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ON THE STRUCTURE OF FIXED-POINT SETS
OF UNIFORMLY LIPSCHITZIAN MAPPINGS

Ewa Sędłak — Andrzej Wiśnicki

Abstract. It is shown that the set of fixed points of any k-uniformly
lipschitzian mapping in a uniformly convex space is a retract of a domain

if k is close to 1.

1. Introduction

Let C be a nonempty, bounded, closed and convex subset of a Banach
space X. We say that a mapping T :C → C is nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖

for x, y ∈ C. The celebrated result of R. Bruck [1] asserts that if a nonexpansive
mapping T :C → C has a fixed point in every nonempty closed convex subset
of C which is invariant under T and if C is convex and weakly compact, then
FixT , the set of fixed points, is a nonexpansive retract of C, (that is, there
exists a nonexpansive mapping R:C → FixT such that R|FixT = I). A few
years ago, the Bruck result was extended by Domı́nguez Benavides and Lorenzo
Ramirez [5] to the case of asymptotically nonexpansive mappings if the space X
was sufficiently regular.
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On the other hand, the set of fixed points of a k-lipschitzian mapping can be
very irregular for any k > 1. The following example has been communicated to
us by K. Goebel:

Example 1.1. Let F be a nonempty closed subset of C. Fix z ∈ F , 0 <
ε < 1 and put

Tx = x+ εdist(x, F )(z − x), x ∈ C.

It is not difficult to see that FixT = F . Moreover, the Lipschitz constant of T
tends to 1 if ε→ 0.

In 1973, Goebel and Kirk [7] introduced the class of uniformly lipschitzian
mappings. Recall that a mapping T :C → C is k-uniformly lipschitizian if

‖Tnx− Tny‖ ≤ k‖x− y‖

for every x, y ∈ C and n ∈ N.

Theorem 1.2 ([7]). Let X be a uniformly convex Banach space with modulus
of convexity δX and let C be a bounded, closed and convex subset of X. Suppose
T :C → C is k-uniformly lipschitzian and

k

(
1− δX

(
1
k

))
< 1.

Then T has a fixed point in C. (Note that in a Hilbert space, k <
√
5/2).

It is known among specialists (folklore) that for k close to 1, the set of fixed
points of T is connected. According to our knowledge, this fact has never been
published, but it was mentioned several times at the conferences (R. Bruck). We
would like to fill this gap by showing a little more: under the assumptions of
Theorem 1.2, FixT is not only connected but even a retract of C.
We note that Theorem 1.2 was significantly generalized by Lifschitz [10],

Casini, Maluta [2] and Domı́nguez Benavides [4] but it is not very clear whether
our statement is also valid in these cases. For recent results concerning uniformly
lipschitzian mappings, see [3], [6], [9] and the references therein.

2. Main result

Let X be a uniformly convex Banach space. Recall that the modulus of
convexity δX is the function δX : [0, 2]→ [0, 1] defined by

δX(ε) = inf
{
1−
∥∥∥∥x+ y2

∥∥∥∥ : ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε}
and, uniform convexity means δX(ε) > 0 for ε > 0.
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For x, y ∈ C we use

r(y, {T ix}) = lim sup
i→∞

‖y − T ix‖ and r(C, {T ix}) = inf
y∈C
r(y, {T ix})

to denote the asymptotic radius of {T ix} at y and the asymptotic radius of
{T ix} in C, respectively. It is well known that under the assumption of uniform
convexity of X, the asymptotic center of {T ix} in C:

A(C, {T ix}) := {y ∈ C : r(y, {T ix}) = r(C, {T ix})}

is a singleton.
Let A:C → C denote a mapping which associates with a given x ∈ C a

unique z ∈ A(C, {T ix}), that is, z = Ax.

Lemma 2.1. Let X be a uniformly convex Banach space and C be a bounded,
closed and convex subset of X. Then the mapping A:C → C is continuous.

proof. On the contrary, suppose that there exist x0 ∈ C and ε0 > 0 such
that:

for all η > 0 there exists x1 ∈ C such that ‖x1 − x0‖ < η and ‖z1 − z0‖ ≥ ε0,

where {z0} = A(C, {T ix0}), {z1} = A(C, {T ix1}).
Fix η > 0 and take x1 ∈ C such that

‖x1 − x0‖ < η and ‖z1 − z0‖ ≥ ε0.

Let R0 = r(C, {T ix0}), R1 = r(C, {T ix1}) and R = lim supi→∞ ‖z1− T ix0‖.
Notice that R0 < R.
Choose ε > 0. Then

‖z1 − T ix0‖ < R+ ε,
‖z0 − T ix0‖ < R0 + ε < R+ ε,
‖z0 − z1‖ ≥ ε0,

for all but finitely many i. It follows from the properties of δX that∥∥∥∥T ix0 − z1 + z02
∥∥∥∥ ≤ (1− δX( ε0R+ ε

))
(R+ ε)

and hence

(2.1) R0 < lim sup
i→∞

∥∥∥∥T ix0 − z1 + z02
∥∥∥∥ ≤ (1− δX( ε0R+ ε

))
(R+ ε).

Moreover, for all but finitely many i,

‖T ix0 − z1‖ ≤ ‖T ix0 − T ix1‖+ ‖T ix1 − z1‖ ≤ k‖x0 − x1‖+R1 + ε

and hence

(2.2) lim sup
i→∞

‖T ix0 − z1‖ = R ≤ kη +R1 + ε.
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Similarly,

(2.3) R1 < lim sup
i→∞

‖T ix1 − z0‖ ≤ kη +R0 + ε.

From (2.2) and (2.3), we have

(2.4) R ≤ kη +R1 + ε < 2kη + 2ε+R0.

Combining (2.4) with (2.1) and applying the monotonicity of δX , we obtain

R0 <

(
1− δX

(
ε0

2kη + 3ε+R0

))
(2kη + 3ε+R0).

Letting η, ε→ 0 and using the continuity of δX , we conclude that

1 ≤ 1− δX
(
ε0
R0

)
< 1.

This contradiction proves the continuity of the mapping A. �

We are now in a position to prove our main result.

Theorem 2.2. Let X be a uniformly convex Banach space with modulus of
convexity δX and let C be a bounded, closed and convex subset of X. Suppose
T :C → C is k-uniformly lipschitzian and

(2.5) k

(
1− δX

(
1
k

))
< 1.

Then FixT is a retract of C.

Proof. Fix x ∈ C and let z = Ax. If r(C, {T ix}) = 0 or r(z, {T iz}) = 0,
then z = Tz and consequently Anx = z for n > 0.
Assume that r(C, {T ix}) > 0 and r(z, {T iz}) > 0. We follow the arguments

from [7, Theorem 1]. Fix ε > 0, ε ≤ r(z, {T iz}) and choose j such that ‖z −
T jz‖ ≥ r(z, {T iz})− ε. There exists N such that

‖z − T ix‖ ≤ r(C, {T ix}) + ε ≤ k(r(C, {T ix}) + ε)

for each i > N (we assume that k ≥ 1). Hence, for i− j ≥ N ,

‖T jz − T ix‖ ≤ k‖z − T i−jx‖ ≤ k(r(C, {T ix}) + ε).

Put r0 := k(r(C, {T ix}) + ε). It follows from the properties of δX that∥∥∥∥z + T jz2 −T ix
∥∥∥∥ ≤ (1− δX(‖z − T jz‖r0

))
r0 ≤
(
1− δX

(
r(z, {T iz})− ε

r0

))
r0

for i ≥ N + j and hence

r(C, {T ix}) ≤
(
1− δX

(
r(z, {T iz})− ε

r0

))
r0.
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Letting ε→ 0 and using the continuity of δX , we obtain

r(C, {T ix}) ≤
(
1− δX

(
r(z, {T iz})
kr(C, {T ix})

))
kr(C, {T ix})

and consequently

r(z, {T iz}) ≤ kδ−1X
(
1− 1
k

)
r(C, {T ix}) ≤ αr(x, {T ix}),

where α := kδ−1X (1− 1/k) < 1 by (2.5). Moreover,

‖Ax− x‖ = ‖z − x‖ ≤ r(z, {T ix}) + r(x, {T ix}) ≤ 2r(x, {T ix}).

By iteration,

(2.6) ‖An+1x−Anx‖ ≤ 2αnr(x, {T ix}) ≤ 2αn diamC

for x ∈ C, n = 0, 1, . . . Thus

sup
x∈C
‖Amx−Anx‖ ≤ 2α

n

1− α
diamC → 0 if n,m→∞,

which implies that the sequence {Anx} converges uniformly to a function

Rx = lim
n→∞
Anx.

It follows from Lemma 2.1 that R:C → C is continuous. Moreover, by
standard arguments,

r(Rx, {T iRx}) ≤ (1 + k)‖Rx−Anx‖+ r(Anx, {T iAnx}i)→ 0 if n→∞.

Thus Rx = TRx for every x ∈ C and R is a retraction of C onto FixT . �

Remark 2.3. We have proved the continuity of R only, but it is expected
that the resulting retraction enjoys some regularity properties. We leave this
problem for future investigations.
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