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A BIFURCATION RESULT OF BOHME-MARINO TYPE
FOR QUASILINEAR ELLIPTIC EQUATIONS

ELISABETTA BENINCASA — ANNAMARIA CANINO

ABSTRACT. We study a variational bifurcation problem of Bohme-Marino
type associated with nonsmooth functional. The existence of two branches
of bifurcation is proved.

1. Introduction

Consider the quasilinear eigenvalue problem

— > Djlaij(x,u)Dyu)
ij=1
1 — .
T3 }Zl Diaij(x,u)DyuDju — g(z,u) =l in Q,
i,j=

u=20 on 0,

where 2 is a bounded open subset of R"™ and a;;, g satisfy suitable assumptions
that will be specified later.

If g(z,0) = 0, it is natural to study the bifurcation problem from the trivial
branch of solutions {(A,0) : A € R}. Since (1.1) is formally the Euler equation

2000 Mathematics Subject Classification. 35H05, 35B32, 35J50.
Key words and phrases. Béhme—Marino theorem, bifurcation branches, nonsmooth critical
point theory.

©2008 Juliusz Schauder Center for Nonlinear Studies



2 E. BENINCASA — A. CANINO

of the functional Fy: Hi(Q2) — R defined as

Fy(u) = % /Q Z a;;(z, v)DyuDjudr — /QG(ac,u) dx — %)\/ng dx,

,j=1

where G(z, s) = f; g(x,t) dt, it is natural to expect the well known results typical
of bifurcation for potential operators (see e.g. [18], [20]).

However, the feature that the coefficients a;; are dependent on u causes a lack
of differentiability, hence the impossibility to apply standard techniques. More
precisely, it is well known (see e.g. [5], [10], [21]) that, under natural growth
conditions on a;; and g, the functional F\ is continuous on H(£2), but not
locally Lipschitz, unless the a;;’s are independent of v or n = 1.

In the previous paper [6], Rabinowitz’s theorem [19] has been extended
to (1.1). Here we are interested in the other basic description of bifurcation
branches, namely Béhme-Marino theorem [2], [16]. As in [6], a key ingredient in
our proof is the nonsmooth critical point theory developed independently in [9],
[11] and in [12], [13]. However, while in [6] the key point was a finite dimensional
reduction of (1.1), here the eigenvalue problem is directly treated in the infinite
dimensional setting. This allows weaker differentiability assumptions on a;;.
More precisely, hypothesis (a.2) is weaker than the corresponding assumption
in [6].

Let us recall that, while the classical Bohme—Marino theorem requires the
functional to be of class C2, various extensions have been considered in the
literature. In particular the case in which the functional is of class C''! or even
C' has been treated in [17] and [15], respectively, while the case of variational
inequalities involving the Laplace operator has been considered in [1]. However,
the techniques used in these papers cannot be applied to (1.1).

The main result. Let {2 be a bounded open subset of R” and a;;: QxR — R
(1 <14,7 <n) be such that

{ for all s € R,  a;;(z,s) is measurable with respect to x,

for a.e. x € Q, a;;(z,s) is of class C! with respect to s.

Suppose also that:
(a.1) for almost every z € , for all s € R and all 1 <4,j <mn,

a;j(z,8) = a;i(xz, s);

(a.2) there exists a continuous function a: R — [0, oo[ such that, for almost
every x € (), forall se Rand all 1 <14,j < n,

laij(z,8)| < als), |Dsaij(z,8)| < als);
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(a.3) there exists a continuous function v: R — ]0, oo such that, for a.e. z € Q,
for all s € R and all £ € R",

Z 3:551&321/ )ngv
=1 =1

(a.4) for a.e. x € Q, for all s € R and all £ € R,

Z SDSCLZ‘J‘($7S>§¢EJ' Z 0.

ij=1
Finally, let g: Q2 x R — R be a function such that
for all s € R, g(z,s) is measurable with respect to z,
{ for a.e. 2 € Q, g(z,s) is of class C! with respect to s.
Suppose also that:

(g.1) for a.e. z € Q, g(z,0) = 0;
(g.2) there exists a continuous function 8 : R — [0, oo such that, for a.e. z €
Q and for all s € R,

|Dsg(,s)| < B(s).
Consider the problem
(A, u) € R x (HY(Q) N L>®(Q)),

/ZawquuDvdx—F /ZDawzuDuDuvdx

7,7=1 1,0=1

f/ g(z,u)vdr = )\/ uwvdz for all v € H(Q) N L>¥(9).
Q Q

REMARK 1.1. By assumption (g.1), (A, 0) is a solution of (1.1) for all A € R.

DEFINITION 1.2. A real number 4 is said to be a bifurcation value of (1.2)
if there exists a sequence (Ap,up) of solutions of (1.2) with up # 0 such that
A — pand up — 0 strongly in H}(Q) and in L>(€Q).

Let us introduce the linear operator A : H}(Q) — H () such that

(Au,v) / Z a;;(z,0)D;uD; de—/Dsg x, 0)uv dz.

7,7=1

A real number p is said to be an eigenvalue of A if the equation Au = pu admits
a nontrivial solution wu.

PROPOSITION 1.3. If i1 is a bifurcation value of (1.2), then u is an eigenvalue
of A.

Let us state the main result of the paper.
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THEOREM 1.4. Suppose that p is an eigenvalue of A. Then p is a bifurcation
value of (1.2). Moreover, there exists oo > 0 such that:

(a) for each o € 10,00|, there exist at least two solutions (Ag(0),ur(0)),
k=1,2, of (1.2) with ui(0) # uz(0) and

/mum%mzf;
Q

(b) as 0 — 0, we have A\ (0) — p and uk(o) — 0 strongly in HE(Q) and in
L>(Q).

Proposition 1.3 and Theorem 1.4 will be proved in the last section. In the
next section we recall the tools of nonsmooth critical point theory we need, while
in Section 3 we prove Proposition 1.3 and Theorem 1.4 in a particular case, more
suitable for a direct variational approach.

2. Recall of nonsmooth analysis

In this section we recall from [4], [7], [9], [11] some notions and results of
nonsmooth critical point theory we shall use to describe the variational nature
of problem (1.2).

Let X denote a metric space endowed with the metric d and f: X — RU{o0}
a function. We also consider the space X x R endowed with the metric

d((u, s), (v,t)) = (d(u,v)? + (s — t)2)1/2.

Set epi(f) = {(u,s) € X xR : f(u) < s} and, for every c € R, f¢ = {u e X :
f(u) < c}. Finally, we denote by B,.(u) the open ball of center u and radius r.

The next definition is taken from [4, Definition 2.1]. For an equivalent ap-
proach, see [9], [11] and, when f is continuous, [13].

DEFINITION 2.1. For every u € X with f(u) < oo, we denote by |df|(u) the
supremum of the ¢’s in [0, oo such that there exist § > 0 and a continuous map

H: (Bs(u, f(u) N epi(f) x [0,3] — X

satisfying

A(H((0,5),0),0) <6, F(H((0,5),1)) <5 — ot,
whenever (v, s) € Bs(u, f(u)) Nepi(f) and t € [0,]. The extended real number
|df|(u) is called the weak slope of f at u.

DEFINITION 2.2. A point v € X with f(u) < oo is said to be (lower) critical
for f, if |df|(u) = 0. A real number c is said to be a (lower) critical value for f,
if there exists u € X such that f(u) = ¢ and |df|(u) = 0. For every ¢ € R, we
set Ko ={ue X : f(u) =c¢, |df|(u) =0}.
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DEFINITION 2.3. Given ¢ € R, we say that f satisfies (PS),, i.e. the Palais—
Smale condition at level ¢, if from every sequence (uy) in X, with f(uy) — ¢ and
|df|(up) — 0 as h — o0, it is possible to extract a subsequence (up, ) converging
in X.

DEFINITION 2.4. Let Y be a closed subset of X. For every closed subset A
of X, we denote by catx y A the least integer n > 0 such that A can be covered
by n + 1 open subsets Uy, ... ,U, of X with the following properties:

(a) there exists a deformation K: X x[0, 1] — X such that K(Y x[0,1]) C Y
and K(Up x {1}) C Y (if Y = 0, we mean that Uy must be empty);
(b) for 1 < h <mn, each Uy, is contractible in X.
If no such integer n exists, we set catx,y A = co. Finally, to shorten notations,
we put catx A = catx gA.

For the next result, we refer the reader to [7, Theorem 1.4.9].

THEOREM 2.5. Assume that X is complete and that f: X — R is continuous.
Let —00 < a < b < 0o and let us suppose that, for every c € [a,b], the function
f satisfies (PS).. If catx,fafb >k with k € N, then there exist a < ¢ < ... <
cr < b such that each ¢, is a critical value of f. Moreover, if ¢, = ... = ¢, for
some m < n, we have catx K, >n—m+ 1.

DEFINITION 2.6. The metric space X is said to be weakly locally contractible,
if every u € X admits a neighbourhood U contractible in X.

For the next result, see [7, Theorem 1.4.11].

PROPOSITION 2.7. Assume that X is weakly locally contractible and let A be
a closed subset of X. Then A contains at least catx A elements.

Finally, we recall from [4] some notions and results which will help in the
evaluation of the weak slope. Assume now that X is a Banach space.

DEFINITION 2.8. Let u € X with f(u) < co. For every v € X and € > 0,
let f2(u;v) be the infimum of the 7’s in R such that there exist 6 > 0 and

a continuous map
V: (Bs(u, f(u)) Nepi(f)) x]0,0] — Be(v)
satisfying
fz+tV((z,5),1) < s+t
whenever (z,s) € Bs(u, f(u)) Nepi(f) and ¢ € ]0, ] (we agree that inf ) = oo).

Let also

FO(usv) = sup f2(u; ).
>0

We say that f9(u;v) is the generalized directional derivative of f at u with respect
to v.



6 E. BENINCASA — A. CANINO

DEFINITION 2.9. For every u € X with f(u) < co, we put
Af(u) = {w € X* : (w,v) < fO(u;v) for all v € X}.
The set df(u) is called the subdifferential of f at w.
For the next result, we refer the reader to [4, Theorem 4.13].
THEOREM 2.10. For every u € X with f(u) < oo, we have
if |df|(u) < oo then Of (u) # 0,
if df () < oo then |df|(w) > min|lw] : w € O (u)}.
In particular, if |df|(u) = 0, we have 0 € Of (u).

We end the section with a Lagrange multiplier theorem. If C' C X, we denote
by I the indicator function of C', namely

Lo () 0 ifued,
T x ifuex\c.

DEFINITION 2.11. Let u € X with f(u) < co. For every v € X and € > 0
let fO(u;v) be the infimum of the r’s in R such that there exist § > 0 and
a continuous map

H: (Bs(u, £(u)) N epi(f)) x [0,6] — F
satisfying H((z,s),0) = z,

HH((%S)JH) — H((2,9),t2)
t1 —to
f(H((2,5),t) < s+t

—v|l <e¢g,

whenever (z,s) € Bs(u, f(u)) Nepi(f) and ¢,t1,ts € [0,8] with ¢; # ty (we agree
that inf ) = 0o). Let also

FO(uzv) = sup f2(u;v).
>0

THEOREM 2.12. Let U be an open subset of X with OU of class C', let
u € OU with f(u) < oo and let v(u) € X*\ {0} be an outer normal vector to U
at w. Then the following facts hold:

(a) if there exist v_,vy € X such that (v(u),v_) < 0 < (v(u),vs) and
FO(u;vs) < 0o, we have
(f + Iov) (u;v) < fO>u;v)  for every v € X with (v(u),v) = 0,
I(f + Iov)(u) C Of(u) + { v(u) : X € R};
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(b) if there exists vg € X such that (v(u),vo) < 0 and fO(u;v9) < oo, we
have

(f + I7)°(usv) < fO(wsv)  for every v € X with (v(u),v) <0,
([ + I)(u) € 9f (u) +{nr(u) : n = 0}.

PRrROOF. For assertion (a) we refer the reader to [4, Corollary 5.9]. Assertion
(b) is a particular case of [4, Corollary 5.4]. O
3. The case with uniform bounds

Throughout this section, we consider the particular case in which a;; and ¢
satisfy (a.1), (a.4), (g.1) and the estimates

(a:2) laij(z,5)] <, |Dsai;(z,s)] < a,

(a.3") > aij(w,9)&8 > vy &,
i,j=1 i=1

(8:2) |Dsg(z, s)| < B,

for some some constants o, 3 > 0 and v > 0.

ProprosITION 3.1. The assertion of Proposition 1.3 holds under these more

restrictive assumptions.

THEOREM 3.2. The assertion of Theorem 1.4 holds under these more re-
strictive assumptions.

The section will be devoted to the proofs of Proposition 3.1 and Theorem 3.2.
First of all, define the continuous functionals f, f,: H}(£2) — R (0 > 0) by

f(ou)
92

flw) = /Q Z a;j(z,u)D;uD;udr — 2/QG(x,u) dz, fo(u) =

ij=1

)

where G(z,s) = [, g(x,t)dt, and the smooth quadratic form fo : H}(Q2) — R
by

fo(u) = (Au,u) :/ Z a;j(z,0)DiuDjudx — / D.g(x,0)u® dz.
Q5 Q
3,j=1
By Definition 2.1, it is easy to verify that |df,|(u) = %\df\(gu). Moreover, by
(a.2') and (g.2’) the functionals f and f, are differentiable at any u € H} ()
with respect to any v € Hg(Q) N L*°(Q).
Let u be an eigenvalue of A, let Vj be the associated eigenspace and let

V:{veHé(Q):/vwdac:Q for allweVO}.
Q
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Let us decompose V as Vi @ V_, where V, is the closed subspace of H{(Q)
spanned by the eigenvectors associated to the eigenvalues A\; with A; > p and
V_ is the subspace of H}(Q) spanned by the eigenvectors associated to the
eigenvalues A; with A\; < p. Let us denote by Py, P_ and P, the orthogonal
projections, with respect to the scalar product of L2?(Q2), on Vy, V_ and V.,
respectively. Let us recall that the decomposition HZ(Q2) = V_ @V & Vy is
orthogonal both with respect to the scalar product of L?(£2) and with respect to
the bilinear form (Au,v). Moreover, V_ &V} is finite dimensional and contained
in H}(Q) N L>=(Q).
We also set

1
S:{uEH(%(Q):/|u|2dm:1}7 M:{ueS’:/|P0ugdm24}7
Q Q

and denote by fg (0 > 0) the restriction of f, to M. Clearly, M is a submanifold
with boundary in H}(Q) with

oM = {u €S :/ | Pou|? dx = 1}.
Q 4

LEMMA 3.3. The following facts hold:
(a) if o — 0 and up, — u strongly in HE (), then
o(u) = lim fy, (un);
(b) if on — 0 and up — u weakly in HE(Q), then

fo(u) < limhinf fon (un).

PRrROOF. The assertions follow from [6, Theorem 2.2]. O

LEMMA 3.4. For each € > 0 small enough, there exists o > 0 such that, for
every o €10, 00|, one has

- _ fnte
Catfg+2s’f575 fg Z 2.

PROOF. If € > 0 is small enough, there exist 0 < 7 < gg such that My # 0
and
Mo (Vo @ Vp) C fi=/% ¢ fli=s c My,

where

My = {u eEM: / |P_ul? do > 53}, M, = {u eM: / |P_u|?dx > E%}
Q Q
It is easy to check that the inclusion map
(M0 (Vo@ Vo), Mon (V- & Vy)) — (M, M)

is a homotopy equivalence. Let m be a homotopy inverse.
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We claim that, if g9 > 0 is small enough, then for every g € |0, o] we have

(3.1) My (Vo @ Vo) C fie c My,
(3.2) MO (Vo @ V) C fhte

Actually, since My N (V- & Vp) and M N (V_ @ Vp) are compact, (3.2) and the
first inclusion in (3.1) follow from (a) of Lemma 3.3.

To prove the second inclusion in (3.1), assume by contradiction that g5, — 0
and up, € féfh_g\Ml. Since M is bounded in L?(€2), from (g.2’) and (a.3’) we have
that uy, is bounded also in H} (), hence weakly convergent, up to a subsequence,
to some u € M \ Mi. From (b) of Lemma 3.3 we deduce that fo(u) < 1 — e and
a contradiction follows.

Now, if we consider the inclusion maps
11: (M n (V, ©® Vb), My N (V, &) V())) — (‘El)l-i-%’ f'-z;,—a)7
i2: (~5+2E7 f’:/gis) - (Mv Ml)

We have that (7oig) o4 is homotopic to the identity map of (MN(V_@ V), MoN
(V_@Vp)). Since iy ' (f4+) = M N (V- @ Vp), from [7, Theorem 1.4.5] it follows

Catﬂ¢+2s,f5,—ef5+€ > Ca‘t]\/[ﬂ(V,@Vo),Moﬂ(V,@VO)M n (V_ S ‘/0)

On the other hand, the pair (M N (V_ @ Vp), Mo N (V- & V})) is homotopically
equivalent to the pair (R™ x S"~1 §m~1 x §n=1) where m = dimV_ and n =
dim Vo.

If n > 2, it is well known that there exist

21 € Hp (R™ x S 8™ 8771\ {0},
29 € Hypyn—1(R™ x 771 gm=1 s gn=1hy,
we HHR™ x §771)

such that z; = w N 29 (see e.g. [15, p. 347]). From [7, Theorem 1.4.8] we deduce
that

(33) CatRmXS’n—l’Snl—l XSn—lRm X Sn71 Z 2

and the assertion follows. By the way, equality holds in (3.3).
If n = 1, we have that S"~! = {—1,1} is disconnected and the fact that

CatRmXSnfl’Sm—IXSn—lRm X Sn71 =2

can be seen directly. O
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LEMMA 3.5. For every u € M with |dﬁ,\(u) < o0, there exist A\ € R, n > 0
and w € H1(Q) such that ||w| < |df,|(uw)/2 and

(3.4) ’7(/9 | Pou|? dx — i) =0,

n 1 n
(3.5) /Q Z a;j(z, ou)DyuDjv dx + 3 Q/Q Z Dga;j(z, ou)D;uDjuv dx

ij=1 ij=1

—l/g(x,gu)vdm:)\/uvdx—ﬁ—n/Pouvdx+<w,v>
0Jo Q Q
for all v € HE () N L>(9Q).

PROOF. By [4, Theorem 6.1], for every u € Hg(£2), we have

(3.6) fo(usv) < fo(us;v) < oo for all v e C(Q),

and if 0f,(u) # 0 then

- IR 1 _

_ Z D; (a;j(z, ou)Diu) + 70 Z Dsaij(x, ou)DiuDju— 2 g(z, ou) € H1(Q)
i,5=1 ,5=1

in the sense of distributions. If df,(u) # 0 then

(3.7) Ofy(u) = { -2 Z Dj(aij(x, ou)D;u)

ij=1

= 2
+o Z Dga;j(x, ou)DjuDju — Eg(x, Qu)}

ij=1

Since, for every u € S, there exist v_, vy € C2°(Q) such that
/uv_daj>0 > / uvg dx,
Q Q
from (3.6) and (a) of Theorem 2.12 we deduce that

(38)  (fo+Is)°(usv) < fJ(usv) for every v € Hy() with / wodz =0,
Q

(3.9) A(f, + Is)(u) C Ofy(u) + {~Xu: A € R}.

Finally, if we set

1
U:{ueH&(Q):/|Pou|2dx>4}7
Q
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for every u € OM, the open sets

{veH&(Q):/Pouvdx>0, /uvdx>0},

Q Q

{veH&(Q):/Pouvdx>O, /uvdcc<0}
Q Q

are not empty. Therefore, there exists vg € C2°(€) such that

/ Pyuvgdzx > 0, / uvg dx = 0.
Q Q

From (3.6), (3.8) and (b) of Theorem 2.12 we deduce that, for every u € M,
(3.10) Ofe +Is + Ig)(u) C O(fp + Is)(u) + {=nPou : 1 = O}.

Now let uw € M with \dfg|(u) < 0o. From Definition 2.1 it easily follows that
ldf,|(w) = |d(f,+Is + I7)| (u). By Theorem 2.10 there exists w € H ()
with 2w € 9 (fo + Is + Ip) (u) and ||2w]| < |df,|(u). If u € OM, by (3.7), (3.9)
and (3.10) we find A € R and n > 0 such that

w= — Z Dj(aij(z, ou) Diu)

i,j=1

0 v 1
+ 5 Z Dsaij(x, ou)DiuDju — 2 g(z, ou) — Au — nPyu.

7,j=1

We deduce (3.4) and (3.5), provided that v € C°(€2). An easy approximation
argument then shows that (3.5) holds.

If u g OM, we have O(f, + Is + I7)(u) = O(f, + Is)(u), as the notion of
subdifferential is local, and the assertion follows in a similar way. O

LEMMA 3.6. There exists § > 0 such that

(3.11) for all 0 €10,6], for allu € OM : if |]79(u) — p] <6 then |dfg\(u) > 0.

PROOF. By contradiction, let o, — 0 and u; € OM with :f;h (up) — p and
|dfgh|(uh) — 0. Since M is bounded in L?(Q2), (g.2") and (a.3’) imply that (uy)
is bounded in H{(2). Up to a subsequence, (uy,) is convergent to some u € M
weakly in H} () and strongly in L2(£2). By (b) of Lemma 3.3 we have fo(u) < p.
It follows that P_wu # 0.
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By Lemma 3.5 there exist w;, € H~1(Q) with w, — 0, A, € R and n;, > 0
satisfying

(3.12) / Z aij(z, opun)DjupDjv dx
Q.

ij=1

- 1
+ % / Z Dgaij(x, onun)DiupDjup vde — Q—/ g(z, opup)vdx
Q. h JQ

i,j=1
:)\h/uhvdx—i—nh/Pouhvdx+<wh,v>
Q Q

for all v € H}(Q)NL>(Q). Since V_ is a finite dimensional subspace of H} ()N
L>(Q), we have that (P_uy,) is strongly convergent to P_u both in Hg () and
in L*>(Q). If we put v = P_uy, in (3.12), we get that (Ay) is bounded. If we put
v = Pyuy, in (3.12), we deduce in a similar way that also (7)) is bounded. Up to
a subsequence, we may assume that A\, — A and n, — 1 > 0.

By an easy adaptation of [8, Lemma 5.1] we have

1

(3.13) li}IZn —g(x, opup) = Dsg(z,0)u strongly in L*(Q),
On
1 1

(3.14) li}rbn g—zG(x, onup) = §D59($7 0)u? strongly in L*(Q).
h

Passing to the limit in (3.12) as h — oo and taking into account (3.13), we get

(Au,v)z/ Z aij(x,O)DiuDjvdx—/Dsg(az,O)uvdm
Q,; Q

ij=1

:)\/uvdar—l—n/Pouvdx
Q Q

for every v € H(2) N L>(Q), hence by density for every v € H(2). If we
choose v = Pyu, we obtain p = A 4+ n, while, if we choose v = P,u, we get

ﬁ/ |Puf? de < )\/ | Py ul|? de,
Q Q

where 71 is the minimal eigenvalue of A greater than u. It follows that Pru =0
and fo(u) < p.

By (a.4) and the result of [3], we can also put v = uy, in (3.12). By (a.4),
(3.13) and (3.14), it follows

n= h]{n J?Qh (uh)

" 2
= lim [/ Z a;;(z, opun)Diup Djuy, de — —2/ G(z, onup) daj]
h Q. 0n Ja

ij=1

n
1
lim / E a;i(x, onup)Diup Djup, dm——/g T, OpUR)Up dx}
h { Q. i ) ! on Jo ( )

ij=1
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g)\/qux—i—n/ | Poul|? da
Q Q

= / Z ai;(x,0)D;uDjudx —/ Dyg(z,0)u? dz = fo(u) < p,
Q, Q

i,j=1

whence a contradiction. O

LEMMA 3.7. There exists § > 0 such that

or every o € 10,0] and every ¢ € [u— 6, u + 9],
(3.15) {f y 0 €10,4] y € [u—0,p+0]

the functional fg satisfies (PS)e.

PROOF. Let (up) be a sequence in M with ]?g(uh) — cand \dfg|(uh) — 0. If
0 is small enough, by Lemma 3.6 we have that u;, € OM eventually as h — oo.
As before, we have that (up) is bounded in HE (), hence convergent, up to
a subsequence, to some u € M weakly in H}(Q) and strongly in L?(Q).

By Lemma 3.5 there exist wy, € H~1(Q) and A, € R such that w;, — 0 and

(3.16) / Zaij(x,guh)DiuhDjvderg/ Z Dga;j(x, oup)DiupDjup vdx
Q. Q

7,j=1 i,j=1

1
—f/ g(x,guh)vdx:)\h/ upv dz + (wp, v)
e Ja Q

for all v € H}(Q) N L®(Q). If we put v = Pyuy, in (3.16), we find that ()\p,) is

bounded. The assertion then follows from [5, Lemma 2.4]. O

LEMMA 3.8. Let (Ap,up) be a sequence of nontrivial solutions of
(A u) € R x Hy(2),
n 1 n
/ Z a;j(z,u)D;uDjvdx + f/ Z Dga;j(x,uw)D;uDjuvdx
(3.17) 05, 2 Jo A=

—/g(x,u)vdx:)\/uvdx for all v € HY(Q) N L>=(),
Q Q

with up, — 0 strongly in HE(Q). Then the following facts hold:
(a) we have up € L*°(Q) and up, — 0 strongly in L*>(Q);
(b) we have Ay, — p if and only if

f(un)

lim — )
. Joui dzx

PROOF. By (a.3') and (a.4) we have

y/ DRy (un)|? dz < /(g(a:,uh) + ) R (un) da,
Q Q
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where Ri:R — R is the odd function such that Ry(s) = (s — k)T for s > 0.
Taking into account (g.2’), by standard techniques of regularity theory (see e.g.
[14]) assertion (a) follows.

If we set g, = (fﬂ lup|? dx)*/? and 2, = un/on, we have

(3.18) / Z aij(x, onzn)DiznDjv dx
Q-

ij=1

Qh/ - 1
+ — Dga;i(x, 0nzn Dith-zhvdx——/gx,ghzh vdzr
> |, 22 Daaise, enzm)Dizn D o | 9@ ensn)

i,j=1
= )\h/ zpv dx
Q
for all v € H}(2) N L>(Q).

Assume that A\p, — p. If we put v = 2, in (3.18) and take into account (a.3’),
(a.4) and (g.2"), we find that (z5,) is bounded in H} (), hence weakly convergent,
up to a subsequence, to some z. Combining this fact with (a.2’) and assertion
(a), we deduce that

o [ %
h}rbn ?/Q Z Dsa;j(x, onzn)DiznDjzn 2 dx = 0.

i,j=1
Coming back to (3.18) with v = 2z, and taking into account (3.13), (3.14), we
deduce that

o flun) / - 2/
ll}an 9}21 —11}511 Q‘Z a;j(x, onzn)DiznDjzy dx Q—}QL QG(x,thh)d:v

4,j=1

- 1
=lim / a;i(x, onzn Dithxhdx——/g:v,ghzh zhdx}
w| [ ¥ asmenDabmde - - [ gtoo)

4,j=1

:h}{n)\h = .

Assume now that f(up)/07 — u, namely that

n
2
lim [/ Z aij(x, onzn)DizpDjzp dr — — G(zx, 0n2n) dx] = L.
hlJe 50 0n Jo
From (a.3’) and (g.2') it follows that (z) is bounded in H}(Q). As before, we
find that
S (un)

o

and the assertion follows. O

h}ILIl Ap = h}{n

PRrROOF OF THEOREM 3.2. First of all, by Lemma 3.8 the condition \;(0) —
1 is equivalent to

f(ur(0))

SRS VT
fgz |uk(9)‘2 dr
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In turn, it is equivalent to prove that, for every ¢ > 0, there exists gg > 0
such that, for every p € ]0, o], there exist at least two solutions (Ax(0), ur(0)),
k=1,2, of (3.17) with u;(9) # u2(0) and

_ f(ur(0))
e = e s p o <nee

In fact, by (a.3') and (g.2’) it follows that uy(0)/0 is bounded in Hg () as ¢ — 0.
Therefore uy,(0) — 0 strongly in H}(Q) as ¢ — 0. From Lemma 3.8 it follows
that ug(0) — 0 also in L>®().

Now, let € > 0 and let § > 0 be such that (3.11) and (3.15) hold. Without
loss of generality, we may assume that € < § and that ¢ is small enough to apply

Lemma 3.4. Let oo > 0 be as in Lemma 3.4. Without loss of generality, we may
also assume that oo < 4. Let o € ]0, go].

If w € M and f;,(u) < p+ 2¢, it is clear that the weak slope of ]?;;“}’;“4.25
at u coincides with that of fg at u. Applying Theorem 2.5 to fg

fm+2s, we ﬁnd
e

two critical values p —e < ¢ <cy < p+eof f,. If e < ¢, we immediately
get two distinct critical points 21 (), z2(0) of fp in f, ' ([u—e,p+¢]). If ¢ =

¢z, we have that catzir2c Ko, > 2. A fortiori we have cat K., > 2.
o

° {fo<p+2e}
Being an open subset of a manifold, {f, < p + 2¢} is clearly weakly locally
contractible. By Proposition 2.7 we find two distinct critical points z1 (), z2(0)
of f, in fg_l([u — &, +€]) also in this case.

By (3.11) we have that zx(g) does not belong to M. From Lemma 3.5 it
follows that there exist A1 (o), A2(0) € R such that

/Q Z Qij (.Z‘, sz(g))Dizk(Q)Dj’U dr

ij=1

1 n
30 [ 3 Duas(e,oale)Dino)Dsan(ovds
Q

ij=1

1
- E/Qg(x, gzk(g))vdx:)\/ﬂzk(g)vdx

for all v € HH(Q)NL>®(Q). If we set ug(0) = 021 (0), we have that (A (o), u(0))
has the required properties. O

PROOF OF PROPOSITION 3.1. Let (Ap, up) be a sequence as in Definition 1.2.
If we set o, = ([, [un|? dz)z and z, = uy/on, by Lemma 3.8 we deduce that
f(up)/or — p. From (g.2") and (a.3’) it follows that (z5,) is bounded in H{(2),
hence weakly convergent, up to a subsequence, to some z € Hg(£2) \ {0}. Since
(3.18) holds also in this case, passing to the limit as h — oo and recalling (3.13),
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we find
/ Z a;;(x,0)D;zDjv dx —/ D,g(z,0)zvdr = u/ zvdx
Q55 Q Q
for all v € H}(2) N L>°(Q2) and the assertion follows. O

4. Proof of Proposition 1.3 and Theorem 1.4

Let #:R — R be a non-decreasing smooth function such that ¥(s) = s for
|s| <1 and ¢ is constant on |—oo, —2] and on [2, oo[.

If we set a;;(z,s) = a;;(x,9(s)) and g(x,s) = g(z,9(s)), it is readily seen
that @;; and g satisty (a.1), (a.2’), (a.3'), (a.4), (g.1) and (g.2').

On the other hand, if u is small enough in L>(§2), we have that (A u) is
a solution of (1.2) with respect to @;; and g if and only if it do it with respect to
a;; and g. Moreover, the linear operator A associated with @;; and g coincides
with that associated with a;; and g.

If we apply Proposition 3.1 and Theorem 3.2 to @;; and g, the assertion
follows. |
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