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ON THE SOLUTION OF STOCHASTIC OSCILLATORY
QUADRATIC NONLINEAR EQUATIONS

USING DIFFERENT TECHNIQUES,
A COMPARISON STUDY

Magdy A. El-Tawil — Amna S. Al-Jihany

Abstract. In this paper, nonlinear oscillators under quadratic nonlin-
earity with stochastic inputs are considered. Different methods are used

to obtain first order approximations, namely the WHEP technique, the
perturbation method, the Pickard approximations, the Adomian decompo-

sitions and the homotopy perturbation method (HPM). Some statistical

moments are computed for the different methods using Mathematica 5.
Comparisons are illustrated by figures for different case-studies.

1. Introduction

Quadratic oscillation arises through many applied models in applied sciences
and engineering when studying oscillatory systems [25]. These systems can be
exposed to a lot of uncertainties through the external forces, the damping co-
efficient, the frequency and/or the initial or boundary conditions. These input
uncertainties cause the output solution process to be also uncertain. For most
of the cases, getting the probability density function (p.d.f.) of the solution pro-
cess may be impossible. So, developing approximate techniques through which
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approximate statistical moments can be obtained, is an important and neces-
sary work. There are many techniques which can be used to obtain statistical
moments of such problems. The main goal of this paper is to compare some of
these methods when applied to the problem with quadratic nonlinearity.

2. Problem formulation

In this paper, the following quadratic nonlinear oscillatory equation is con-
sidered as a comparison prototype equation for the application of the different
solution techniques:

(2.1) ẍ(t;ω) + 2wξẋ+ w2x+ εw2x2 = F (ω; t ∈ [0, T ]

under stochastic excitation F (t;ω) with deterministic initial conditions

x(0) = x0, ẋ(0) = ẋ0,

where

w — frequency of oscillation,
ξ — damping coefficient,
ε — deterministic nonlinearity scale,
ω ∈ (Ω, σ, P ) — a triple probability space with Ω as the sample space,
σ is a σ-algebra of events in Ω and P is a probability measure.

Lemma 2.1. The solution of equation (2.1), if exists, then it is a power series
of ε.

Proof. Rewriting equation (2.1), it can take the following form

ẍ(t;ω) + 2wξẋ+ w2x = F (t)− εw2x2

Following Pickard approximation, the equation can be rewritten as

ẍn+1(t) + 2wξẋn+1 + w2x1 = F (t)− εw2x2
n, n ≥ 0

where the solution at n = 0, x0, is corresponding for the simple linear case at
ε = 0. At n = 1, the iteration takes the form:

ẍ1(t) + 2wξẋ1 + w2x1 = F (t)− εW 2x2
0,

which has the following general solution

x1t) = ψ(t)− εw2

∫ t

0

h(t− s)x2
0(s) ds,

or
x1(t) = x

(0)
1 + εx

(1)
1 .

At n = 2, the iteration takes the form:

ẍ2(t) + 2wξẋ2 + w2x2 = F (t)− εw2x2
1,
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which has the following general solution

x2(t) = x
(0)
2 + εx

(1)
2 + ε2x

(2)
2 + ε3x

(3)
2 .

Proceeding like this, one can get the following

xn(t) = x(0)
n + εx(1)

n + ε2x(2)
n + ε3x(3)

n + · · ·+ εn+mx(n+m)
n .

Assuming the solution exists, it will be

x(t) = lim
n→∞

xn(t) =
∞∑

j=0

εjxj ,

which is a power series of ε.

As a direct result of this lemma, it is expected that the average, the variance
as well as the covariance are also power series of ε.

3. WHEP technique

Since Meecham and his co-workers [3] developed a theory of turbulence in-
volving a truncated Wiener–Hermite expansion (WHE) of the velocity field,
many authors studied problems concerning turbulence [4], [15], [20], [21], [30]
and [35]. A lot of general applications in fluid mechanics were also studied in [2],
[19], [23]. Scattering problems attracted the WHE applications through many
authors [5], [8], [31], [33], [34]. The nonlinear oscillators were considered as an
opened area for the applications of WHE as can be found in [1], [7], [9], [18],
[26]–[28]. There are a lot of applications in boundary value problems [6], [32]
and generally in different mathematical studies [22], [29].

The application of the WHE aims at finding a truncated series solution to the
solution process of differential equations. The truncated series composes of two
major parts; the first is the Gaussian part which consists of the first two terms,
while the rest of the series constitute the non-Gaussian part. In nonlinear cases,
there always exist difficulties of solving the resultant set of deterministic integro-
differential equations received from the applications of a set of comprehensive
averages on the stochastic integro-differential equation obtained after the direct
application of WHE. Many authors introduced different methods to face these
obstacles. Among them, the WHEP technique was introduced in [9] using the
perturbation technique to solve perturbed nonlinear problems.

The WHE method uses the Wiener–Hermite polynomials which are the ele-
ments of a complete set of statistically orthogonal random functions [16]. The
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Wiener–Hermite polynomial H(i)(t1, . . . , ti) satisfies the following recurrence re-
lation:

H(i)(t1, . . . , ti) = H(i−1)(t1, . . . , ti−1) ·H(1)(ti)

−
i−1∑
m=1

Hi−2)(Ti1 , . . . , tii−2) · δ(ti−m − ti), i ≥ 2

where

H(0) =1,

H(1)(t) =n(t),

H(2)(t1, t2) =H(1)(t1) ·H(1)(t2)− δ(t1 − t2),

H(3)(t1, t2, t3) =H(2)(t1, t2) ·H(1)(t3)

−H(1)(t1) · δ(t2 − t3)−H(1)(T2) · δ(t1 − t3),

H(4)(t1, t2, t3, t4) =H(3)(t1, t2, t3) ·H(1)(T4)−H(2)(t1, t2) · δ(T3 − t4)

−H(2)(t1, t3) · δ(t2 − t4)−H(2)(T2, t3) · δ(t1 − t4),

in which n(t) is the white noise with the following statistical properties where
δ( · ) is the Dirac delta function and E denotes the expectation. The Wiener–
Hermite set is a statistically orthogonal set, i.e.

En(t) = 0,

En(t1) · n(t2) = δ(t1 − t2),

EH(i) ·H(j) = 0 for all i 6= j.

The expectation of almost all H functions vanishes, particularly,

EH(i) = 0 for i ≥ 1.

Due to the completeness of the Wiener–Hermite set, any random function G(t;ω)
can be expanded as

G(t;ω) = G(0)(t) +
∫ ∞
−∞

G(1)(t; t1)H(1)(t1) dt1

+
∫ ∞
−∞

∫ ∞
−∞

G(2)(t; t1, t2)H(2)(t1, t2) dt1 dt2 + . . .

where the first two terms are the Gaussian part of G(t;ω). The rest of the terms
in the expansion represent the non-Gaussian part of G(t;ω). The expectation of
G(t;ω) is

µG = EG(t;ω) = G(0)(t).
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The covariance of G(t;ω) is

Cov(G(t;ω), G(τ ;ω)) =E(G(t;ω)− µG(t))(G(τ ;ω)− µG(τ))

=
∫ ∞
−∞

G(1)(t, t1)G(1)(τ, t1) dt1

+ 2
∫ ∞
−∞

∫ ∞
−∞

G(2)(t; t1, t2)G(2)(τ, t1, t2) dt1 dt2.

The variance of G(t, ω) is

VarG(t;ω) = E(G(t;ω)− µG(t))2 =
∫ ∞
−∞

[G(1)(t; t1)]2 dt1

+ 2
∫ ∞
−∞

∫ ∞
−∞

[G(2)(t; t1, t2)]2 dt1 dt2.

The WHEP technique can be applied to linear or nonlinear perturbed systems
described by ordinary or partial differential equations. The solution can be
modified in the sense that additional parts of the Wiener–Hermite expansion
can always be taken into consideration and the required order of approximations
can always be made depending on the computing tool. It can be even run through
a package if it is coded in some sort of symbolic languages. The technique was
successfully applied to several nonlinear stochastic equations, see [1], [6], [7]
and [9].

3.1. Case study. The quadratic nonlinear oscillatory problem, equation
(2.1), is solved using WHEP technique. The first order approximation of the
solution process takes the following form:

x(t;ω) = x(0)(t) +
∫ ∞
−∞

x(1)(t; t1)H(1)(t1) dt1.

Applying the WHEP technique, the following equations in the deterministic
kernels are obtained:

Lx(0)(t) + εw2(x(0)(t))2 + εw2

∫ ∞
−∞

x(1)(t; t1))2 dt1 = F (0)(t),

Lx(1)(t, t1) + 2εw2x(0)(t)x(1)(t, t1) = F (1)(t, t1).

Let us take the simple case of evaluating the only Gaussian part (first order
approximation) of the solution process. The expectation is

µx(t) = x(0)(t),

and the variance is

σ2
x(t) =

∫ ∞
−∞

[x(1)(t; t1)]2 dt1.

The WHEP technique uses the following expansion for its deterministic kernels,

x(i)(t) = x
(i)
0 + εx

(i)
1 + ε2x

(i)
2 + ε3x

(i)
3 + . . . , i = 0, 1,
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at ε = 0.1 at ε = 0.3

at ε = 0.5 at ε = 0.7

at ε = 1

Figure 1. The first order approximation of the mean for different correc-

tion levels

where the first two terms consider the first correction (up to ε), the first three
terms represent the second correction (up to ε2) and so on. This means that we
have a lot of corrections possible within each order of approximation.

Example 3.1. Let us take F (t;ω) = e−i + εn(t;ω), in the previous case-
study and then solve it using the WHEP technique. The following results are
obtained (see Figures 1–3):

4. The homotopy perturbation method (HPM)

In this technique [10]–[13], a parameter p ∈ [0, 1] is embedded in a homotopy
function v(r, p):φ× [0, 1] → < which satisfies

H(v, p) = (1− p)[L(v)− L(u0)] + p[A(v)− f(r)] = 0



Stochastic Oscillatory Quadratic Nonlinear Equations 321

at ε = 0.1 at ε = 0.3

at ε = 0.5 at ε = 0.7

at ε = 1

Figure 2. The first order approximation of the variance for different cor-
rection levels

where u0 is an initial approximation to the solution of the equation

(4.1) A(u)− f(r) = 0, r ∈ φ

with boundary conditions

B

(
u,
∂u

∂n

)
= 0, r ∈ Γ

in which A is a nonlinear differential operator which can be decompose into
a linear operator L and a nonlinear operator N , B is a boundary operator,
f(r) is a known analytic function and Γ is the boundary of φ. The homotopy
introduces a continuously deformed solution for the case of p = 0, L(v)−L(u0),
to the case of p = 1, A(v) − f(r) = 0, which is the original equation (4.1).
This is the basic idea of the homotopy method which is to continuously deform
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Figure 3. The first order approximation and first correction of the covari-

ance at ε = 0.1

continuously a simple problem (and easy to solve) into the difficult problem
under study [14].

The basic assumption of the HPM method is that the solution of the original
equation (4.1) can be expanded as a power series in p as:

v = v0 + pv1 + p2v2 + p3v3 + . . .

Now, setting p = 1, the approximate solution of equation (4.1) is obtained as:

u = lim
p→1

v = v0 + v1 + v2 + v3 + . . .

The rate of convergence of the method depends greatly on the initial approxi-
mation v0 which is considered as the main disadvantage of HPM.

The idea of the imbedded parameter can be utilized to solve nonlinear prob-
lems by imbedding this parameter to the problem and then forcing it to be unity
in the obtained approximate solution if convergence can be assured. It is a simple
technique which enables the extension of the applicability of the perturbation
methods from small value applications to general ones.

Example 4.1. Considering the same previous example as in Subsection 3.1,
one can get the following results w.r.t. homotopy perturbation:

A(x) = L(x) + εw2x2, L(x) = ẍ+ 2wξẋ+ w2x,

N(x) = εx2, f(r) = F (t;ω).

The homotopy function takes the following form:

H(v, p) = (1− p)[L(v)− L(u0)] + p[A(v)− f(r)] = 0
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or equivalently,

(4.2) l(v)− L(u0) + p[L(u0)εw2v2 − F (t;ω)] = 0.

Letting v = v0 + pv1 + p2v2 + p3v3 + . . . , substituting in equation (4.1) and
equating the equal powers of p in both sides of the equation, one can get the
following results:

(a) L(v0) = L(Y0), in which one may consider the following simple solution:

v0 = y0, y0(0) = x0, ẏ0(0) = ẋ0.

(b) L(v1) = F (t, ω)− L(v0)− εw2v2
0 , v1(0) = 0, v̇1(0) = 0.

(c) l(v2) = −2εw2v0v1, v2(0) = 0, v̇2(0) = 0.
(d) L(v3 − εw2(v2

1 + 2v0v2), v3(0) = 0, v̇3(0) = 0.

The approximate solution is

x(t;ω) = lim
p→1

v = v0 + v1 + v2 + . . .

One can notice that the algorithm of the solution is straightforward and that
many flexibilities can be made. For example, we have many choices in guess-
ing the initial approximation together with its initial conditions which greatly
affects the consequent approximations. The following first order approximation
expression is:

x(t;ω) ∼= x1 = v0 + v1 = v0 +
∫ t

0

h(t− s)(F (s;ω)− L(v0)(s)− εw2v2
0(s) ds

For zero initial conditions, we can choose v0 = 0 which leads to the following
results at w = 1 and ξ = 0.5 (see Figures 4 and 5):

(a) (b)

Figure 4. The first order approximation (a) of the mean; (b) of the vari-
ance at different values of ε
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Figure 5. The first order approximation of the covariance at ε = 0.1

(a) (b)

Figure 6. The first order approximation (a) of the mean; (b) of the vari-
ance at different values of ε

We can choose v0 = t2 which leads to the following results at w = 1 and
ξ = 0.5 (see Figure 6).

One can notice high deteriorations in the mean.

5. Pickard approximation

In this technique, the linear part of the differential operator is kept in the left
hand side of the equation whereas the rest of the nonlinear terms are moved to
the right side. The successive Pickard approximation are processed accordingly
to let the L.H.S. as the n+ 1 approximations for the solution process depending
on the n-th approximation in the R.H.S., n ≥ 0. Let us illustrate the method
by the following example.

Example 5.1. When solving the quadratic nonlinear oscillatory problem in
equation (2.1) while using Pickard technique, the following successive approxi-
mations are obtained:

Lxn+1(t;ω) = F (t;ω)− εw2x2
n(t;ω)
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which has the general iterative formula:

(5.1) xn+1(t;ω) = xn+1(0)φ1

+ xn+1(0)φ2 +
∫ t

0

h(t− s)F (s) ds− εw2

∫ t

0

h(t− s)x2
n(s) ds

If the convergence of the process is insured, one can obtain the solution as an
ε series in stochastic terms. Following the iterative formula (5.1), the first ap-
proximation is

x1(t;ω) = x1(0)φ1 + x1(0)φ2 +
∫ 1

0

h(t− s)F (s) ds− εw2

∫ 1

0

h(t− s)x2
0(s) ds

where

x0(t;ω) = x0(0)φ1 + ẋ0(0)φ2 +
∫ t

0

h(t− s)F (s) ds.

The expectation is

Ex1(t;ω) = x1(0)φ1 +x1(0)φ2 +
∫ t

0

h(t−s)EF (s) ds− εw2

∫ t

0

h(t−s)Ex2
0(s) ds

The covariance is

Cov(x1(t), x1(τ))
∫ t

0

∫ t

0

h(t− s)h(τ − z)Cov(F (s), F (z) dz ds

The variance is

Var (x1(t))
∫ t

0

∫ t

0

h(t− s)h(t− z)Cov(F (s), F (z)) dz ds

The second approximation is obtained in a similar way.
Let us take F (t;ω) = e−t + εn(t;ω). In this case, the following results are

obtained (see Figure 7):

6. The direct perturbation method

The direct expansion of the solution process is the most conventional and
direct one among all the approximation techniques. The basic assumption is

x(t;ω) = x(0)(t;ω) + εx(1)(t;ω) + ε2x(2)(t;ω) + ε3x(3)(t;ω) + . . .

Substituting in the original equation (2.1) and equating the equal powers in both
sides of the resulting equation one can get a set of linear differential equations
to be solved with their corresponding deterministic initial conditions.
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(a) (b)

(c) (d)

Figure 7. (a) The zero order approximation x0; (b) the mean of the first
order approximation x1 at different ε; (c) the variance of the first order

approximation at different ε; (d) the covariance of first order approximation

at ε = 0.5

Example 6.1. While working on the prototype example of this paper, the
following results are obtained (see Figure 8):

7. The Adomian decomposition method

In this method, the differential operator is so decomposed that equation (2.1)
is rewritten in the following form:

Lx(t;ω) = F (t;ω)−R(x)− εw2x2(t;ω),

where

Lx(t;ω) =
d2x

dt2
, R(x) =

(
2wξ

d

dt
+ w2

)
(x).

These decompositions transform the problem into an easier one. The general
solution procedure is obtained when using the following:

(7.1) x = x(0) + ẋ(0)t+
∫ t

0

∫ t

0

F (t) dt dt

−
∫ t

0

∫ t

0

R(x) dt dt− εw2

∫ t

0

∫ t

0

x2(t) dt dt
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(a) (b)

(c) (d)

Figure 8. (a) The zero order approximation of the mean; (b) the first

order approximation of the mean at different ε; (c) the first order approx-
imation of the variance at different values of ε; (d) the covariance of the

first approximation at ε = 0.5

The method also decomposes the solution process into

(7.2) x(0)(t;ω) + x(1)(t;ω) + x(2)(t;ω) + . . .

Substituting from equation (7.2) into (7.1), one can get the following iterative
equations in the unknown kernels of equation (7.2):

x(0)(t;ω) = x(0) + ẋ(0)t+
∫ t

0

∫ t

0

F (t;ω) dt dt,

x(1)(t, ω) = −
∫ t

0

∫ t

0

R(x(0) dt dt− εw2

∫ t

0

∫ t

0

(x(0)) dt dt,

Example 7.1. When solving the prototype example, we get the results in
Figures 9 and 10. One can notice how the obtained results are distant from those
of the previous techniques.

8. Conclusions

Concerning the quadratic nonlinearity problem and the prototype example
used for illustrating the efficiency of the processed approximation techniques,
one may suggest the use of the Pickard approximation which is very rapidly
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(a) (b)

Figure 9. (a) The first order approximation of the mean; (b) the first

order variance at different values of ε.

Figure 10. The first order covariance at ε = 0.3.

convergent to the solution, if convergent, and when using an efficient computer
with an efficient symbolic program. The direct perturbation method produces
good results. The WHEP technique seems to be an efficient one because of
its corrections possibilities in spite of being analytically lengthy. The HPM is
the easiest in computations, but expectedly depends highly on the initial guess.
Concerning only first order approximation, the Adomian decompositions method
is the worst among all the other executed techniques in this paper.
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