g(t)|2H−1

+
1
2
|w(t)|2H−1

(3.11)

≤ −1
2
|w(t)|2H−1

+
1
2
C2(1 + C6C

2
3r2)2|v(t)|2H0

,
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for t ∈ R. Thus we obtain, for every k ∈ ]0,∞[,

α′(t)+kα(t) ≤
(
−1

2
+

kε

2

)
|w(t)|2H−1

+
(

1
2
C2(1+C6C

2
3r2)2+

k

2

)
|v(t)|2H0

, t ∈ R.

Choose k = k(ε0) ∈ ]0,∞[ such that (−(1/2) + (kε0/2)) < 0. Hence we obtain

α′(t) + kα(t) ≤ C1(r, ε0)|v(t)|2H0
t ∈ R.

Using Propositions 3.4 and 3.2 we see that∫ t

t0

|v(s)|2H0
≤ C2(r, ε0), t, t0 ∈ R, t0 ≤ t.

It follows that

α(t) = e−k(t−t0)α(t0) + C1(r, ε0)
∫ t

t0

e−k(t−s)|v(s)|2H0
ds(3.12)

≤ e−k(t−t0)α(t0) + C3(r, ε0), t, t0 ∈ R, t0 ≤ t.

Using the definition of α we thus obtain from (3.12)

(3.13)
1
2
|v(t)|2H0

+
1
2
ε|w(t)|2H−1

≤ e−k(t−t0)

(
1
2
|v(t0)|2H0

+
1
2
ε|w(t0)|2H−1

)
+ C3(r, ε0),

for t, t0 ∈ R, t0 ≤ t. Since for t ∈ R, εw(t) = −v(t) −A1u(t) + f̂(u(t)) in H−1,
it follows that

ε|w(t)|H−1 ≤ |v(t)|H−1 + |u(t)|H1 + |f̂(u(t))|H−1

≤ |v(t)|H−1 + C5(r) ≤ C6(r)ε−1/2 + C5(r), t ∈ R.

Thus

(3.14) ε|w(t0)|2H−1
≤ (1/ε)(C6(r)ε−1/2 + C5(r))2.

Furthermore,

(3.15) |v(t0)|2H0
≤ r/ε.

Inserting (3.14) and (3.15) into (3.13) and letting t0 → −∞ we thus see that

|v(t)|2H0
+ ε|w(t)|2H−1

≤ 2C3(r, ε0), t ∈ R.�

Fix a C∞-function ϑ: R → [0, 1] with ϑ(s) = 0 for s ∈ ]−∞, 1] and ϑ(s) = 1
for s ∈ [2,∞[. Let

ϑ := ϑ
2
.

For k ∈ N let the functions ϑk: RN → R and ϑk: RN → R be defined by

ϑk(x) = ϑ(|x|2/k2) and ϑk(x) = ϑ(|x|2/k2), x ∈ RN .
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The following theorem (actually a rephrasing of Theorem 4.4 in [17]) provides
the “tail-estimates” mentioned in the Introduction:

Theorem 3.7. Let Assumptions 1.1 and 1.2 be satisfied. Let ε0 > 0 be fixed.
Choose δ and ν ∈ ]0,∞[ with

ν ≤ min(1, µ/2), λ1 − δ > 0 and 1− 2δε0 ≥ 0.

Under these hypotheses, there is a constant c′ ∈ [0,∞[ and for every R ∈ [0,∞[
there are constants M ′ = M ′(R), ck = ck(R) ∈ [0,∞[, k ∈ N with ck → 0 for
k → ∞, such that for every τ0 ∈ [0,∞[, every ε, 0 < ε ≤ ε0 and every solution
z( · ) of πε on I = [0, τ0] with |z(0)|Z ≤ R

|z1(t)|2H1
+ ε|z2(t)2|H0 ≤ c′ + M ′e−2δνt, t ∈ I.

If |z(t)|Z ≤ R for t ∈ I, then

|ϑkz1(t)|2H1
+ ε|ϑkz2(t)2|H0 ≤ ck + M ′e−2δνt, k ∈ N, t ∈ I.

Now we can prove the following fundamental result:

Theorem 3.8. Let (εn)n be a sequence of positive numbers converging to 0.
For each n ∈ N let zn = (un, vn): R → H1 ×H0 be a solution of πεn

such that

sup
n∈N

sup
t∈R

(|un(t)|2H1
+ εn|vn(t)|2H0

) ≤ r < ∞.

Then, for every α ∈ ]0, 1], a subsequence of (zn)n converges in H1 × H−α,
uniformly on compact subsets of R, to a function z: R → H1×H0 with z = (u, v),
where u is a solution of π̃ and v = ∂(u;H0).

Proof. We may assume that εn ∈ ]0, ε0] for some ε0 ∈ ]0,∞[ and all n ∈ N.
Write un = zn,1 and vn = zn,2, and n ∈ N. We claim that for every t ∈ R,
the set {un(t) | n ∈ N} is relatively compact in H0. Let ϑk, k ∈ N, be as
above. Then, choosing k ∈ N large enough and using Theorem 3.7 we can make
supn∈N |ϑkun(t)|H1 as small as we wish. Therefore, by a Kuratowski measure
of noncompactness argument, we only have to prove that for every k ∈ N, the
set Sk = {(1 − ϑk)un(t) | n ∈ N} is relatively compact in H0. Let U be the
ball in RN with radius 2k centered at zero. Then (1 − ϑk)|U ∈ C1

0 (U), so
(1 − ϑk)ũn(t)|U ∈ H1

0 (U) for n ∈ N. Since H1
0 (U) imbeds compactly in L2(U)

and (1− ϑk)ũn(t)|(RN \U) ≡ 0, it follows that, indeed, Sk is relatively compact
in H0. This proves our claim.

Since, by Proposition 3.6, for each n ∈ N, un is differentiable into H0 and
vn = ∂(un;H0) is bounded in H0 uniformly t ∈ R and n ∈ N, we may assume,
using the above claim and Arzelà-Ascoli theorem, and taking subsequences if
necessary, that (un)n converges in H0, uniformly on compact subsets of R, to
a continuous function u: R → H0. Moreover, since, for each t ∈ R, (un(t))n has
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a subsequence that is weakly convergent in H1, we see that u takes its values in
H1. Let wn = ∂(v;H−1), n ∈ N.

For every n ∈ N and every t ∈ R,

(3.16) εnwn(t) = −vn(t)−A0un(t) + f̂(un(t))

in H−1. Now, uniformly for t lying in compact subsets of R, f̂(un(t)) → f̂(u(t))
in H−1 (by Proposition 3.2), A0un(t) → A0u(t) in H−2 and εnwn(t) → 0 in
H−1 (by Proposition 3.6). It follows from (3.16) that, uniformly for t in compact
subsets of R, vn(t) → v(t) in H−2, where v: R → H−2 is a continuous map such
that, for every t ∈ R,

v(t) = −A0u(t) + f̂(u(t))

in H−2. It follows that u is differentiable into H−2 and v = ∂(u;H−2). Then u

is differentiable into H−3 and, for all t ∈ R,

∂(u;H−3)(t) = −A−1u(t) + f̂(u(t))

in H−3. Since f̂ ◦ u is continuous into D(A−1) = H−1 it follows that

(3.17) u(t) = e−A−1(t−t0)u(t0) +
∫ t

t0

(e−A−1(t−s)f̂(u(s));H−3) ds

= e−A1(t−t0)u(t0) +
∫ t

t0

(e−A1(t−s)f̂(u(s));H−1) ds,

for t, t0 ∈ R, t0 ≤ t. We claim that u is a solution of π̃. To this end let t0 ∈ R
be arbitrary. Let ũ: [0,∞[ → H1 be the solution of π̃ with ũ(0) = u(t0) (ũ exists
by results in [16]). We must show that ũ(s) = u(s + t0) for all s ∈ [0,∞[. If
not, then there is a s0 ≥ 0 with ũ(s0) = u(s0 + t0) and ũ(sn) 6= u(sn + t0) for
all n ∈ N, where (sn)n is a sequence with sn → s+

0 as n →∞. By Corollary 2.3
there is a constant C ∈ [0,∞[ such that

|e−A1tw|H0 ≤ Ct−1/2|w|H−1 , w ∈ H−1, t ∈ ]0,∞[ .

Moreover, by Proposition 3.2, for every b ∈ ]0,∞[ there is an L(b) ∈ ]0,∞[ such
that for all wi ∈ H1, |wi|H1 ≤ b, i = 1, 2,

|f̂(w2)− f̂(w1)|H−1 ≤ L(b)|w2 − w1|H0 .

There is an s ∈ ]s0,∞[ such that whenever s ∈ [s0, s] then |u(s + t0)|H1 < r + 1
and |ũ(s)|H1 < r + 1. Let L = L(b) where b = r + 1. Choosing s smaller, if
necessary, we can assume that

(3.18) CL(s− s0)1/2/2 < 1.

It follows that, for each s ∈ [s0, s],

u(s + t0)− ũ(s) =
∫ s

s0

e−A1(s−r)[f̂(u(r + t0))− f̂(ũ(r))] dr
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so

|u(s + t0)− ũ(s)|H0 ≤ C

∫ s

s0

(s− r)−1/2L[|u(r + t0)− ũ(r)|H0 ] dr

≤ CL(s− s0)1/2/2 sup
r∈[s0,s]

|u(r + t0)− ũ(r)|H0 .

In view of (3.18), we obtain that u(s + t0) = ũ(s) for s ∈ [s0, s], a contradiction,
which proves our claim.

We now claim that un(t) → u(t) in H1, uniformly for t lying in compact
subsets of R. If this claim is not true, then there is a strictly increasing sequence
(nk)n in N and a sequence (tk)k in R converging to some t∞ ∈ R such that

(3.19) inf
k∈N

|unk
(tk)− u(t∞)|H1 > 0.

For ε ∈ ]0,∞[ define the function Fε:H1 ×H0 → R by

Fε(z) =
1
2
ε〈δz1 + z2, δz1 + z2〉+

1
2
〈A∇z1,∇z1〉

+
1
2
〈(β − δ + δ2ε)z1, z1〉 −

∫
Ω

F (x, z1(x)) dx

where δ ∈ ]0,∞[ is such that λ1 − δ > 0 and 1− 2δε0 > 0. Note that

‖u‖2 = 〈A∇u,∇u〉+ 〈(β − δ)u, u〉, u ∈ H1

defines a norm on H1 equivalent to the usual norm on H1. Let ε ∈ ]0, ε0] and
ζ = (ζ1, ζ2): [0,∞[ → Z be an arbitrary solution of πε. Using Theorem 2.4
(cf. [17, Proposition 4.1]) one can see that the function Fε ◦ ζ is continuously
differentiable and for every t ∈ [0,∞[

(3.20) (Fε ◦ ζ)′(t) + 2δFε(ζ(t)) =
∫

Ω

(2δε− 1)(δζ1(t)(x) + ζ2(t)(x))2 dx

+
∫

Ω

δζ1(t)(x)f(x, ζ1(t)(x)) dx− 2δ

∫
Ω

F (x, ζ1(t)(x)) dx.

Moreover, define F0:H1 → R by

F0(u) =
1
2
〈A∇u,∇u〉+

1
2
〈(β − δ)u, u〉 −

∫
Ω

F (x, u(x)) dx, u ∈ H1.

Every solution ξ: R → H1 of π̃ is differentiable into H1 so the function F0 ◦ ξ is
differentiable and a simple computation shows that for t ∈ R,

(3.21) (F0 ◦ ξ)′(t) + 2δ(F0 ◦ ξ)(t) = −〈δξ(t) + η(t), δξ(t) + η(t)〉

+
∫

Ω

[δξ(t)(x)f(x, ξ(t)(x))− 2δF (x, ξ(t)(x))] dx

where η(t) = −A1ξ(t) + f̂(ξ(t)), t ∈ R.
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Fix l ∈ N and, for k ∈ N, let ζk(t) = znk
(tk − l + t) and ζ(t) = (u(t∞− l + t),

v(t∞ − l + t) for t ∈ [0,∞[. Then (3.20) and (3.21) imply that

(3.22) Fεnk
(znk

(tk)) = e−2δlFεnk
(znk

(tk − l))

+ (2δεnk
− 1)

∫ l

0

e−2δ(l−s)

( ∫
Ω

(δζk,1(s)(x) + ζk,2(s)(x))2 dx

)
ds

+
∫ l

0

e−2δ(l−s)ρk(s) ds

where

ρk(s) =
∫

Ω

δζk,1(s)(x)f(x, ζk,1(s)(x)) dx− 2δ

∫
Ω

F (x, ζk,1(s)(x)) dx, s ∈ [0, l]

and

(3.23) F0(u(t∞)) = e−2δlF0(u(t∞ − l))

−
∫ l

0

e−2δ(l−s)

( ∫
Ω

(δζ1(s)(x) + ζ2(s)(x))2 dx

)
ds

+
∫ l

0

e−2δ(l−s)

( ∫
Ω

δζ1(s)(x)f(x, ζ1(s)(x)) dx

− 2δ

∫
Ω

F (x, ζ1(s)(x)) dx

)
ds.

Since ζk,1(s) → ζ1(s) in H0, uniformly for s lying in compact subsets of R, we
obtain from Proposition 3.2 that

(3.24)
∫ l

0

e−2δ(l−s)

( ∫
Ω

δζk,1(s)(x)f(x, ζk,1(s)(x)) dx

− 2δ

∫
Ω

F (x, ζk,1(s)(x)) dx

)
ds

→
∫ l

0

e−2δ(l−s)

( ∫
Ω

δζ1(s)(x)f(x, ζ1(s)(x)) dx

− 2δ

∫
Ω

F (x, ζ1(s)(x)) dx

)
ds

as k →∞. We claim that

(3.25) lim sup
k→∞

(2δεnk
− 1)

∫ l

0

e−2δ(l−s)

( ∫
Ω

(δζk,1(s)(x) + ζk,2(s)(x))2 dx

)
ds

≤ −
∫ l

0

e−2δ(l−s)

( ∫
Ω

(δζ1(s)(x) + ζ2(s)(x))2 dx

)
ds.

In fact, since 1− 2δεnk
≥ 0 for all k ∈ N we have by Fatou’s lemma

(3.26) lim sup
k→∞

(2δεnk
− 1)

∫ l

0

e−2δ(l−s)

( ∫
Ω

(δζk,1(s)(x) + ζk,2(s)(x))2 dx

)
ds
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= − lim inf
k→∞

(1− 2δεnk
)
∫ l

0

e−2δ(l−s)

( ∫
Ω

(δζk,1(s)(x) + ζk,2(s)(x))2 dx

)
ds

= − lim inf
k→∞

∫ l

0

e−2δ(l−s)

( ∫
Ω

(δζk,1(s)(x) + ζk,2(s)(x))2 dx

)
ds

≤ −
∫ l

0

e−2δ(l−s) lim inf
k→∞

( ∫
Ω

(δζk,1(s)(x) + ζk,2(s)(x))2 dx

)
ds.

Let s ∈ [0, l] be arbitrary. Since ((ζk,1(s), ζk,2(s)))k converges to (ζ1(s), ζ2(s))
weakly in H1 × H0 it follows that ((ζk,1(s), δζk,1(s) + ζk,2(s)))k converges to
(ζ1(s), δζ1(s) + ζ2(s)) weakly in H1 ×H0. It follows that for every v ∈ L2(Ω)

〈v, δζk,1(s) + ζk,2(s)〉 → 〈v, δζ1(s) + ζ2(s)〉 as k →∞.

Taking v = (δζ1(s) + δζ2(s)) we thus obtain

|(δζ1(s) + δζ2(s))|2L2 = 〈(δζ1(s) + δζ2(s)), (δζ1(s) + δζ2(s))〉
= lim

k→∞
〈(δζ1(s) + δζ2(s)), (δζk,1(s) + δζk,2(s))〉

≤ |(δζ1(s) + δζ2(s))|L2 lim inf
k→∞

|(δζk,1(s) + δζk,2(s))|L2

and so

(3.27)
∫

Ω

(δζ1(s)(x) + ζ2(s)(x))2 dx ≤ lim inf
k→∞

∫
Ω

(δζk,1(s)(x) + ζk,2(s)(x))2 dx.

Inequalities (3.27) and (3.26) prove (3.25). Since, by Proposition 3.2,∫
Ω

F (x, unk
(tk)(x)) dx →

∫
Ω

F (x, u(t∞)(x)) dx

we obtain, using Proposition 3.6, that

lim sup
k→∞

Fεnk
(znk

(tk)) = (1/2) lim sup
k→∞

‖u(tk)‖2 −
∫

Ω

F (x, u(t∞)(x)) dx

Moreover, there is a constant C ′ ∈ ]0,∞[ such that

sup
k∈N

sup
t∈R

|Fεnk
(znk

(t))|+ sup
t∈R

|F0(u(t))| ≤ C ′.

Thus

1
2

lim sup
k→∞

‖u(tk)‖2 −
∫

Ω

F (x, u(t∞)(x)) dx ≤ e−2δlC ′

−
∫ l

0

e−2δ(l−s)

( ∫
Ω

(δζ1(s)(x) + ζ2(s)(x))2 dx

)
ds

+
∫ l

0

e−2δ(l−s)

( ∫
Ω

δζ1(s)(x)f(x, ζ1(s)(x)) dx− 2δ

∫
Ω

F (x, ζ1(s)(x)) dx

)
ds

= e−2δlC ′ + (1/2)‖u(t∞)‖2 −
∫

Ω

F (x, u(t∞)(x)) dx− e−2δlF0(u(t∞ − l))



Damped Wave Equations 19

≤ 2e−2δlC ′ + (1/2)‖u(t∞)‖2 −
∫

Ω

F (x, u(t∞)(x)) dx.

Thus, for every l ∈ N, lim supk→∞ ‖u(tk)‖2 ≤ 4e−2δlC ′ + ‖u(t∞)‖2 so

lim sup
k→∞

‖u(tk)‖ ≤ ‖u(t∞)‖.

Since (unk
(tnk

))k converges to u(t∞) weakly in H1 we have

lim inf
k→∞

‖unk
(tnk

)‖ ≥ ‖u(t∞)‖.

Altogether we obtain
lim

k→∞
‖unk

(tnk
)‖ = ‖u(t∞)‖.

This implies that (unk
(tnk

))k converges to u(t∞) strongly in H1, a contradiction
to (3.19). Thus, indeed, un(t) → u(t) in H1, uniformly for t lying in compact
subsets of R.

Now (3.16) implies that vn(t) → v(t) in H−1, uniformly for t lying in compact
subsets of R. Since (vn)n is bounded in H0, interpolation between H0 and H−1

(cf. [16]) now implies that vn(t) → v(t) in H−α, uniformly for t lying in compact
subsets of R. The proof is complete. �

Now we obtain the main result of this paper.

Theorem 3.9. For every α ∈ ]0, 1] the family (Aε)ε∈[0,∞[ is upper semicon-
tinuous at ε = 0 with respect to the topology of H1 ×H−α, i.e.

lim
ε→0+

sup
y∈Aε

inf
z∈A0

|y − z|H1×H−α
= 0.

Proof. Using the first part of Theorem 3.7, choosing ε0 ∈ ]0,∞[ arbitrarily
and δ ∈ ]0,∞[ such that λ1−δ > 0 and 1−2δε0 > 0 and noting that the constant
c′ in that theorem is independent of ε ∈ ]0, ε0], it follows that, for all ε ∈ ]0, ε0]
and all (u, v) ∈ Aε, |u|2H1

+ε|v|2H0
≤ 2c′. Now an obvious contradiction argument

using Theorem 3.8 completes the proof of our main result. �

Remark. Theorem 3.9 and Corollary 2.2 imply Theorem 1.4.
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