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CUTTING SURFACES AND APPLICATIONS
TO PERIODIC POINTS AND CHAOTIC-LIKE DYNAMICS

Marina Pireddu — Fabio Zanolin

Abstract. In this paper we propose an elementary topological approach
which unifies and extends various different results concerning fixed points
and periodic points for maps defined on sets homeomorphic to rectangles
embedded in euclidean spaces. We also investigate the associated discrete
semidynamical systems in view of detecting the presence of chaotic-like
dynamics.

1. Introduction

The celebrated Smale horseshoe can be rightly considered as a prototypical
example in the study of complex systems. It deals with a homeomorphism ψ,
defined on a set diffeomorphic to a rectangle in a two-dimensional manifold,
possessing an invariant set Λ such that ψ|Λ is conjugate to the two-sided Bernoulli
shift on two symbols. Such striking model exploits a simple and elegant geometric
description in order to display the main features associated to all the various
different definitions of chaos. Since the beginning [41], [42], its clear and intuitive
geometrical structure turned out to be very useful in the study of dynamical
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systems, allowing a rigorous proof of the presence of a complex behavior in
several significant ODE models [31, Chapter 3].

One of the crucial assumptions regarding the implementation of this method
concerns the verification of hyperbolicity. Usually, this concept is meant as the
existence of a splitting of the domain into a part along which ψ is contracting
and another one where ψ is expanding, the two parts being filled by graphs
of lipschitzean functions (see [31], [48]). However, in certain applications to
differential systems, the verification of hyperbolicity requires the smoothness of
the involved maps and conditions on their jacobian matrix which lead sometimes
to formidable and difficult computations (see [31, p. 62]).

This remark or similar ones carried various authors to look for a class of
relaxed assumptions in view of producing a structure as rich as before, but pos-
sibly replacing the hyperbolicity hypothesis with topological conditions which,
in some cases, require the knowledge of the behavior of ψ only on some subsets
of its domain (for instance, at the boundary of certain sets). Results in this
direction were obtained by Easton [8], Burns and Weiss [3], Mischaikow and
Mrozek [30], Szymczak [45], Zgliczyński [53], Srzednicki and Wójcik [44] and
further developed in subsequent works (see, for instance, [32], [38], [43], [54]–[56]
and the references therein, just to quote a few samples from a broad bibliogra-
phy). In these papers usually the authors prove the existence of a compact set
Λ which is (forward) invariant (either for a given map ψ or for an iterate of it)
and the existence of a continuous surjection g: Λ → Σm := {0, . . . ,m − 1}Z (or
g: Λ → Σ+

m := {0, . . . ,m − 1}N) which provides a semiconjugation of ψ|Λ with
the two-sided (respectively, one-sided) Bernoulli shift.

In many cases the authors also show that the inverse image through g of
a periodic sequence of m symbols contains a periodic point of ψ in Λ. The tools
employed in the related proofs are based on different topological methods, like
the Conley index theory (with associated homological or cohomological invari-
ants) or some more or less sophisticated fixed point methods (as the topological
degree, the fixed point index or the Lefschetz theory) which usually require the
verification of suitable conditions (for a flow or for a map) at the boundary of
a certain domain containing the invariant set in its interior.

A different generalization of the Smale’s horseshoe has been obtained in
recent years by Kennedy and Yorke [20] and Kennedy, Koçak and Yorke [18],
who developed the theory of the so-called topological horseshoes in the frame of
metric spaces. This theory concerns the study of the behavior of a continuous
map f :X ⊇ Q→ X and of its iterates, where Q is a compact subset of a metric
space X . Two disjoint compact subsets end0 and end1 of Q are selected and the
crossing number m is defined as the largest number of disjoint preconnections
contained in any connection. A connection Γ ⊆ Q is a compact connected set
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(a continuum) with Γ∩ end0 �= ∅ and Γ∩ end1 �= ∅, while a preconnection γ ⊆ Γ
is a compact set such that f(γ) is a connection.

Under a few more technical conditions (see [18], [20] for the precise state-
ments) and if m ≥ 2, the authors prove the existence of a compact invariant set
QI ⊆ Q such that f |QI is semiconjugate (via a surjective map g) to a Bernoulli
shift on m symbols. Applications of such results to different ODE models have
been shown in [15], [50]–[52] and in recent related papers. The great generality
of the setting in [18], [20] does not lead to the conclusion that the inverse image
(through the surjection g) of a periodic sequence in Σm must necessarily contain
a periodic point in QI . In fact, a specific example of an invariant set QI without
periodic points is presented in [20, p. 2520].

Another approach has been proposed by Papini and the second author in
[34], motivated by the study of the Poincaré map associated to a second order
nonlinear differential equation with sign changing weight [33]. In [34] and some
subsequent more general works [35], [36], the authors considered continuous pla-
nar maps which possess the property of stretching the paths joining two opposite
sides of a topological rectangle. In this case the paths play a role analogous to
that of the connections in Kennedy and Yorke theory. Such a special configura-
tion permits to obtain not only chaotic dynamics, but also the existence of fixed
points and periodic points (by means of elementary topological arguments). In
this manner one could complement some results in the two-dimensional setting
(like those in [52]) and provide the existence of infinitely many periodic points
(of any order) as well. Other applications of the results in [34] can be found
in [6], [35], dealing with second order ODEs. See also [37] for more information,
although we have to warn that a precise relationship between these works and
the theory of topological horseshoes as presented in [18], [20] was not explicitly
stated therein. On the contrary, such relationship will be described in the present
work (see Lemma 5.11), including some details elsewhere missing.

The aim of this paper is twofold. In fact we provide an elementary topological
tool that, on the one hand, allows us to extend to the higher dimension the theory
of [34]–[36] and to make a comparison with the above recalled results on chaotic-
like dynamics, while, on the other hand, enables to generalize and unify some
previous theorems about the existence of fixed points and periodic points for
continuous maps in euclidean spaces. In particular, we give a simplified proof
of a recent result by Kampen [17] as well as we present a generalization of some
preceding theorems about periodic points associated to Markov partitions [55].

As remarked above, one of the purposes of our work is also that of obtaining
a sufficiently rich structure (suitable, for instance, to guarantee the existence
of infinitely many periodic points), without the need of too sophisticated meth-
ods. In fact, our main tools are, respectively, a modified version of the classical



282 M. Pireddu — F. Zanolin

Hurewicz–Wallman intersection lemma [16, D), p. 40], [10, p. 72] and the fun-
damental theorem of Leray–Schauder [26, Théorème Fondamental]. The former
result (also referred to Eilenberg-Otto [9, Theorem 3], according to [7, Theorem
on partitions, p. 100]) is one of the basic lemmas in dimension theory and it is
known to be one of the equivalent versions of the Brouwer fixed point theorem.

It may be interesting to observe that extensions of the intersection lemma led
to generalizations of the Brouwer fixed point theorem to some classes of possibly
noncontinuous functions [47]. The other result we use concerns topological degree
theory and has found important applications in nonlinear analysis and differential
equations (see [28]). Actually, in Theorem 4.2 of Section 4, we’ll employ a more
general version of the Leray–Schauder continuation theorem due to Fitzpatrick,
Massabó and Pejsachowicz [12]. However, we point out that for our applications
to the study of periodic points and chaotic-like dynamics we rely on the classical
Leray–Schauder fundamental theorem.

Another particular feature of our approach consists in a combination of the
Poincaré–Miranda theorem [22], [29] with the properties of topological surfaces
cutting the arcs between two given sets. The corresponding details are widely
described in Sections 2 and 3. In regard to the Poincaré–Miranda theorem, which
is anN -dimensional version of the intermediate value theorem (see Theorem 3.1),
we would like to recall also the recent work [1], where the authors show its
effectiveness in detecting chaotic dynamics in planar dynamical systems.

This article is organized as follows. Section 2 is devoted to the presentation
of some topological lemmas concerning the relationship between cutting surfaces
and zero sets of continuous real valued functions. Analogous results can be found,
often in a more implicit form, in different contexts. Since for our applications
we need a specific version of the statements, we give an independent proof with
all the details. The remainder of the paper is divided in three parts.

In Section 3 we present a variant of Hurewicz–Wallman theorem (Theo-
rem 3.3), that (likewise [9], [16]) guarantees a nonempty intersection among N
closed topological surfaces which are in good position with respect to the faces
of an N -dimensional hypercube. Such result is then applied in order to provide
an extension of some recent theorems about fixed points and periodic points
for continuous mappings in euclidean spaces. In particular, we generalize (with
a simplified proof) a theorem by Kampen [17] (see Corollary 3.5) and obtain also
an extension of a result by Zgliczyński [55] (see Theorem 3.8).

In Section 4 we consider the case in which, roughly speaking, the number of
intersecting surfaces is smaller than the dimension of the space. After present-
ing a general situation in Theorem 4.7, we restrict ourselves to the case of the
intersection of N − 1 continua embedded in a topological space homeomorphic
to the N -dimensional hypercube (see Corollary 4.8). This latter result turns out
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to be our main ingredient in Section 5 for the study of the dynamics of contin-
uous maps which possess, in a very broad sense, a one-dimensional expansive
direction. Indeed, it allows to prove a fixed point theorem (see Theorem 5.5) for
maps defined on topological rectangles.

The main hypothesis for our fixed point theorem requires that the map ψ

stretches (across X) the paths joining two disjoint subsets X� and Xr of the
boundary of the topological rectangle X . Formally, such stretching condition is
expressed as follows: there exists a compact set K ⊆ X on which ψ is continuous
and such that, for any path γ connecting in X the two sides X� and Xr, there
exists a sub-path σ of γ contained in K, whose image through ψ is contained in
X and joins the same two sides of the boundary (as shown in Figure 1).

Figure 1. The tubular sets X and Y in the picture represent two gen-
eralized 3-dimensional rectangles, in which we have put in evidence the
compact set K and the boundary sets X� and Xr as well as Y� and Yr (see
Definition 5.1 for more details). In this particular case the map ψ stretches
the paths of X not only across Y , but also across X itself and therefore the
existence of a fixed point for ψ inside K is ensured by Theorem 5.5. Note
that, differently from the classical Rothe and Brouwer theorems, we don’t
require that ψ(∂X) ⊆ X.

A special feature of our theorem is that it ensures the existence of a fixed point
for ψ in K, that, in turns, yields to the existence of multiple fixed points when
the stretching condition is satisfied with respect to a certain number of pairwise
disjoint subsets Ki’s of X . An application of the theorem to the iterates of ψ
will then allow to obtain a set of infinitely many periodic points with a complex
structure. More generally, we define, for a mapping ψ, a concept of stretching
between two (possibly different) oriented N -dimensional rectangles (X,X−) and
(Y, Y −), where the [ · ]−-sets are the union of two suitably chosen left and right
sides of the boundary (see Definition 5.1 and Figure 1).
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In this manner we fully extend to an arbitrary dimension the above recalled
results by Papini and Zanolin [34]–[36]. As a consequence, also all the appli-
cations to ordinary differential equations and dynamical systems contained in
those articles and in related ones (like [4], [6], [33]) are, in principle, extend-
able to the higher dimension. The specific applications, which would require
a detailed treatment, will be presented in a future work.

We end this introductory section with a list of basic definitions and notation.
Some further concepts will be introduced later on in the paper when needed.

As usual we denote by R, R+ := [0,∞), and R+
0 := ]0,∞), the sets of reals,

as well as the nonnegative and positive real numbers, respectively. The sets
of integers Z and natural numbers N = {0, 1, . . .} are considered as well. For
a subset M of a topological space Z, we denote by M

◦
and M the interior and the

closure ofM , respectively. For a metric space (X, d) we indicate with B(x0, r) the
open ball of center x0 ∈ X and radius r > 0. Similarly, given M ⊆ X (M �= ∅),
we define B(M, r) := {x ∈ X : there exists w ∈ M such that d(x,w) < r}. By
a continuum we mean a compact and connected subset of a metric space (i.e.
a metric continuum).

Let Z be a topological space. By a path γ in Z we mean a continuous mapping
(parameterized curve) γ: R ⊇ [a, b] → Z and we denote by γ its range, that is

γ := γ([a, b]).

A sub-path σ of γ is defined as

σ := γ|[c,d], for [c, d] ⊆ [a, b],

that is the restriction of γ to a closed subinterval of its domain. If Z, Y are
topological spaces and ψ:Z ⊇ Dψ → Y is a map which is continuous on a set
M ⊆ Dψ, then for any path γ in Z with γ ⊆ M, it follows that ψ ◦γ is a path in
Y with range equal to ψ(γ). As usual in the theory of (continuous) parameterized
curves, there is no loss of generality in assuming the paths to be defined on [0, 1].
In fact, if θ1: [a1, b1] → Z and θ2: [a2, b2] → Z, with ai < bi, i = 1, 2, are two
paths in Z, we set θ1 ∼ θ2 if there exists a homeomorphism h of [a1, b1] onto
[a2, b2] (i.e. a change of variable in the parameter) such that θ2(h(t)) = θ1(t), for
all t ∈ [a1, b1]. It is easy to check that “∼” is an equivalence relation and that
if θ1 ∼ θ2, then the ranges of θ1 and θ2 coincide. Hence, for any path γ we can
find an equivalent path defined on [0, 1].

If γ1, γ2: [0, 1] → Z are two paths in Z with γ1(1) = γ2(0), we define the
gluing of γ1 with γ2 as the path γ1 � γ2: [0, 1] → Z such that

γ1 � γ2(t) :=

{
γ1(2t) for 0 ≤ t ≤ 1/2,

γ2(2t− 1) for 1/2 ≤ t ≤ 1.
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Moreover, given a path γ: [0, 1] → Z, we denote by γ−: [0, 1] → Z the path
having γ as support, but run with reverse orientation, i.e. γ−(t) := γ(1 − t), for
all t ∈ [0, 1].

At last we recall a known definition. Let Z be a topological space. We say
that Z is arcwise connected if, given any two different points p, q ∈ Z, there is
a path γ: [0, 1] → Z such that γ(0) = p and γ(1) = q. In the case of a Hausdorff
topological space Z, the range γ of γ turns out to be a locally connected metric
continuum (a Peano space according to [14]). Then, if Z is a metric space, the
above definition of arcwise connectedness is equivalent to the fact that, given any
two points p, q ∈ Z with p �= q, there exists an arc (that is the homeomorphic
image of a compact interval) contained in Z and having p and q as extreme
points (see, e.g. [14, pp. 115–131]).

2. Topological lemmas

As already mentioned in the Introduction, in this section we present some
topological lemmas in order to show the relationship between particular surfaces
and zero sets of continuous real valued functions. First of all, we need a definition.

Definition 2.1. LetX be an arcwise connected metric space. Let A,B,C ⊆
X be closed and nonempty sets with A ∩ B = ∅. We say that C cuts the arcs
between A and B if for any path γ: [0, 1] → X , with γ ∩A �= ∅ and γ ∩B �= ∅, it
follows that γ ∩C �= ∅. In the sequel, if X is a subspace of a larger metric space
Z and we wish to stress the fact that we consider only paths contained in X , we
make more precise our definition by saying that C cuts the arcs between A and
B in X .

Such definition is a modification of the classical one regarding the cutting of
a space between two points in [25]. See also [2] for a more general concept in
which the authors consider a set C which intersects every connected set meeting
two nonempty sets A and B. In the case in which A and B are the opposite faces
of anN -dimensional cube, J. Kampen [17, p. 512] says that C separatesA and B.
We prefer to use the “cutting” terminology in order to avoid misunderstanding
with other definitions of separation which are more common in Topology. In
particular (see [11]), we remark that our definition agrees with the usual one of
cut when A, B, C are pairwise disjoint.

In the sequel, even when not explicitly mentioned, we assume that the ba-
sic space X is arcwise connected. In some of the next results the local arcwise
connectedness will be required too. With this respect, we recall that any con-
nected and locally arcwise connected metric space is arcwise connected (see [25,
Theorem 2, p. 253]).
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Lemma 2.2. Let X be a connected and locally arcwise connected metric space
and let A,B,C ⊆ X be closed and nonempty sets with A∩B = ∅. Then C cuts the
arcs between A and B if and only if there exists a continuous function f :X → R

such that

f(x) ≤ 0, for all x ∈ A, f(x) ≥ 0, for all x ∈ B,(2.1)

C = {x ∈ X : f(x) = 0}.(2.2)

Proof. Assume there exists a continuous function f :X → R satisfying (2.1)
and (2.2). Let γ: [0, 1] → X be a continuous path such that γ(0) ∈ A and
γ(1) ∈ B. We want to prove that γ∩C �= ∅. Indeed, for the composite continuous
function θ := f ◦ γ: [0, 1] → R, we have that θ(0) ≤ 0 ≤ θ(1) and therefore
Bolzano theorem ensures the existence of t∗ ∈ [0, 1] with θ(t∗) = 0. This means
that γ(t∗) ∈ C and therefore γ ∩ C �= ∅. Thus we have proved that C cuts the
arcs between A and B.

Conversely, let us assume that C cuts the arcs between A and B. We define
the following auxiliary functions

ρ:X → R+,

ρ(x) := dist(x,C), for all x ∈ X(2.3)

and

µ:X → {−1, 0, 1},

µ(x) :=


0 if x ∈ C,

−1 if x �∈ C and there exists a path γx: [0, 1] → X \C
such that γx(0) ∈ A and γx(1) = x,

1 elsewhere.

(2.4)

Observe that ρ is a continuous function with ρ(x) = 0 if and only if x ∈ C and
also µ(x) = 0 if and only if x ∈ C. Moreover, µ is bounded.

Let x0 �∈ C. We claim that µ is continuous in x0. Actually, µ is locally
constant on X \ C. Indeed, since x0 ∈ X \ C (an open set) and X is locally
arcwise connected, there is a neighborhood Ux0 of x0 with Ux0 ⊆ X \ C, such
that for each x ∈ Ux0 there exists a path σx0,x joining x0 to x in Ux0 . Clearly, if
there is a path γa,x0 in X \ C joining some point a ∈ A with x0, then the path
γa,x0 � σx0,x connects a to x in X \ C. This proves that if µ(x0) = −1, then
µ(x) = −1 for every x ∈ Ux0 .

On the other hand, if there is a path γa,x in X \C which connects some point
a ∈ A to x ∈ Ux0 , then, the path γa,x � σ

−
x0,x connects a to x0, in X \ C. This

shows that if µ(x0) = 1 (that is, it is not possible to connect x0 to any point of
A in X \ C using a path), then µ(x) = 1 for every x ∈ Ux0 (that is, it is not
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possible to connect any point x ∈ Ux0 to any point of A in X \C using a path).
We can now define

(2.5) f :X → R, f(x) := ρ(x)µ(x).

Clearly, f(x) = 0 if and only if x ∈ C and, moreover, f is continuous. Indeed, if
x0 �∈ C, we have that f is continuous at x0 because both ρ and µ are continuous
in x0. If x0 ∈ C and xn → x0 (as n → ∞), then ρ(xn) → 0 and |µ(xn)| ≤ 1,
so that f(xn) → 0 = f(x0). Finally, by the definition of µ in (2.4), it holds
that µ(a) = −1, for every a ∈ A \ C and therefore, for such an a, it holds that
f(a) < 0. On the contrary, if we suppose that b ∈ B \C, we must have µ(b) = 1.
In fact, by the cutting condition, there is no path connecting in X \C the point
b to any point of A. Therefore, in this case we have f(b) > 0. �

Considering the functions µ and f as in (2.4), (2.5), we see that our definition,
although adequate from the point of view of the proof of Lemma 2.2, perhaps
does not represent an optimal choice. For instance, we would like the sign of f
to coincide for all the points located “at the same side” of A (respectively of B)
with respect to C. Having this request in mind, we propose a different definition
for the function µ (see (2.8)). First of all, we introduce the following sets that
we call the side of A in X and the side of B in X , respectively.

S(A) := {x ∈ X : γ ∩A �= ∅, for all path γ: [0, 1] → X,

with γ(0) = x, γ(1) ∈ B},
S(B) := {x ∈ X : γ ∩B �= ∅, for all path γ: [0, 1] → X,

with γ(0) = x, γ(1) ∈ A},

that is, a point x belongs to the side of A (resp. to the side of B) if whenever
we try to connect x to B (resp. to A) by a path, we first meet A (resp. we first
meet B). By definition, it follows that A ⊆ S(A) and B ⊆ S(B).

Lemma 2.3. Let X be a connected and locally arcwise connected metric space
and let A,B ⊆ X be closed and nonempty sets with A ∩B = ∅. Then S(A) and
S(B) are closed and, moreover, S(A) ∩ S(B) = ∅.

Proof. First of all, we prove that S(A) is closed by checking that if w �∈
S(A) then there is a neighborhood Uw of w with Uw ⊆ X \ S(A). Indeed, if
w �∈ S(A), there exists a path γ: [0, 1] → X with γ(0) = w and γ(1) = b ∈ B

and such that γ(t) �∈ A, for every t ∈ [0, 1]. Since A is a closed set and X is
locally arcwise connected, there exists an arcwise connected open set Vw with
w ∈ Vw ⊆ X \A. Hence, for every x ∈ Vw, there is a path σx connecting x to w
in Vw. As a consequence, we find that the path γx := σx � γ connects x ∈ Vw to
b ∈ B with γx ⊆ X \ A. Clearly, the open neighborhood Uw := Vw satisfies our
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requirement and this proves that X \ S(A) is open. The same argument ensures
that S(B) is closed.

It remains to show that S(A) and S(B) are disjoint. Since A ∩ B = ∅, it
follows immediately from the definition that A ∩ S(B) = ∅ and B ∩ S(A) = ∅.

Now assume, by contradiction, that there exists x ∈ S(A) ∩ S(B), with
x �∈ A∪B. Let γ: [0, 1] → X be a path such that γ(0) = x and γ(1) = b ∈ B (we
know that there exists a path like that because X is arcwise connected). The
fact that x ∈ S(A) \A implies that there is t1 ∈ ]0, 1[, such that γ(t1) = a1 ∈ A.
On the other hand, since x ∈ S(B) \ B, there exists s1 ∈ ]0, t1[, such that
γ(s1) = b1 ∈ B. Proceeding by induction and using repeatedly the definition of
S(A) and S(B) we obtain a sequence

t1 > s1 > t2 > . . . > tj > sj > tj+1 > . . . > 0

with γ(ti) = ai ∈ A and γ(si) = bi ∈ B. For t∗ = inf tn = inf sn ∈ [0, 1[, we have
that γ(t∗) = lim an = lim bn ∈ A ∩B, a contradiction. �

Lemma 2.4. Let X be a connected and locally arcwise connected metric space
and let A,B,C ⊆ X be closed and nonempty sets with A ∩B = ∅. Then C cuts
the arcs between A and B if and only if C cuts the arcs between S(A) and S(B).

Proof. One direction of the inference is obvious. In fact, every path joining
A with B is also a path joining S(A) with S(B). Thus, if C cuts the arcs between
S(A) and S(B), then it also cuts the arcs between A and B.

Conversely, let us assume that C cuts the arcs between A and B. We want
to prove that C cuts the arcs between S(A) and S(B). By the definition of S(A)
and S(B), it is straightforward to check that C cuts the arcs between A and
S(B) as well as it cuts the arcs between S(A) and B.

Suppose now, by contradiction, that there exists a path γ: [1/2, 1] → X \ C
such that γ(1/2) = a ∈ S(A) \ A and γ(1) = b ∈ S(B) \ B. We choose a point
a0 ∈ A and connect it to a ∈ S(A) by a path σ: [0, 1/2] → X with σ(0) = a0 and
σ(1/2) = a.

We define also the new path γ0 := σ �γ: [0, 1] → X , with γ0(0) = a0 ∈ A and
γ0(1) = b ∈ S(B). By the definition of S(B) we know that there exists s1 ∈ ]0, 1[
such that γ0(s1) = b1 ∈ B. Note that b1 �∈ S(A) (recall that B ∩ S(A) = ∅)
and also 0 < s1 < 1/2 (in fact if 1/2 < s1 < 1, then, recalling that γ0(1/2) =
γ(1/2) = a ∈ S(A) and γ0(s1) = γ(s1) = b1 ∈ B, there must be a t̃ ∈ [1/2, s1]
such that γ(t̃) ∈ C, a contradiction to the assumption on γ).

The restriction of the path γ0 to the interval [s1, 1/2], defines a path joining
b1 ∈ B to a ∈ S(A). Therefore there exists t1 ∈ ]s1, 1/2[, such that γ0(t1) = a1

∈ A. The restriction of the path γ0 to the interval [t1, 1], defines a path joining
a1 ∈ A to b ∈ S(B). Hence there exists s2 ∈ ]t1, 1[, with γ0(s2) = b2 ∈ B. As
above, we can also observe that b2 �∈ S(A) and t1 < s2 < 1/2.
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Proceeding by induction, we obtain a sequence

s1 < t1 < s2 < . . . < sj < tj < sj+1 < 1/2

with γ(ti) = ai ∈ A and γ(si) = bi ∈ B. For t∗ = sup tn = sup sn ∈ ]0, 1/2], we
have that γ0(t∗) = σ(t∗) = lim an = lim bn ∈ A ∩B, a contradiction. �

Lemma 2.5. Let X be a connected and locally arcwise connected metric space
and let A,B,C ⊆ X be closed and nonempty sets with A∩B = ∅. Then C cuts the
arcs between A and B if and only if there exists a continuous function f :X → R

such that

f(x) ≤ 0, for all x ∈ S(A), f(x) ≥ 0, for all x ∈ S(B),(2.6)

C = {x ∈ X : f(x) = 0}.(2.7)

Proof. Clearly, if there exists a continuous function f :X → R satisfying
(2.6) and (2.7), then (2.1) and (2.2) hold too. Hence Lemma 2.2 implies that C
cuts the arcs between A and B.

Conversely, if C cuts the arcs between A and B, then, by Lemma 2.4, C cuts
the arcs between S(A) and S(B) as well. Therefore we can apply Lemma 2.2
with respect to the triple (S(A),S(B), C). In particular, the function f will be
defined as in (2.5), with ρ like in (2.3) and µ:X → {−1, 0, 1} as follows:

(2.8) µ(x) :=


0 if x ∈ C,

−1 if x �∈ C and there exists a path γx: [0, 1] → X \ C
such that γx(0) ∈ S(A) and γx(1) = x,

1 elsewhere. �

Until now we have considered only the case of paths connecting two disjoint
sets A and B. This choice is motivated by the foregoing examples for subsets of
N -dimensional spaces. For sake of completeness we end this section by discussing
the situation in which A and B are joined by a continuum. We confine ourselves
to the following lemma which will find an application in Theorem 5.5.

Lemma 2.6. Let X be a connected and locally arcwise connected metric space
and let A,B ⊆ X be closed and nonempty sets with A ∩ B = ∅. Let Γ ⊆ X be
a compact connected set such that Γ∩A �= ∅ and Γ∩B �= ∅. Then, for every ε > 0
there exists a path γ = γε: [0, 1] → X with γ(0) ∈ A, γ(1) ∈ B and γ ⊆ B(Γ, ε).
Moreover, if X is locally compact and C ⊆ X is a closed set which cuts the arcs
between A and B, then Γ ∩ C �= ∅.

Proof. Let ε > 0 be fixed and consider, for every p ∈ Γ, a radius δp ∈ ]0, ε[
such that any two points in B(p, δp) can be joined by a path in B(p, ε). By the
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Figure 2. The figure on the left-hand side gives an illustration of the
situation described in Definition 2.1. In the present example the space X
is the figure itself as a subset of the plane. The set C (darker region) cuts
the arcs between A (light) and B (grey). We allow a nonempty intersection
between B and C as well as between A and C (the singleton {a}). Notice
that the only manner to connect with a path the points of A to the points
of the “appendix” D is passing through the point a ∈ A ∩ C.
The figure on the right-hand side provides an interpretation of Lemma 2.5.
With respect to a function f having its factor µ defined like in (2.8), we
have painted with a light color the points where f < 0 and in grey color
the points where f > 0. Note that the region D has been painted in light
color, because D ⊆ S(A).

compactness of Γ we can find a finite number of points p1, . . . , pk ∈ Γ, such that

Γ ⊆ B :=
k⋃
i=1

B(pi, δi) ⊆ B(Γ, ε), with δi := δpi .

As a consequence of the hypothesis of connectedness of Γ, the following property
holds: For every partition of {1, . . . , k} into two nonempty disjoint subsets J1

and J2, there exist i ∈ J1 and j ∈ J2 such that B(pi, δi) ∩ B(pj , δj) �= ∅. This,
in turns, implies that we can rearrange the pi’s (possibly changing their order in
the labelling) so that

B(pi, δi) ∩B(pi+1, δi+1) �= ∅, for all i = 1, . . . , k − 1.

Hence we can conclude that for any pair of points (w, z) ∈ B, with w �= z, there is
a path γ = γw,z joining w with z and such that γ ⊆ B(Γ, ε). In particular, taking
a ∈ A∩Γ and b ∈ B∩Γ, we have that there exists a path γ = γε: [0, 1] → B(Γ, ε),
with γ(0) = a and γ(1) = b and this proves the first part of the statement.

Assume now that X is locally compact (i.e. for any p ∈ X and η > 0, there
exists 0 < µp ≤ η such that B(p, µp) is compact). By the compactness of Γ
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we can find a finite number of points q1, . . . , ql ∈ Γ and corresponding radii
µi := µqi such that

Γ ⊆ A :=
l⋃
i=1

B(qi, µi)

and A =
⋃l
i=1B(qi, µi) is compact. Since A is an open neighborhood of the

compact set Γ, there exists ε0 > 0 such that B(Γ, ε0) ⊆ A. Hence, for each
0 < ε ≤ ε0 we have that the set B(Γ, ε) is compact.

Taking now ε = 1/n, we know that for every n ∈ N there exists a path
γn: [0, 1] → X , with γn(0) ∈ A, γn(1) ∈ B and γn ⊆ B(Γ, 1/n). But, since C
cuts the arcs between A and B, it follows that for every n ∈ N, there is a point
cn ∈ C ∩ B(Γ, 1/n). For n ≥ n̂ large enough (n̂ > 1/ε0), the sequence (cn)n≥�n
is contained in the compact set B(Γ, ε0) and therefore it admits a converging
subsequence cnk

→ c∗ ∈ B(Γ, ε0). Since d(cnk
,Γ) < 1/nk and the sets C, Γ are

closed, the limit point c∗ ∈ Γ ∩ C. �

3. Fixed points in generalized rectangles

We present here some applications of the topological lemmas obtained in Sec-
tion 2 to the intersection of generalized surfaces which separate the opposite edges
of an N -dimensional cube. Such generalized surfaces (see Definition 3.2) will be
described as zero-sets of continuous scalar functions and therefore a nonempty
intersection will be obtained as a zero of a suitably defined vector field. To this
aim, we recall a classical result about the existence of zeros for continuous maps
in RN , the Poincaré–Miranda theorem.

Theorem 3.1. Let IN := [0, 1]N be the N -dimensional unit cube in RN

for which we denote by [xi = k] := {x = (x1, . . . , xN ) ∈ IN : xi = k}. Let
F = (F1, . . . , FN ): IN → RN be a continuous mapping such that, for each i ∈
{1, . . . , N},

Fi(x) ≤ 0, for all x ∈ [xi = 0] and Fi(x) ≥ 0, for all x ∈ [xi = 1]

or Fi(x) ≥ 0, for all x ∈ [xi = 0] and Fi(x) ≤ 0, for all x ∈ [xi = 1].

Then there exists x ∈ IN such that F (x) = 0.

We introduce now the spaces we are going to consider.

Definition 3.2. Let Z be a metric space and h: RN ⊇ IN → X ⊆ Z be
a homeomorphism of IN onto its image X . We call the pair

X̂ := (X,h)

a generalized N -dimensional rectangle (or, simply, a generalized rectangle) of Z.
We also set

X�
i := h([xi = 0]), Xr

i := h([xi = 1])
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and call them the left and the right i-faces of X . Finally, we define

ϑX := h(∂IN )

and call it the contour of X .

Our main result is the following theorem which can be considered as a variant
of the Hurewicz–Wallman lemma about dimension [16]. The statements of the
two results are in fact very similar, but the lemma in [16] concerns, instead of
our concept of cutting, the stronger idea of separation and requires the sets A,
B, C in Definition 2.1 to be pairwise disjoint (see [25]). Hence, because of some
technical differences which are crucial in view of our applications, we have chosen
to provide all the details.

Theorem 3.3. Let X̂:=(X,h) be a generalized rectangle in a metric space Z.
Assume that, for each i ∈ {1, . . . , N}, there exists a compact set Si ⊆ X such
that Si cuts the arcs between X�

i and Xr
i in X. Then

N⋂
i=1

Si �= ∅.

Proof. Through the inverse of the homeomorphism h: RN ⊇ IN → X ⊆ Z

we can define the compact sets Ci := h−1(Si), which cut the arcs between [xi = 0]
and [xi = 1] in IN (for i = 1, . . . , N). Clearly, it will be sufficient to prove that

N⋂
i=1

Ci �= ∅.

By Lemma 2.2, for every i = 1, . . . , N , there exists a continuous function
fi: IN → R such that fi ≤ 0 on [xi = 0] and fi ≥ 0 on [xi = 1]. Moreover,

Ci = {x ∈ IN : fi(x) = 0}.
The continuous vector field

−→
f := (f1, . . . , fN ): IN → RN satisfies the assump-

tions of the Poincaré–Miranda theorem and therefore there exists x ∈ IN such
that

fi(x) = 0, for all i = 1, . . . , N.

Hence x ∈ ⋂N
i=1 Ci. �

Remark 3.4. A very special case in Definition 3.2 occurs when Z = RN ,
X = IN and h = idRN . In order to avoid a cumbersome notation, we denote the
pair (IN , idRN ) simply by IN . This is, for example, the setting in the Hurewicz–
Wallman lemma [16] and in the work by Kampen [17].

As a first application of Theorem 3.3 we present a corollary which generalizes
a result due to J. Kampen in [17], providing also a more direct proof.
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Corollary 3.5 (see [17, Corollary 4, p. 513]). Let

φ = (φ1, . . . , φN ): RN ⊇ IN → RN

be a continuous map such that for every j ∈ {1, . . . , N} one of the following
conditions holds:

(C) φj([xj = 0] ∪ [xj = 1]) ⊆ [0, 1];
(E) φj(γ) ⊇ [0, 1] for every continuous path γ = (γ1, . . . , γN ): [0, 1] → IN

such that γj(0) = 0 and γj(1) = 1.

Then φ has at least a fixed point in IN .

If condition (C) holds for some j ∈ {1, . . . , N}, we say that j is a contractive
direction, while we say that j is an expansive direction when (E) is satisfied.
Once for all, we point out that the term “contractive” has to be meant in a broad
manner as it does not imply that the map is a contraction in the classical sense.

Proof. For every i ∈ {1, . . . , N} we define

Si := {x = (x1, . . . , xN ) ∈ IN : xi = φi(x)}.

Let j ∈ {1, . . . , N} be fixed and let γ: [0, 1] → IN be a continuous map such that
γ(0) ∈ [xj = 0] and γ(1) ∈ [xj = 1].

If j is a contractive direction, so that (C) holds, we have that φj(γ(0)) ≥
0 = γj(0) and φj(γ(1)) ≤ 1 = γj(1). Bolzano theorem ensures the existence of
t∗ ∈ [0, 1] such that φj(γ(t∗)) = γj(t∗), that is γ(t∗) ∈ Sj .

On the other hand, if j is an expansive direction and thus (E) holds, there
exist t1, t2 ∈ [0, 1] such that φj(γ(t1)) = 0 ≤ γj(t1) as well as φj(γ(t2)) = 1 ≥
γj(t2). Bolzano theorem ensures the existence of t̃ ∈ [0, 1] (with t1 ≤ t̃ ≤ t2 or
t2 ≤ t̃ ≤ t1) such that φj(γ(t̃)) = γj(t̃), that is γ(t̃) ∈ Sj .

The assumptions of Theorem 3.3 are thus satisfied with respect to X = IN

and h = idRN and so
⋂N
i=1 Si �= ∅. By definition, any point x ∈ ⋂N

i=1 Si is such
that φ(x) = x. �

Corollary 3.5 extends [17, Corollary 4, p. 513] where, instead of (C), the
stronger condition

(C’) φj(IN ) ⊆ [0, 1]

was assumed.

In order to show the relationship with [55], we introduce the following defi-
nition, inspired by [55, Definition 4].
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Definition 3.6. Assume we have two N -dimensional rectangles R1 :=∏N
i=1[ai, bi] and R2 :=

∏N
i=1[ci, di] and let ψ: RN ⊇ R1 → RN be a continu-

ous map. Let 1 ≤ i1 < . . . < ik ≤ N be a finite sequence of indexes. We say
that R1 ψ-covers R2 in (i1, . . . , ik)-direction if the following conditions hold:

(a) for every j ∈ {i1, . . . , ik},
[cj , dj ] ⊆

[
max

x∈R1,xj=aj

ψj(x), min
x∈R1,xj=bj

ψj(x)
]

or
[cj , dj ] ⊆

[
max

x∈R1,xj=bj

ψj(x), min
x∈R1,xj=aj

ψj(x)
]
;

(b) for every j �∈ {i1, . . . , ik}, ψj(R1) ⊆ [cj , dj ].

Corollary 3.7 (see [55]). Let ψ: RN ⊇ R → RN be a continuous map, for
R :=

∏N
i=1[ai, bi] and suppose there exists a finite sequence of indexes 1 ≤ i1 <

. . . < ik ≤ N , such that R ψ-covers R in (i1, . . . , ik)-direction. Then ψ has at
least a fixed point in R.

Proof. The homeomorphism h = (h1, . . . , hN ): RN → RN , with

(3.1) hi(x1, . . . , xN ) := ai + (bi − ai)xi

maps the unitary cube IN onto R. It is straightforward to check that the map
φ := h−1 ◦ ψ ◦ h satisfies assumption (E) along the components in {i1, . . . , ik},
while condition (C’) holds along the remaining components. Hence Corollary 3.5
applies ensuring the existence of at least a fixed point x ∈ IN for the map φ.
This implies that y := h(x) ∈ R is a fixed point for ψ. �

Corollary 3.7 is a trivial case of a widely more general result (by P. Zgliczyński
in [55]) that we recall below as Theorem 3.8. Actually, the author considered
a more restrictive covering condition (i.e. covering with margin δ) for maps de-
fined on the whole RN in order to apply his main result also to the case of small
perturbations of a given map.

Theorem 3.8 (see [55, Theorem 1, p. 1042]). Suppose we have a family of
N -dimensional rectangles Rl :=

∏N
i=1[a

(l)
i , b

(l)
i ] and a family of continuous maps

ψl:Rl → RN , for l = 0, . . . ,m − 1. Assume there exists a finite sequence of
indexes 1 ≤ i1 < . . . < ik ≤ N , such that for l = 0, . . . ,m − 1, Rl ψl-covers
Rl+1 (modm) in (i1, . . . , ik)-direction. Then there exists w ∈ R0 such that

ψl ◦ ψl−1 ◦ . . . ◦ ψ0(w) ∈ Rl+1, for l = 0, 1, . . . ,m− 2;

ψm−1 ◦ ψm−2 ◦ . . . ◦ ψ0(w) = w.

Our goal is to obtain a result which is closely related to Theorem 3.8, but
exploiting an expansive condition along the paths like in Corollary 3.5 and in [17].
To this purpose we first introduce the following definition:
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Definition 3.9. Assume we have two N -dimensional rectangles R1 :=∏N
i=1[ai, bi] and R2 :=

∏N
i=1[ci, di] and let ψ: RN ⊇ R1 → RN be a continu-

ous map. Let 1 ≤ i1 < . . . < ik ≤ N be a finite sequence of indexes. We
say that R1 ψ-covers R2 in (i1, . . . , ik)-direction along the paths if the following
conditions hold:

(a) for every j ∈ J := {i1, . . . , ik} and every continuous path

γ = (γ1, . . . , γN ): [0, 1] → R1

satisfying γj(0) = aj and γj(1) = bj, it holds that ψj(γ) ⊇ [cj , dj ];
(b) for every j �∈ J , ψj(R1) ⊆ [cj , dj ].

Remark 3.10. We observe that Definitions 3.6 and 3.9 coincide in the one-
dimensional case, while they differ for N ≥ 2 if J �= ∅ (that is, if at least one
expansive direction is present). To be more precise, it is straightforward to
verify that any map ψ satisfying Definition 3.6, with respect to a pair of N -
dimensional rectangles, fulfills also Definition 3.9 On the other hand, we give an
example (see Example 3.11 below) of a two-dimensional map which satisfies the
latter definition, but not the former. This shows that, in principle, Corollary 3.5
is more general than Corollary 3.7.

Example 3.11. Let φ = (f, g): R2 → R2 be the continuous map defined by

f(x, y) :=
1
2

+ c cos
(

2π
(
kx+ �

(
y − 1

2

)))
,

g(x, y) :=
1
2

+ d sin(2π(y +mx)),

where c, d ∈ R and k, l,m ∈ N are chosen in order to satisfy

0 < d ≤ 1
2
< c, � >

1
d
, k ≥ �+ 1, m ≥ 1.

By the above positions, we see immediately that

g(x, y) ∈
[
1
2
− d,

1
2

+ d

]
⊆ [0, 1], for all (x, y) ∈ I2,

so that φ is contractive in the second component. We prove now that φ is
expansive (along the paths) with respect to the first component. More precisely,
we check that, for J = {1}, I2 φ-covers I2 in the x-direction along the paths.

Let γ = (γ1, γ2): [0, 1] → I2 be a continuous map such that γ1(0) = 0 and
γ1(1) = 1. We claim that for F (t) := f(γ1(t), γ2(t)),

F ([0, 1]) ⊇ [0, 1]

follows. In fact, the set {2πkγ1(t) : t ∈ [0, 1]} coincides with the interval [0, 2πk],
while the set {2π�γ2(t) − π� : t ∈ [0, 1]} is contained in the interval [−π�, π�],
so that the set {2π(kγ1(t) + �(γ2(t) − 1/2)) : t ∈ [0, 1]} contains the interval
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[π�, 2πk−π�] whose length is at least 2π. Therefore, F ([0, 1]) ⊇ [1/2−c, 1/2+c] ⊇
[0, 1] and thus we have proved that φ agrees with Definition 3.9

On the other hand, it is not true that I2 φ-covers I2 in the x-direction. In
fact, for x = 0 or x = 1,

[0, 1] �
[

max
(0, y)∈I2

f(0, y), min
(1, y)∈I2

f(1, y)
]
,

[0, 1] �
[

max
(1, y)∈I2

f(1, y), min
(0, y)∈I2

f(0, y)
]
.

In fact, it is not difficult to prove even more, that is, for every x̂ ∈ [0, 1] the set
{f(x̂, y) : y ∈ [1/2 − d, 1/2 + d]} covers [0, 1] and therefore, it cannot lie at the
left or at the right of the interval [0, 1]. More precisely, for every x̂ ∈ [0, 1] it
holds that:

min
{
f(x̂, y) : y ∈

[
1
2
− d,

1
2

+ d

]}
=

1
2
− c < 0,

max
{
f(x̂, y) : y ∈

[
1
2
− d,

1
2

+ d

]}
=

1
2

+ c > 1.

This shows that there is no sub-rectangle of the form R := [a, b]×[1/2−d, 1/2+d]
such that R φ-covers I2 in the x-direction.

Next, we provide an improvement of Corollary 3.5 which will be our main
tool in the proof of Theorem 3.14 below.

Corollary 3.12. Let R :=
∏N
i=1[ai, bi] be an N -dimensional rectangle with

opposite i-faces

R�
i := {x ∈ R : xi = ai}, Rr

i := {x ∈ R : xi = bi}
and let φ = (φ1, . . . , φN ): RN ⊇ R → RN be a continuous map. Suppose there
exists J ⊆ {1, . . . , N} such that the following conditions hold:

(C) φj(R�
j ∪Rr

j) ⊆ [aj , bj], for all j �∈ J ;
(EW ) for each j ∈ J there is a (nonempty) compact set Wj ⊆ R such that for

every continuous path γ = (γ1, . . . , γN ): [0, 1] → R satisfying γj(0) = aj

and γj(1) = bj, there exists a sub-path σ with σ ⊆ Wj and φj(σ) ⊇
[aj , bj ].

Then φ has at least a fixed point in W :=
⋂
j∈J Wj. (1)

Proof. We follow the argument already described along the proof of Corol-
lary 3.5. We also assume that there exists at least one j ∈ {1, . . . , N} for which
(EW ) is satisfied (otherwise the result follows directly from Rothe fixed point
theorem).

(1) The role of W in the theorem is meaningful only if (EW ) holds for at least one
component j. Otherwise, if (C) holds for every j = 1, . . . , N, we read the theorem for W = R.
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For every j �∈ J , we define Sj := {x = (x1, . . . , xN ) ∈ R : xj = φj(x)}, while,
for j ∈ J , we set Sj := {x = (x1, . . . , xN ) ∈Wj : xj = φj(x)}.

Let j ∈ {1, . . . , N} be fixed and let γ: [0, 1] → R be a continuous map such
that γ(0) ∈ R�

j and γ(1) ∈ Rr
j .

If j is a contractive direction, so that (C) holds, by repeating exactly the same
argument as in the proof of Corollary 3.5, we find that there exists t∗ ∈ [0, 1]
such that φj(γ(t∗)) = γj(t∗), that is γ(t∗) ∈ Sj .

On the other hand, if j is an expansive direction so that (EW ) holds, there
exist 0 ≤ t1 < t2 ≤ 1 such that γ(t) ∈ Wj , for every t ∈ [t1, t2] and, moreover,
φj(γ(t1)) = aj ≤ γj(t1) as well as φj(γ(t2)) = bj ≥ γj(t2) (or φj(γ(t1)) = bj ≥
γj(t1) as well as φj(γ(t2)) = aj ≤ γj(t2)). Bolzano theorem ensures the existence
of t̃ ∈ [t1, t2] such that φj(γ(t̃)) = γj(t̃) and also γ(t̃) ∈ Wj . Hence, γ(t̃) ∈ Sj .

The assumptions of Theorem 3.3 are thus satisfied with respect to X = R
and h defined as in (3.1). Therefore,

⋂N
i=1 Si �= ∅. By definition, any point

x ∈ ⋂N
i=1 Si is such that φ(x) = x. Moreover x ∈W . �

Remark 3.13. Clearly, Corollary 3.12 is still true if we replace hypothesis
(C) with

(C’) φj(R) ⊆ [aj, bj ], for all j �∈ J .

This assumption (which is slightly more restrictive than (C)) is crucial when we
consider compositions of maps.

We are now in position to prove our extension of Theorem 3.8. Along the
proof, we use the following notation: Let α, β ∈ R with α < β. We denote by
η [α,β] the (continuous) projection of R onto the interval [α, β], defined by

(3.2) η[α,β](s) := max{α,min{s, β}}.

Theorem 3.14. Suppose we have a family of N -dimensional rectangles Rl

:=
∏N
i=1[a

(l)
i , b

(l)
i ] and a family of continuous maps ψl:Rl → RN , for l =

0, . . . ,m−1. Assume there exists a finite sequence of indexes 1 ≤ i1 < . . . < ik ≤
N , such that for l = 0, . . . ,m − 1, Rl ψl-covers Rl+1 (modm) in (i1, . . . , ik)-
direction along the paths. Then there exists w ∈ R0 such that

ψl ◦ ψl−1 ◦ . . . ◦ ψ0(w) ∈ Rl+1, for l = 0, . . . ,m− 2;(3.3)

ψm−1 ◦ ψm−2 ◦ . . . ◦ ψ0(w) = w.(3.4)

Proof. We set J := {i1, . . . , ik}. If J = ∅, it follows that ψl(Rl) ⊆ Rl+1,
for l = 0, . . . ,m− 1 (modm), and the result is an immediate consequence of the
Brouwer fixed point theorem. Thus, for the remainder of the proof, we assume
J �= ∅.
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First of all, we extend the map ψl = (ψ(l)
1 , . . . , ψ

(l)
N ) to a continuous mapping

ψ̃l = (ψ̃
(l)

1 , . . . , ψ̃
(l)

N ): RN → RN ,

defined by

ψ̃
(l)

i (x) := η
[a

(l+1)
i ,b

(l+1)
i ]

(ψ(l)
i (PRl

(x))), for all i = 1, . . . , N,

where we have called PRl
the projection of RN onto the rectangle Rl, given by

PRl
(x) := (η

[a
(l)
1 , b

(l)
1 ]

(x1), . . . , η [a
(l)
N , b

(l)
N ]

(xN )).

Then, for every j ∈ J , we define Wj as the set of the points x ∈ R0 satisfying
the following conditions:

ψ
(0)
j (x) ∈ [a(1)

j , b
(1)
j ],

ψ
(1)
j (ψ0(x)) ∈ [a(2)

j , b
(2)
j ],

...

ψ
(m−2)
j (ψm−3 ◦ . . . ◦ ψ0)(x) ∈ [a(m−1)

j , b
(m−1)
j ],

ψ
(m−1)
j (ψm−2 ◦ ψm−3 ◦ . . . ◦ ψ0)(x) ∈ [a(0)

j , b
(0)
j ].

We are going to apply Corollary 3.12 (in the version of Remark 3.13) to the
composite map

φ = (φ1, . . . , φN ) := ψ̃m−1 ◦ ψ̃m−2 ◦ . . . ◦ ψ̃0.

Notice that φ is well defined as a continuous map on R0. Indeed, by the property
of the projections η

[a
(l)
i ,b

(l)
i ]

we have that

ψ̃ l(Rl) ⊆ Rl+1, for all l = 0, . . . ,m− 1.

As a preliminary observation we note that any fixed point w for φ, with w ∈
W :=

⋂
j∈J Wj , satisfies the conditions (3.3) and (3.4). This follows from the

fact that
η
[a

(l)
i , b

(l)
i ]

(s) = s, for s ∈ [a(l)
i , b

(l)
i ]

and that, when j �∈ J ,

ψ̃
(l)

j (x) = ψ
(l)
j (x), for all x ∈ Rl.

Let j ∈ {1, . . . , N} be a fixed index. We distinguish two cases:
(a) j �∈ J . In this situation, for every l = 0, . . . ,m− 1, we have

ψ̃
(l)
j (x) ∈ [a(l+1)

j , b
(l+1)
j ].

Therefore, φ satisfies (C’).
(b) j ∈ J . Let γ = (γ1, . . . , γN ): [0, 1] → R0 be a continuous path satisfying

γj(0) = a
(0)
j and γj(1) = b

(0)
j . Our aim is to prove that there exists a sub-path
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σ of γ with σ ⊆ Wj and such that φj(σ) ⊇ [a(0)
j , b

(0)
j ]. By the assumptions,

we know that ψ(0)
j (γ) ⊇ [a(1)

j , b
(1)
j ]. If we consider the continuous real valued

function

g: [0, 1] → R, g(t) := ψ
(0)
j (γ(t)),

we can find 0 ≤ t1 < t2 ≤ 1 such that g(t) ∈ [a(1)
j , b

(1)
j ], for every t ∈ [t1, t2]

and, either g(t1) = a
(1)
j and g(t2) = b

(1)
j , or g(t1) = b

(1)
j and g(t2) = a

(1)
j .

The restriction γ0 := γ|[t1,t2] is a sub-path of γ such that ψ(0)
j (γ0) = [a(1)

j , b
(1)
j ].

Moreover, we also have that

ψ̃
(0)

j (γ0(t)) = ψ
(0)
j (γ0(t)), for all t ∈ [t1, t2].

If we like, we can take a continuous path σ0: [0, 1] → R0, in the same equivalence
class of γ0, such that

ψ̃
(0)

j (σ0(t)) = ψ
(0)
j (σ0(t)) ∈ [a(1)

j , b
(1)
j ], for all t ∈ [0, 1],

ψ
(0)
j (σ0(0)) = a

(1)
j , ψ

(0)
j (σ0(1)) = b

(1)
j .

Now, with respect to the path γ1 := ψ̃ 0 ◦ σ0: [0, 1] → R1, we are exactly in the
same situation like we were with respect to the path γ: [0, 1] → R0.

At this moment, we can proceed by induction, just repeating a finite number
of times the previous argument, until we find a sub-path σ of γ, with σ: [0, 1] →
R0 satisfying the following conditions:

ψ̃
(l)

j (ψ̃l−1 ◦ . . . ◦ ψ̃0)(σ(t)) = ψ
(l)
j (ψl−1 ◦ . . . ◦ ψ0)(σ(t)) ∈ [a(l+1)

j , b
(l+1)
j ],

for all t ∈ [0, 1] and all l = 0, . . . ,m− 1 (modm),

ψ
(m−1)
j (ψm−2 ◦ . . . ◦ ψ0)(σ(0)) = a

(0)
j , ψ

(m−1)
j (ψm−2 ◦ . . . ◦ ψ0)(σ(1)) = b

(0)
j .

Therefore σ ⊆ Wj and φj(σ) = [a(0)
j , b

(0)
j ], that is, (EW ) of Corollary 3.12 is

satisfied.
In this manner we have proved that for every j ∈ {1, . . . , N} either (C’) or

(EW ) is fulfilled with respect to φ. Hence, Corollary 3.12 ensures the existence of
at least a fixed point for ψ in W :=

⋂
j∈J Wj , that, as already observed, satisfies

conditions (3.3) and (3.4). �

4. Continua of fixed points for maps depending on parameters

In this section we still consider the intersection of generalized surfaces which
separate the opposite edges of an N -dimensional cube, but in the case in which
the number of the cutting surfaces is smaller than the dimension of the space.
Here our main tool is a result by Fitzpatrick, Massabó and Pejsachowicz (see [12,
Theorem 1.1]) on the covering dimension of the zero set of an operator depending
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on parameters. For the reader’s convenience, we recall the concept of covering
dimension as can be found in [10].

Definition 4.1 ([10, p. 54, p. 208]). Let Z be a metric space. We say that
dimZ ≤ n if every finite open cover of the space Z has a finite open [closed]
refinement of order ≤ n. The object dimZ ∈ N ∪ {∞} is called the covering
dimension or the Čech–Lebesgue dimension of the metric space Z. According
to [12], if z0 ∈ Z, we also say that dimZ ≥ j at z0 if each neighborhood of z0
has dimension at least j.

The order of a family A of subsets of Z (used in the above definition) is
the largest integer n such that the family A contains n + 1 sets with a non-
empty intersection; if no such integer exists we say that the family A has order
infinity. By a classical result from Topology (see [10, The coincidence theorem])
the covering dimension coincides with the inductive dimension [10, p. 3] for
separable metric spaces.

We keep the notation of the previous section. In particular, we recall that if
R :=

∏N
i=1[ai, bi] is an N -dimensional rectangle, we denote its opposite i-faces

by
R�
i := {x ∈ R : xi = ai}, Rr

i := {x ∈ R : xi = bi}.
Theorem 4.2. Let R :=

∏N
i=1[ai, bi] be an N -dimensional rectangle and let

P = (p1, . . . , pN ) be any interior point of R. Let n ∈ {1, . . . , N − 1} be fixed.
Suppose that F = (F1, . . . , Fn):R → Rn is a continuous mapping such that, for
each i ∈ {1, . . . , n},

Fi(x) < 0, for all x ∈ R�
i and Fi(x) > 0, for all x ∈ Rr

i

or Fi(x) > 0, for all x ∈ R�
i and Fi(x) < 0, for all x ∈ Rr

i .

Define also the affine map

(4.1) π: RN → RN−n, πj(x1, . . . , xN ) := xj − pj , j = N − n+ 1, . . . , N.

Then there exists a connected subset Z of

F−1(0) = {x ∈ R : Fi(x) = 0, for all i = 1, . . . , n}
whose dimension at each point is at least N − n. Moreover,

dim(Z ∩ ∂R) ≥ N − n− 1

and π:Z ∩ ∂R → RN−n \ {0} is essential.

Proof. We define the continuous mapping H = (F, π):R → RN . By the
assumptions on F and π we have

deg(H,R
◦
, 0) = (−1)d �= 0,
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where d is the number of components i ∈ {1, . . . , n} such that Fi(x) > 0 for x ∈
R�
i (and also Fi(x) < 0 for x ∈ Rr

i ). Hence π turns out to be a complementing
map for F (according to [12]). A direct application of [12, Theorem 1.1] gives
the thesis (note that the dimension m in [12, Theorem 1.1] corresponds to our
N − n). �

Remark 4.3. If ai < 0 < bi (for all i = 1, . . . , N) we can take P = 0, so
that the complementing map is just the projection π: RN → RN−n.

For the reader’s convenience, we recall that (according to the definitions in
[12]), given an open bounded set O ⊆ RN , a continuous map π:O → RN−n

is a complement for the continuous map F :O → Rn if the topological degree
deg((π, F ),O, 0) is defined and nonzero. We also recall (see [14]) that a mapping
f of a space X into a space Y is said to be inessential if f is homotopic to
a constant; otherwise f is essential.

A more elementary version of Theorem 4.2 can be given for the zero set of
a vector field with range in RN−1. In this case we can achieve our result by
a direct use of the classical Leray–Schauder continuation theorem [26], instead
of the more sophisticated tools in [12]. Namely, we have:

Theorem 4.4. Let R :=
∏N
i=1[ai, bi] be an N -dimensional rectangle and let

F = (F1, . . . , FN−1):R → RN−1 be a continuous mapping such that, for each
i ∈ {1, . . . , N − 1},

Fi(x) < 0, for all x ∈ R�
i and Fi(x) > 0, for all x ∈ Rr

i

or Fi(x) > 0, for all x ∈ R�
i and Fi(x) < 0, for all x ∈ Rr

i .

Then there exists a closed connected subset Z of

F−1(0) = {x ∈ R : Fi(x) = 0, for all i = 1, . . . , N − 1}

such that Z ∩R�
N �= ∅ and Z ∩Rr

N �= ∅.
Proof. We split x = (x1, . . . , xN−1, xN ) ∈ R ⊆ RN as x = (y, λ) with

y = (x1, . . . , xN−1) ∈ M :=
N−1∏
i=1

[ai, bi], λ = xN ∈ [aN , bN ]

and define f = f(y, λ):M× [aN , bN ] → RN−1 by

f(y, λ) := F (x1, . . . , xN−1, λ),

treating, in this manner, the variable xN = λ as a parameter for the (N − 1)-
dimensional vector field fλ( · ) = f( · , λ). By the assumptions on F we have

deg(fλ,M
◦
, 0) = (−1)d �= 0, for all λ ∈ [aN , bN ],
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where d is the number of the components i ∈ {1, . . . , N−1} such that Fi(x) > 0
for x ∈ R�

i (and also Fi(x) < 0 for x ∈ Rr
i ). The Leray–Schauder continuation

theorem [26, Théorème Fondamental] (see also [27], [28]) ensures the existence
of a closed connected set

Z ⊆ {(y, λ) ∈ M× [aN , bN ] : f(y, λ) = 0 ∈ RN−1}

whose projection onto the λ-component covers the interval [aN , bN ]. By the
above positions the thesis follows immediately. �

Theorem 4.4 can be found also in [23] and it was then applied in [24].
In the next lemma we take the unit cube IN := [0, 1]N as N -dimensional

rectangle and choose the interior point P = (1/2, . . . , 1/2).

Lemma 4.5. Let n ∈ {1, . . . , N − 1} be fixed. Assume that, for each i ∈
{1, . . . , n}, there exists a compact set Si ⊆ IN such that Si cuts the arcs be-
tween [xi = 0] and [xi = 1] in IN . Then there exists a connected subset Z of⋂n
i=1 Si �= ∅, whose dimension at each point is at least N − n. Moreover,

dim(Z ∩ ∂IN) ≥ N − n− 1

and π:Z ∩ ∂IN → RN−n \ {0} is essential (where π is defined as in (4.1)).

Proof. For any fixed index i∗ ∈ {1, . . . , n} we define the tunnel set

Ti∗ :=
i∗−1∏
i=1

[0, 1] × R ×
N∏

i=i∗+1

[0, 1].

It is immediate to check that Si∗ cuts the arcs between [xi∗ = 0] and [xi∗ = 1]
in Ti∗ .

By Lemma 2.5 there exists a continuous function fi∗ :Ti∗ → R such that

fi∗(x) ≤ 0, for all x ∈ Ti∗ with xi∗ ≤ 0,

fi∗(x) ≥ 0, for all x ∈ Ti∗ with xi∗ ≥ 1.

Moreover, Si∗ = {x ∈ Ti∗ : fi∗(x) = 0}.
By this latter property and the fact that Si∗ ⊆ IN it follows that

fi∗(x) < 0, for all x ∈ Ti∗ with xi∗ < 0,

fi∗(x) > 0, for all x ∈ Ti∗ with xi∗ > 1.

Now we define, for x = (x1, . . . , xi∗−1, xi∗ , xi∗+1, . . . , xN ) ∈ RN , the continuous
function

Fi∗(x) := fi∗(η[0,1](x1), . . . , η[0,1](xi∗−1), xi∗ , η[0,1](xi∗+1), . . . , η[0,1](xN )),
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where η[0,1] is the projection of R onto the interval [0, 1] defined as in (3.2). As
a consequence of the above positions we find that

Fi∗(x) < 0, for all x ∈ RN such that xi∗ < 0,

Fi∗(x) > 0, for all x ∈ RN such that xi∗ > 1.

We are ready to apply Theorem 4.2 to the map F = (F1, . . . , Fn) restricted to
the rectangle

R :=
n∏
i=1

[−1, 1]×
N∏

i=n+1

[0, 1].

Clearly,

(F |R)−1(0) =
n⋂
i=1

Si ⊆ IN

and the thesis is achieved. �
Remark 4.6. Both in Theorem 4.2 and in Lemma 4.5 the fact that we have

privileged the first n components is purely conventional. It is evident that the
results are still true for any finite sequence of indexes i1 < . . . < in in {1, . . . , N}.
Moreover, Lemma 4.5 is invariant under homeomorphisms in a sense that is
described in Theorem 4.7 below. The same observation applies systematically
to all the other results (preceding and subsequent) in which some directions are
conventionally chosen.

In view of the next result we recall the concept of generalized rectangle
X̂ := (X,h) given in Definition 3.2, where h: IN → X ⊆ Z is a homeomorphism
of the unit cube IN = [0, 1]N onto its image X .

Theorem 4.7. Let X̂ :=(X,h) be a generalized rectangle of a metric space Z.
Let a finite sequence of n indexes i1 < . . . < in (n ≥ 1) be fixed in {1, . . . , N}.
Assume that, for each j ∈ {i1, . . . , in}, there exists a compact set Sj ⊆ X such
that Sj cuts the arcs between X�

j and Xr
j in X. Then there exists a compact

connected subset Z of
⋂n
k=1 Sik �= ∅, whose dimension at each point is at least

N − n. Moreover,
dim(Z ∩ ϑX) ≥ N − n− 1

and π:h−1(Z)∩ ∂IN → RN−n \ {0} is essential (where π is defined as in (4.1)).

Proof. The result easy follows by moving to the setting of Lemma 4.5
through the homeomorphism h−1 and repeating the arguments therein. �

We end this section by presenting a result (Corollary 4.8) which plays a cru-
cial role in the subsequent proofs. It concerns the case n = N − 1 and could be
obtained by suitably adapting the arguments employed in Lemma 4.5. However,
due to its significance for our applications we prefer to provide a detailed proof
using Theorem 4.4 (which requires only the knowledge of the Leray-Schauder
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principle and therefore, in some sense, is more elementary). Corollary 4.8 ex-
tends to an arbitrary dimension some results in [39, Appendix] which were proved
only for N = 2 using [40].

Corollary 4.8. Let X̂ := (X,h) be a generalized rectangle in a metric
space Z. Let k ∈ {1, . . . , N} be fixed. Assume that, for each j ∈ {1, . . . , N}
with j �= k, there exists a compact set Sj ⊆ X such that Sj cuts the arcs between
X�
j and Xr

j in X. Then there exists a compact connected subset C of
⋂N

i=1
i�=k

Si �= ∅,
such that C ∩X�

k �= ∅ and C ∩Xr
k �= ∅.

Proof. Without loss of generality (if necessary, by a permutation of the
coordinates), we assume k = N . In this manner, using the homeomorphism
h−1:Z ⊇ X = h(IN ) → IN , we can confine ourselves to the following situation:

For each j ∈ {1, . . . , N − 1}, there exists a compact set S′
j := h−1(Sj) ⊆ IN

that cuts the arcs between [xi = 0] and [xi = 1] in IN .
Proceeding as in the proof of Lemma 4.5, we define the tunnel set

Ti∗ :=
i∗−1∏
i=1

[0, 1]× R ×
N∏

i=i∗+1

[0, 1]

for any fixed index i∗ ∈ {1, . . . , N − 1} and find that S′
i∗ cuts the arcs between

[xi∗ = 0] and [xi∗ = 1] in Ti∗ .
Hence, by Lemma 2.5 there exists a continuous function fi∗ :Ti∗ → R such

that

fi∗(x) ≤ 0, for all x ∈ Ti∗ with xi∗ ≤ 0,

fi∗(x) ≥ 0, for all x ∈ Ti∗ with xi∗ ≥ 1.

Moreover, S′
i∗ = {x ∈ Ti∗ : fi∗(x) = 0}, as well as

fi∗(x) < 0, for all x ∈ Ti∗ with xi∗ < 0

fi∗(x) > 0, for all x ∈ Ti∗ with xi∗ > 1.

We define, for x = (x1, . . . , xi∗−1, xi∗ , xi∗+1, . . . , xN ) ∈ RN , the continuous
function

Fi∗(x) := fi∗(η[0,1](x1), . . . , η[0,1](xi∗−1), xi∗ , η[0,1](xi∗+1), . . . , η[0,1](xN )),

where η[0,1] is the projection of R onto the interval [0, 1] defined as in (3.2). Then
we have

Fi∗(x) < 0, for all x ∈ RN with xi∗ < 0

Fi∗(x) > 0, for all x ∈ RN with xi∗ > 1.
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Now we consider the map F = (F1, . . . , FN−1) restricted to the rectangle

R :=
N−1∏
i=1

[−ε, 1 + ε] × [0, 1],

for any fixed ε > 0. Since

(F |R)−1(0) =
N−1⋂
i=1

S′
i ⊆ IN ,

the thesis follows by Theorem 4.4. In fact, we can define the set C := h(Z),
where Z ⊆ (F |R)−1(0) comes from the statement of Theorem 4.4. �

5. Periodic points and chaotic dynamics
for maps which expand the paths

We provide now an extension to N -dimensional spaces of some results previ-
ously obtained in [35], [36] for the planar case. As in [35], [36] we are interested
in the study of maps which expand the arcs along a certain direction. To this
aim, we reconsider Definition 3.2 in order to focus our attention on a generalized
N -dimensional rectangle in which we have fixed (once for all) the left and right
sides. In the applications, these opposite sides give an orientation (in a rough
sense) of the generalized rectangle and they will be related to the expansive
direction.

Definition 5.1. Let Z be a metric space and let X̂ := (X,h) be a general-
ized N -dimensional rectangle of Z. We set

X� := h([xN = 0]), Xr := h([xN = 1]) and X− := X� ∪Xr.

The pair X̃ := (X,X−) is called an oriented N -dimensional rectangle (or, simply,
an oriented rectangle) of Z. For simplicity, the reference to the ambient space
Z will be omitted when no possibility of confusion may occur.

Remark 5.2. First of all we observe that, instead of the unit cube [0, 1]N , we
could have chosen in the above definition any N -dimensional rectangle. In this
case the sides X� and Xr would be defined (in a obvious manner) accordingly.

A comparison between Definitions 3.2 and 5.1 shows that an oriented rec-
tangle is just a generalized rectangle in which we have privileged the two subsets
of its contour which correspond to the opposite faces for some fixed compo-
nent (namely, the xN -component). The choice of the N -th component is purely
conventional. For example, in some other papers (see [13], [38], [56]), the first
component was selected. Clearly, there is no substantial difference as the home-
omorphism h could be composed with a permutation matrix (yielding to a new
homeomorphism with the same image set). From this point of view, our defini-
tion fits to the one of h-set of (1, N − 1)-type, given by Zgliczyński and Gidea
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in [56] for a subset of RN which is obtained as the counterimage of the unit cube
through a homeomorphism of RN onto itself. A similar concept is also consid-
ered by Gidea and Robinson in [13]: they call this object a (1, N − 1)-window
and it is defined as a homeomorphic copy of the unit cube IN of RN through
a homeomorphism whose domain is an open neighborhood of IN .

The next definition introduces the concept of stretching along the paths
(already considered in [35], [36], [38]) for maps between oriented rectangles.

Definition 5.3. Let Z be a metric space and let X̃ := (X,X−) and Ỹ :=
(Y, Y −) be oriented N -dimensional rectangles of Z. Let ψ:Z ⊇ Dψ → Z be
a map (not necessarily continuous on its whole domain Dψ) and let D ⊆ X∩Dψ.
We say that (D, ψ) stretches X̃ to Ỹ along the paths and write

(D, ψ): X̃ �−→ Ỹ

if there exists a compact set K ⊆ D such that ψ is continuous on K and for every
path γ with

γ ⊆ X and γ ∩X� �= ∅, γ ∩Xr �= ∅,
there is a sub-path σ of γ such that

σ ⊆ K and ψ(σ) ⊆ Y, with ψ(σ) ∩ Y� �= ∅, ψ(σ) ∩ Yr �= ∅.

We also write
(D,K, ψ): X̃ �−→ Ỹ

when we wish to put in evidence the role of the set K. In some applications,
we take K ⊆ D such that ψ(K) ⊆ Y . In this case, the condition ψ(σ) ⊆ Y is
automatically satisfied.

Remark 5.4. Let X̃=(X,X−) and Ỹ =(Y, Y −) be oriented N -dimensional
rectangles of a metric space Z and assume that

(D, ψ): X̃ �−→ Ỹ

for some ψ:Z ⊇ Dψ → Z and D ⊆ X ∩Dψ. From the above definition it turns
out that

(D′, ψ): X̃ �−→ Ỹ , for all D′ such that ψ−1(Y ) ∩ D ⊆ D′ ⊆ X ∩Dψ.

We also note that if D is closed and ψ is continuous on D, we can take K = D
in the definition.

Clearly, there are situations where there is no need to invoke the set K because
the knowledge of D gives the required information. A particular case in which
it is not necessary to specify such a compact K occurs when X ⊆ Dψ: indeed,
an easy criterion to verify the stretching condition in this particular context is
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checking that ψ(X) ⊆ Y and ψ(X�) ⊆ Y� as well as ψ(Xr) ⊆ Yr, or ψ(X�) ⊆ Yr

as well as ψ(Xr) ⊆ Y�.
On the other hand, in some cases, it may be useful to emphasize the existence

of a special set K. For instance, we could be interested in examples where
(D,Ki, ψ): X̃ �−→ Ỹ for different (even disjoint) sets Ki’s (see, e.g. Theorem 5.10)
and also in situations in which either ψ is not defined on the whole set X or ψ
is defined on X but ψ(X) �⊆ Y .

As a consequence of Corollary 4.8 we obtain the following result which ex-
tends to N -dimensional rectangles a fixed point theorem (see [36, Theorem 3.1]),
originally proved for N = 2.

Theorem 5.5. Let X̃ := (X,X−) be an oriented N -dimensional rectangle
of a metric space Z and let ψ : Z ⊇ Dψ → Z and D ⊆ X ∩Dψ be such that

(5.1) (D,K, ψ): X̃ �−→ X̃,

for some compact set K ⊆ D. Then there exists w̃ ∈ K such that ψ(w̃) = w̃.

Proof. Let h: IN = [0, 1]N → h(IN ) = X ⊆ Z be a homeomorphism such
that X� = h([xN = 0]) andXr = h([xN = 1]) and consider the compact set of IN

W := h−1(K ∩ ψ−1(X))

and the continuous mapping φ = (φ1, . . . , φN ):W → IN defined by

φ(x) := h−1(ψ(h(x))), for all x ∈ W .

By the Tietze–Urysohn theorem [10, p. 87] there exists a continuous map

ϕ = (ϕ1, . . . , ϕN ): IN → IN , ϕ|W = φ.

Let us define, for every i = 1, . . . , N − 1, the closed sets

Si := {x = (x1, . . . , xN−1, xN ) ∈ IN : xi = ϕi(x)} ⊆ IN .

Since ϕ(IN ) ⊆ IN , by the continuity of the ϕi’s, it is straightforward to check
that Si cuts the arcs between [xi = 0] and [xi = 1] in IN (for each i = 1, . . . ,
N −1). Indeed, if γ: [0, 1] → IN is a path with γi(0) = 0 and γi(1) = 1, then, for
the auxiliary function g: [0, 1] � t �→ γi(t)−ϕi(γ(t)), we have g(0) ≤ 0 ≤ g(1) and
therefore there exists s ∈ [0, 1] such that γi(s) = ϕi(γ(s)) (Bolzano theorem),
that is γ ∩ Si �= ∅. Thus the cutting property is proved.

Now Corollary 4.8 guarantees the existence of a continuum

(5.2) C ⊆
N−1⋂
i=1

Si
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such that C ∩ [xN = 0] �= ∅ and C ∩ [xN = 1] �= ∅. By Lemma 2.6 we have that,
for every ε > 0, there exists a path γε: [0, 1] → IN such that

γε(0) ∈ [xN = 0], γε(1) ∈ [xN = 1], γε(t) ∈ B(C, ε) ∩ IN , for all t ∈ [0, 1].

By (5.1) and the definition of W and φ, there exists a sub-path σε of γε such
that

σε ⊆ W and φ(σε) ⊆ IN , with φ(σε) ∩ [xN = 0] �= ∅, φ(σε) ∩ [xN = 1] �= ∅.

The Bolzano theorem applied this time to the continuous mapping x �→
xN −ϕN (x) on σε implies the existence of a point x̃ ε = (x̃ ε1, . . . , x̃

ε
N ) ∈ σε ⊆ W

such that x̃ εN = ϕN (x̃ ε).
Taking ε = 1/n and letting n → ∞, by a standard compactness argument

we find a point x̃ = (x̃1, . . . , x̃N ) ∈ C ∩ W such that x̃N = ϕN (x̃). By (5.2),
recalling also the definition of the Si’s, we find x̃ = ϕ(x̃) ∈ W . Then, since
ϕ|W = φ, by the relation

h(φ(x)) = ψ(h(x)), for all x ∈ W ,

we have that h(x̃) = ψ(h(x̃)) ∈ h(W) and therefore w̃ := h(x̃) ∈ K ∩ ψ−1(X) is
the desired fixed point for ψ. �

Having proved Theorems 4.7 and 5.5, we have now available the tools for
extending to any dimension the results about periodic points and chaotic dy-
namics previously obtained for the two-dimensional case in [35], [36]. For sake
of conciseness we focus our attention only on some of them (selected from [35],
[36]), that we present below in the more general setting.

Theorem 5.6. Assume there is a double sequence of oriented N -dimensional
rectangles (X̃k)k∈Z (with X̃k = (Xk, X

−
k )) of a metric space Z and a sequence

((Dk, ψk))k∈Z, with Dk ⊆ Xk, such that

(Dk, ψk): X̃k �−→ X̃k+1, for all k ∈ Z.

Let us denote by Xk
� and Xk

r the two parts of X−
k . Then the following conclusions

hold:

(a1) There is a sequence (wk)k∈Z such that wk ∈ Dk and ψk(wk) = wk+1,
for all k ∈ Z.

(a2) For each j ∈ Z there exists a compact connected set Cj ⊆ Dj which cuts
the arcs between Xj

� and Xj
r in Xj and such that, for every w ∈ Cj,

there is a sequence (yi)i≥j with yj = w and

yi ∈ Di, ψi(yi) = yi+1, for all i ≥ j.
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The dimension of Cj at each point is at least N−1. Moreover, dim(Cj ∩
ϑXj) ≥ N − 2 and π:h−1(Cj) ∩ ∂IN → RN−1 \ {0} is essential (where
π is defined as in (4.1) for pi = 1/2, for all i).

(a3) If there are integers k and l, with k < l, such that X̃k = X̃l, then there
exists a finite sequence (zi)k≤i≤l, with zi ∈ Di and ψi(zi) = zi+1 for
each i = k, . . . , l − 1, such that zl = zk, that is, zk is a fixed point of
ψl−1 ◦ . . . ◦ ψk.

Proof. We prove the conclusions of the theorem in the reverse order. So,
let’s start with the verification of (a3). By the assumptions and the definition of
the “stretching along the paths” property, it is easy to check that

(5.3) (D, ψl−1 ◦ . . . ◦ ψk) : X̃k �−→ X̃l,

where D := {z ∈ Dk : ψj ◦ . . . ◦ ψk(z) ∈ Dj+1, for all j = k, . . . , l − 1}.
With the positions X̃ = X̃k = X̃l and ψ = ψl−1 ◦ . . . ◦ ψk, we read condition

(5.3) as (D, ψ): X̃ �−→ X̃ and therefore the thesis follows immediately by Theo-
rem 5.5. More precisely, if we like to put in evidence the role of the compact sets
Kk’s, for (Dk,Kk, ψk): X̃k �−→ X̃k+1, we have that (D,K, ψ): X̃ �−→ X̃, where we
have set

K := {z ∈ Kk : ψj ◦ . . . ◦ ψk(z) ∈ Kj+1, for all j = k, . . . , l− 1}.
As regards (a2), without loss of generality, we can assume j = 0. Recall that by
Definition 5.3, since (Dk, ψk): X̃k �−→ X̃k+1, for all k ∈ Z, it follows that for any
k there exists a compact set Kk ⊆ Xk such that ψk is continuous on Kk and for
every path γ with γ ⊆ Xk and γ ∩Xk

� �= ∅, γ ∩Xk
r �= ∅, there is a sub-path σ of

γ such that σ ⊆ Kk and ψ(σ) ⊆ Xk+1, with ψ(σ)∩Xk+1
� �= ∅, ψ(σ)∩Xk+1

r �= ∅.
Let us define the closed set

S := {z ∈ K0 : ψj ◦ . . . ◦ ψ0(z) ∈ Kj+1, for all j ≥ 0}
and fix a path γ0 such that γ0 ⊆ X0 and γ0 ∩X0

� �= ∅, γ0 ∩X0
r �= ∅. Then, since

(D0, ψ0): X̃0 �−→ X̃1, there exists a sub-path γ1 of γ0 with γ1 ⊆ K0 ⊆ X0 such
that ψ0(γ1) ⊆ X1 and ψ0(γ1) ∩X1

� �= ∅, ψ0(γ1) ∩X1
r �= ∅. Similarly, there exists

a sub-path σ2 of σ1 := ψ0(γ1) with σ2 ⊆ K1 ⊆ D1 and such that ψ1(σ2) ⊆ X2,
ψ1(σ2) ∩X2

� �= ∅, ψ1(σ2) ∩X2
r �= ∅. Defining

Γ2 := {x ∈ γ1 : ψ0(x) ∈ σ2} ⊆ {z ∈ K0 : ψ0(z) ∈ K1}
and proceeding by induction, we can find a decreasing sequence of nonempty
compact sets Γ0 := γ0 ⊇ Γ1 := γ1 ⊇ Γ2 ⊇ . . . ⊇ Γn ⊇ Γn+1 ⊇ . . . such that
ψj ◦ . . . ◦ ψ0(Γj+1) ⊆ Xj+1, ψj ◦ . . . ◦ ψ0(Γj+1) ∩Xj+1

� �= ∅, ψj ◦ . . . ◦ ψ0(Γj+1) ∩
Xj+1
r �= ∅, for j ≥ 0. Moreover, for every i ≥ 1, we have that

Γi+1 ⊆ {z ∈ K0 : ψj−1 ◦ . . . ◦ ψ0(z) ∈ Kj , for all j, 1 ≤ j ≤ i}.
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It is easy to see that
⋂∞
j=0 Γj �= ∅ and for any z ∈ ⋂∞

j=0 Γj it holds that ψn ◦
. . . ◦ ψ0(z) ∈ Kn+1, for all n ∈ N. In this way we have shown that any path γ0,
with γ0 joining the two sides of X−

0 , intersects S, i.e. S cuts the arcs between
X0
� and X0

r in X0. Obviously any point belonging to the intersection of γ0 with
S generates a sequence with the properties required in (a2). The existence of
the connected compact set C0 ⊆ D0 as in (a2) follows from Theorem 4.7, setting
n = 1 and i1 = 0.

Conclusion (a1) follows now from (a2) by a standard diagonal argument
already employed in previous works (see, e.g. [18, Proposition 5], [35, Theo-
rem 2.2]). �

Remark 5.7. An apparently more general version of Theorem 5.6 can be
obtained by assuming the Xk’s to be contained in possibly different metric
spaces Zk’s.

If, at any step k ∈ Z, we have the further information that (Dk,Kk, ψk): X̃k

�−→ X̃k+1, then, in each of the corresponding conclusions (a1)–(a3) we can be
more precise and add that wk ∈ Kk, yk ∈ Kk, or zk ∈ Kk, respectively.

We end this paper with a few consequences of Theorem 5.6.
Our applications deal with discrete dynamical systems exhibiting a chaotic

behavior. Due to the many different definitions of chaos available in the litera-
ture, we state in a precise manner the one we use. The same concept of chaos
has been already considered in [35]–[38] as well as in previous works by other
authors (see, for instance, [53]).

Definition 5.8. Let Z be a metric space, ψ:Z ⊇ Dψ → Z be a map and
let D ⊆ Dψ. Assume also that m ≥ 2 is an integer. We say that ψ induces
chaotic dynamics on m symbols in the set D if there exist m nonempty pairwise
disjoint compact sets K0, . . . ,Km−1 ⊆ D, such that, for each two-sided sequence
(si)i∈Z ∈ {0, . . . ,m − 1}Z, there exists a corresponding sequence (wi)i∈Z ∈ DZ

such that

(5.4) wi ∈ Ksi and wi+1 = ψ(wi), for all i ∈ Z

and, whenever (si)i∈Z is a k-periodic sequence (that is, si+k = si for all i ∈ Z)
for some k ≥ 1, there exists a k-periodic sequence (wi)i∈Z ∈ DZ satisfying (5.4).
When we want to stress the role of the Kj ’s, we also say that ψ induces chaotic
dynamics on m symbols in the set D relatively to (K0, . . . ,Km−1).

Remark 5.9. We recall that the property expressed in (5.4) corresponds (in
the case of two symbols) to the definition of chaos in the sense of coin-tossing
considered by Kirchgraber and Stoffer in [21]. The same kind of chaotic behavior
is also obtained by Kennedy, Koçak and Yorke in [18, Proposition 5]. As a further
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addition with respect to [18] and [21], our definition takes account also of the
presence of periodic itineraries generated by periodic points.

Theorem 5.10. Assume there is an oriented N -dimensional rectangle X̃ =
(X,X−) of a metric space Z and a map ψ:Z ⊇ Dψ → Z. Let D ⊆ X ∩ Dψ

and suppose there exist m ≥ 2 nonempty and pairwise disjoint compact sets
K0, . . . ,Km−1 ⊆ D such that (D,Ki, ψ): X̃ �−→ X̃, for i = 0, . . . ,m − 1. Then
the following conclusions hold:

(b1) The map ψ induces chaotic dynamics on m symbols in the set D rela-
tively to (K0, . . . ,Km−1).

(b2) For each sequence of m symbols s = (sn)n ∈ {0, . . . ,m − 1}N, there
exists a compact connected set Cs ⊆ Ks0 which cuts the arcs between X�

and Xr in X and such that, for every w ∈ Cs, there is a sequence (yn)n
with y0 = w and

yn ∈ Ksn , ψ(yn) = yn+1, for all n ≥ 0.

The dimension of Cs at each point is at least N−1. Moreover, dim(Cs∩
ϑX) ≥ N − 2 and π:h−1(Cs)∩ ∂IN → RN−1 \ {0} is essential (where π
is defined as in (4.1) for pi = 1/2, for all i).

Proof. The result easy follows by applying Theorem 5.6 with the positions
Xk = X and ψk = ψ, for all k ∈ Z, and noting that, in view of Remark 5.7,
conclusion (b2) is just a restatement of conclusion (a2) in Theorem 5.6, while
conclusion (b1) comes from conclusions (a1) and (a3) in Theorem 5.6 and by
Definition 5.8. �

Several definitions of chaotic dynamics relate the behavior of the iterates of
the map ψ to a particular operator (the Bernoulli shift) acting on the set of
sequences of m symbols. Our Definition 5.8 and the corresponding conclusion
(b1) achieved in Theorem 5.10 allow us to derive some facts in such a direction
as well. To this aim, we first recall some basic notions, following [48].

Let m ≥ 2 be a positive integer. We denote by Σm = {0, . . . ,m − 1}Z the
set of the two-sided sequences of m symbols. The set Σm can be endowed with
a standard distance

(5.5) d(s′, s′′) :=
∑
i∈Z

|s′i − s′′i |
m|i|+1

, where s′ = (s′i)i∈Z, s′′ = (s′′i )i∈Z ∈ Σm,

so that (Σm, d) is a compact metric space. The Bernoulli shift σ is the homeo-
morphism on Σm defined by

(5.6) σ((si)i) := (si+1)i
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and it represents one of the paradigms for chaotic dynamical systems in a (com-
pact) metric space. In particular (as shown in [46, Theorem 7.12]), σ has positive
topological entropy, expressed by

htop(σ) = log(m)

(see [46] for the pertinent definitions and more details).
Let Λ be a compact metric space and let ψ: Λ → Λ be a continuous map. We

say that ψ is semiconjugate to the two-sided m-shift if there exists a continuous
surjective mapping g: Λ → Σm such that

(5.7) g ◦ ψ = σ ◦ g.
In a similar manner, if we denote by Σ+

m = {0, . . . ,m− 1}N the set of the one-
sided sequences of m symbols, endowed with a distance analogous to the one
defined in (5.5), we say that ψ is semiconjugate to the one-sided m-shift if there
exists a continuous surjective mapping g: Λ → Σ+

m such that (5.7) holds.
The following result (which is substantially a standard fact) connects the

concept of semiconjugation with the Bernoulli shift to the one of chaotic dynam-
ics expressed in Definition 5.8. Its proof could be easily adapted from similar
arguments previously appeared in the literature (see, for instance [18], [20] for
semidynamical systems induced by continuous maps of metric spaces), but, for
sake of completeness, we provide here all the details.

Lemma 5.11. Let Z be a metric space, ψ:Z ⊇ Dψ → Z be a map which is
continuous on a set D ⊆ Dψ and induces therein chaotic dynamics on m ≥ 2
symbols (relatively to (K0, . . . ,Km−1)). Then, there exists a nonempty compact
set

Λ ⊆
m−1⋃
j=0

Kj ,

which is invariant for ψ and such that ψ|Λ is semiconjugate to the two-sided
m-shift, so that the topological entropy htop(ψ) satisfies

htop(ψ) ≥ log(m).

Moreover, the subset P of Λ made by the periodic points of ψ is dense in Λ and
if we denote by g: Λ → Σm the continuous surjection in (5.7), it holds also that
the counterimage through g of any k-periodic sequence in Σm contains at least
one k-periodic point.

Proof. Setting K :=
⋃m−1
j=0 Kj , we define

Λ0 := {w ∈ K : ψi(w) ∈ K, for all i ∈ N} =
∞⋂
i=0

ψ−i(K),

P := {x ∈ Λ0 : there exists k ≥ 1 with ψk(x) = x}.
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Since K is compact and ψ is continuous on K, it follows immediately that also
Λ0 is compact and that ψ(Λ0) ⊆ Λ0 (that is, Λ0 is invariant for ψ). Let us now
define g0: Λ0 → Σ+

m, as

g0(w) := (si)i∈N ⇔ ψi(w) ∈ Ksi , for all i ∈ N.

By Definition 5.8, the map g0 turns out to be surjective and the counterimage
through g0 of any k-periodic sequence in Σ+

m contains at least one k-periodic
point (belonging to P). The continuity of g0 comes from the continuity of ψ on
Λ0, the choice of the distance d in (5.5) and the fact that the sets Kj are compact
and pairwise disjoint. Actually, g0 turns out to be uniformly continuous as it is
defined on a compact metric space. A direct inspection shows that the relation
in (5.7) is satisfied and therefore the map g0 induces a semiconjugation between
ψ|Λ0 and the one-sided m-shift.

Let Σper
m ⊆ Σm be the set of the periodic two-sided sequences of m symbols.

Since every two-sided periodic sequence of m symbols determines a one-sided
periodic sequence of m symbols (and viceversa), we have that the map g0|P may
be considered as a function with values in Σper

m . In fact, for every w ∈ P , we
have

g0(w) = (si)i∈Z ∈ Σper
m ⇔ ψi(w) ∈ Ksi , for all i ∈ N.

Thus, we can define a uniformly continuous and surjective map g1:P → Σper
m by

setting, for each w ∈ P :

(5.8) g1(w) := (si)i∈Z ∈ Σper
m ⇔ ψi(w) ∈ Ksi , for all i ∈ Z.

Notice that
g1 ◦ ψ(w) = σ ◦ g1(w), for all w ∈ P ,

where σ is the two-sided Bernoulli shift on m symbols defined in (5.6).
Now, setting Λ := P ⊆ Λ0, it holds that ψ(Λ) ⊆ Λ, so that Λ is compact and

invariant for ψ. At last, we extend the uniformly continuous surjective mapping
g1:P → Σper

m ⊆ Σm to a continuous surjective function g: Λ → Σm such that

g ◦ ψ(x) = σ ◦ g(x), for all x ∈ Λ.

From the above proved semiconjugacy condition and by [46, Theorem 7.2] it
follows that

htop(ψ) ≥ htop(σ) = log(m).

Hence we see that all the properties listed in the statement of the lemma are
satisfied. The proof is complete. �

Clearly, in view of the above lemma, conclusion (b1) in Theorem 5.10 can be
reformulated in terms of a semiconjugation between ψ and a Bernoulli shift.

The next consequence of Theorem 5.6 deals with a situation which occurs in
some ODE models (see, e.g. [6], [33], [35]) where there are generalized rectangles
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linked each other by a stretching map. We confine ourselves to the simpler case in
which only two objects are involved. More general examples could be considered
as well.

Corollary 5.12. Let Ã0 and Ã1 be oriented N -dimensional rectangles of
a metric space Z, with A0 ∩A1 = ∅, and let ψ:Z ⊇ Dψ → Z be a map. Assume
there exist compact sets Ki,j for i, j ∈ {0, 1}, with Ki,j ⊆ Ai ∩ Dψ, for all
i, j = 0, 1, such that (Ki,j , ψ): Ãi �−→ Ãj, for all i, j = 0, 1. Then the following
conclusions hold:

(c1) For any two-sided sequence of two symbols s = (sk)k∈Z ∈ {0, 1}Z, there
exists a sequence (wk)k∈Z such that wk ∈ Ksk,sk+1 ⊆ Ask

and ψ(wk) =
wk+1, for all k ∈ Z.

(c2) For any one-sided sequence of two symbols s = (sn)n∈N ∈ {0, 1}N, there
exists a compact connected set Cs ⊆ Ks0,s1 ⊆ As0 which cuts the arcs
between As0

� and As0
r in As0 and such that, for every w ∈ Cs, there is

a sequence (yn)n with y0 = w and

yn ∈ Ksn,sn+1 , ψ(yn) = yn+1, for all n ≥ 0.

The dimension of Cs at each point is at least N−1. Moreover, dim(Cs∩
ϑAs0 ) ≥ N − 2 and π:h−1(Cs) ∩ ∂IN → RN−1 \ {0} is essential (where
π is defined as in (4.1) for pi = 1/2, for all i).

(c3) For any two-sided sequence of two symbols s = (sk)k∈Z ∈ {0, 1}Z which
is m-periodic (m ≥ 1), there exists a m-periodic sequence (wk)k∈Z such
that wk ∈ Ksk,sk+1 ⊆ Ask

and ψ(wk) = wk+1, for all k ∈ Z .

Proof. Recalling Remark 5.7, the result easy follows by applying Theo-
rem 5.6 with the position ψk = ψ, for all k ∈ Z, and setting Xk = A0 or
Xk = A1, according to the value of sk in the considered sequence of two sym-
bols. �

At last we present a result which applies Theorem 5.10 to a framework which
fits for possible applications to the detection of chaos via computer assisted
proofs (2). In view of it we preface the following definition adapted from [36]–[38].

Definition 5.13. Let M̃ and Ñ be two oriented N -dimensional rectangles
of the same metric space Z. We say that M̃ is a vertical slab of Ñ and write

M̃ ⊆v Ñ
if M ⊆ N and,

either M� ⊆ N� and Mr ⊆ Nr, or M� ⊆ Nr and Mr ⊆ N�,

(2) Indeed, it is not difficult to take advantage of the computations already performed
in articles like [15], [50]–[52] (regarding topological horseshoes in the sense of Kennedy and
Yorke) and add to their conclusions also the existence of infinitely many periodic solutions.
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so that any path in M joining the two sides of M− is also a path in N and joins
the two opposite sides of N−.

We say that M̃ is a horizontal slab of Ñ and write

M̃ ⊆h Ñ

if M ⊆ N and every path in N joining the two sides of N− admits a sub-path
in M that joins the two opposite sides of M−.

Given three orientedN -dimensional rectangles Ã, B̃ and Ẽ of the same metric
space Z, with E ⊆ A ∩ B, we say that B̃ crosses Ã in Ẽ and write

Ẽ ∈ {Ã � B̃}, if Ẽ ⊆ v Ã and Ẽ ⊆h B̃.

The above definitions, which imitate the classical terminology in [48, Chap-
ter 2.3], are topological in nature and therefore do not necessitate any metric
assumption (like smoothness, lipschitzeanity, or similar ones often required in
the literature). We also notice that the terms “vertical” and “horizontal” are
employed in a purely conventional manner; the vertical is the expansive direction
and the horizontal is the contractive one (in a quite broad sense).

Our next and final result (Theorem 5.14) depicts a situation when the domain
and the codomain of the mapping ψ are two intersecting oriented N -dimensional
rectangles. A graphical illustration of it can be found in Figure 3, which is
inspired by the Smale solenoid.

Theorem 5.14. Let Ã and B̃ be oriented N -dimensional rectangles of a met-
ric space Z and let D ⊆ A∩Dψ be a closed set such that (D, ψ): Ã �−→ B̃. Assume
there exist m ≥ 1 oriented N -dimensional rectangles Ẽ0, . . . , Ẽm−1 ∈ {Ã � B̃}.
Then, ψ has at least a fixed point in each of the sets D ∩ Ei (i = 0, . . . ,m− 1).
Moreover, if m ≥ 2 and D ∩ Ei ∩ Ej = ∅, for i �= j (for all i, j), the following
conclusions hold:

(d1) The map ψ induces chaotic dynamics on m symbols in the set D rela-
tively to (D ∩ E0, . . . ,D ∩ Em−1).

(d2) For each sequence of m symbols s = (sn)n ∈ {0, . . . ,m − 1}N, there
exists a compact connected set Cs ⊆ D∩Es0 which cuts the arcs between
Es0� and Es0r in Es0 and such that, for every w ∈ Cs, there is a sequence
(yn)n with y0 = w and

yn ∈ Esn , ψ(yn) = yn+1, for all n ≥ 0.

The dimension of Cs at each point is at least N−1. Moreover, dim(Cs∩
ϑA) ≥ N − 2 and π:h−1(Cs) ∩ ∂IN → RN−1 \ {0} is essential (where π
is defined as in (4.1) for pi = 1/2, for all i).
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Figure 3. The ellipsoidal body A is stretched by a continuous mapping
ψ to a subset of the spiral-like set B. Both A and B are 3-dimensional
generalized rectangles that we orientate as follows: the compact sets A� and
Ar are the closure of the two components of ϑA = ∂A which are obtained
after removing the darker part of the “lateral” surface; the compact sets B�

and Br are the two discs at the ends of the spiral body B (the order in which
we label the two parts of A− and B− can be chosen arbitrarily). According

to Remark 5.4, the stretching condition ψ: �A �−→ �B is fulfilled if we assume
that ψ(A) ⊆ B and that ψ(A�) ⊆ B�, as well as ψ(Ar) ⊆ Br. Note that
we do not require ψ to be a homeomorphism, nor ψ(A) = B. It is not even
necessary that the end sets B� and Br of B lie outside A. Among the five
intersections between A and B, only two (namely, the ones visible as a full
crossing of the spiral-like set across the ellipsoidal body, that we call E0

and E1) correspond to a crossing in the sense of Definition 5.13. Therefore,
Theorem 5.14 ensures the existence of at least a fixed point for ψ both in
E0 and E1 and, moreover, ψ induces chaotic dynamics on two symbols in A
(relatively to E0 and E1). Even if the drawn figures look smooth, there is
no need of any regularity assumption neither for the sets (except of being
homeomorphic to a cube) nor for their intersections.

Proof. First of all we show that

(5.9) (D ∩ Ei, ψ): B̃ �−→ B̃, for all i = 0, . . . ,m− 1.

Indeed, let γ be a path with γ ⊆ B and γ ∩ B� �= ∅, γ ∩ Br �= ∅. Then, since
Ẽi ⊆h B̃, for all i = 0, . . . ,m− 1, there exists a sub-path σ(= σi) of γ such that
σ ⊆ Ei and σ ∩ E i� �= ∅, σ ∩ E ir �= ∅.

Recalling now that Ẽi ⊆v Ã, for all i = 0, . . . ,m−1, it holds that σ ⊆ Ei ⊆ A
and σ ∩ A� �= ∅, σ ∩ Ar �= ∅.

Finally, since (D, ψ): Ã �−→ B̃, there is a sub-path η(= ηi) of σ such that
η ⊆ D ∩ Ei, ψ(η) ⊆ B, with ψ(η) ∩ B� �= ∅, ψ(η) ∩ Br �= ∅. In this way we have
proved that any path γ with γ ⊆ B and γ∩B� �= ∅, γ∩Br �= ∅ admits a sub-path
η such that η ⊆ D ∩ Ei and ψ(η) ⊆ B with ψ(η) ∩ B� �= ∅, ψ(η) ∩ Br �= ∅.
Therefore the condition in (5.9) has been checked and the existence of at least
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a fixed point for ψ in D ∩ E i, (for all i = 0, . . . ,m− 1) follows by Theorem 5.5.
To prove the remaining part of the statement, we apply Theorem 5.10 with the
positions X = B and Ki = D ∩ E i,, for i = 0, . . . ,m− 1. �

To conclude, we stress the fact that the definition of oriented N -dimensional
rectangle can be slightly modified in order to take into account suitable pertur-
bations of the domain and of the map. A similar setting has been analyzed, for
instance, in [5], [19], [49] and [54]. A development of these topics (which have
a relevant interest from the point of view of the applications) will be studied in
a subsequent work, using our approach.
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