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Abstract. We describe a very general procedure how one may extend

an arbitrary degree or index theory (originally defined only for compact
maps) also for large classes of noncompact maps. We also show how one

may obtain degree or index theories relative to some set. Our results even

apply to the general setting when one has a combined degree and index
theory for function triples. The results are applied to countably condensing

perturbations of monotone maps.

1. Introduction

The classical degree theory for fixed points of compact maps q:Y → Y in
a Banach space Y was generalized in many respects:

(a) It was generalized to coincidence degrees for pairs of maps F, q:X → Y
e.g. by the theory of 0-epi maps F [20], [31], the Mawhin (Nirenberg)
degree for Fredholm maps F of zero (nonnegative) index [25], [40], [49]
(resp. [26], [43], [44]) or the Skrypnik degree for uniformly monotone
maps F [53].
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(b) It was generalized to index theories for fixed points of multivalued maps
of the form Φ = q ◦ p−1 where p, q: Γ → Y and the fibres p−1(y) are
acyclic or Rδ-sets [17], [36], [38], [52]. Practically all known fixed point
theories for multivalued maps [8], [10] fall into this category [3], [28], [37].

(c) Many of the above index theories were generalized to relative index
theories where Y is replaced by a closed convex subset of a Banach
space or, more general, a manifold or even an ANR.

(d) The degree was generalized to the case when q is not compact but only
condensing with respect to a measure of noncompactness [45], [46], [47],
[51] (see also [1], [15]) or, more general, if q possesses a fundamental set
[35], [62] on which it is compact. These approaches were also generalized
to (multivalued) index theories [9], [18], [19], [33], [48], [50], [57], [58],
[61], [63].

At a first glance, the difference between coincidence and index theories is only
on the method of approach and on somewhat different requirements for F , resp.
p. However, the difference is actually much deeper because, roughly speaking,
for degree theories the crucial assumptions have to be formulated on the space
X while for index theories the assumptions have to be formulated on the image
space Y while the space Γ plays practically no role (see the discussion in [60]).
It appears now that the right setting to treat all the above theories in a unified
manner is by considering function triples

Y
F←− X p←− Γ q−→ Y

and to look for solutions of the inclusion F (x) ∈ q(p−1(x)), having in mind
that the hypotheses on the theory should be formulated on the space X. The
latter means that it is neither the right approach to consider the problem as
a coincidence point problem for the pair (F ◦ p, q) nor as a fixed point problem
of the multivalued map q ◦ p−1 ◦ F−1. (Although, formally, each solution of one
of these problems provides a solution of the above inclusion and vice versa, but
the number of solutions may differ!).
More precisely, we want to assume that there is a degree theory for such func-

tion triples which, roughly speaking, in the case p = id reduces to a coincidence
degree for the pair (F, q) and in the case F = id reduces to a fixed point index
for q ◦ p−1. We will give a formal definition of requirements on such a theory in
Section 2. In [23], [24], [37] such a triple-degree (satisfying these requirements)
was defined for Fredholm maps F of nonnegative index (and generalized also
for noncompact maps). In [56] a general approach was discussed how any co-
incidence degree can be extended to such a triple-degree in a finite-dimensional
setting. In the forthcoming paper [55], we will discuss how to extend this degree
to an infinite-dimensional setting under some compactness hypothesis.
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The purpose of this paper is to show how such a triple-degree for compact
function triples can be extended to a relative degree theory and, moreover, also
to noncompact function triples (using fundamental sets or measures of noncom-
pactness).

Nevertheless, we want to point out that to our knowledge the results are even
new when one is only interested in a classical coincidence degree (i.e. for p = id)
when F is not the identity. It appears that only in this general framework
the approach by fundamental sets can be really understood: Many technical
requirements of e.g. [5] take a rather natural form in this setting. For example,
in the “classical” case of index theories, a fundamental set K ⊆ Y has to satisfy
somewhat strange properties with respect to Ω ∩ K where Ω ⊆ Y is open. In
our general setting it is now clear that one has actually to consider open sets
Ω ⊆ X and that the mentioned properties are actually properties of the function
F : Ω→ Y (which in case of index theories is the inclusion).
There is a further novelty in this paper: In [5], [57], [58], we have taken the

attitude that one has to know a relative index theory before one can seriously
discuss the extension to noncompact maps. At a first glance, this is a very
natural requirement, because one can then use the index on a fundamental setK.
However, if one works in general ANRs and thus wants to treat also the case
of general (nonconvex) sets K, we have seen in [5] that one has to assume that
the index is actually defined on a larger family of sets. Therefore, it appears
now more natural to treat the two extensions (to the relative case and to the
noncompact case) simultaneously. Unfortunately, this makes the current paper
somewhat technical and lengthy, but this approach seems necessary if one does
not want to introduce superfluous and unnatural hypotheses.

Note that, wherever possible, we treat also the case of nonconvex domains.
In the presentation, we follow essentially [5], although there are some severe
technical differences and although we do not start from the relative case.

The plan of the paper is as follows. In Section 2, we introduce axiomatically
what we assume on the given degree theory. In Sections 3 and 4 we define (also in
an axiomatic way) what we understand by fundamental sets and how the degree
theory is extended. In Section 5 we show how one can actually verify that a set
is fundamental. In the remaining sections, we discuss how one can find such a
set and consider essentially the case that Y is a closed convex subset of a locally
convex space. In particular, we obtain that our extension of the degree applies
to countably condensing (noncompact) function triples.

We point out once more that the results are new even in the special case
p = id. In the last section, we apply this special case to obtain a continua-
tion principle for noncompact perturbations of monotone maps which is to our
knowledge the first result of this kind.
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2. General assumptions

Throughout this paper, let X and Y be fixed topological spaces. Let O be
a fixed family of open subsets of X, and G0 be a fixed class of topological spaces.
Let F be a fixed class of triples (F, p,Ω) where Ω ∈ O, F : Ω→ Y (not necessarily
continuous), and p: Γ → X is continuous with Γ ∈ G0. If additionally q: Γ → Y
then we write (F, p, q,Ω) ∈ T .
Given some (F, p, q,Ω) ∈ T , we are interested in the coincidence point set

CoinM (F, p, q) :={x ∈M | F (x) ∈ q(p−1(x))}
={x ∈M | ∃z : x = p(z), F (p(z)) = q(z)}

where M ⊆ Ω. If q is a continuous and compact map (by the latter we mean
in this paper that the range is contained in a compact subset of Y ), then it is
for a large class of maps F and p possible to provide a degree theory for such
function triples (F, p, q).

Such a degree theory is the natural topologic tool if one wants to treat in-
clusions of the type F (x) ∈ Φ(x) when F :X → Y acts e.g. between different
Banach spaces and Φ:X ( Y is compact. Roughly speaking, whenever there
exists some degree theory for F and p is a so-called Vietoris map with Rδ-fibres
then such a degree theory for function triples exists [55], [56]. We want to show
in this paper how any such degree theory can be extended to the noncompact
case (i.e. to the case when Φ, resp. q, is not necessarily compact).

Let us first make precise what we mean by a degree theory for function triples.
We assume for simplicity throughout that for each Γ ∈ G0 also all closed subsets
of Γ are contained in G0. By T0, we denote the class of all (F, p, q,Ω) ∈ T where
the restriction q|p−1(Ω) is continuous and compact with

Coin∂Ω(F, p, q) = ∅.

We will assume that we have given a degree for elements of T0 which assumes
values in a fixed semigroup G (additively written).

Note that if (F, p, q,Ω) ∈ T0 then also (F, p|p−1(Ω), q|p−1(Ω),Ω) ∈ T0 (by our
assumption on G0) and the first of the following properties of the degree implies
that the corresponding degree coincides. In this sense, the degree depends only
on the restrictions of p and q to p−1(Ω). However, although one might be tempted
to think so, the degree in general depends not only on the multivalued map q◦p−1

on Ω but also on the actual decomposition (p, q) of this map.

Definition 2.1. We say that Deg is a compact triple-degree for F if it
associates to each (F, p, q,Ω) ∈ T0 an element of G such that the following
holds:
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(a) (Independence from Γ) If (F, pi, qi,Ω) ∈ T (i = 0, 1) are such that there
is a surjective homeomorphism J : p−10 (Ω) → p

−1
1 (Ω) with p0|p−10 (Ω) =

p1 ◦ J and q0|p−10 (Ω) = q1 ◦ J then either none or both of (F, pi, qi,Ω)
(i = 0, 1) belongs to T0, and in this case

Deg(F, p0, q0,Ω) = Deg(F, p1, q1,Ω).

(b) (Existence) Deg(F, p, q,Ω) 6= 0 implies CoinΩ(F, p, q) 6= ∅.
(c) (Homotopy Invariance in the Third Argument) If (F, p,Ω) ∈ F and
h: [0, 1]× Γ → Y is continuous and compact with (F, p, h(t, · ),Ω) ∈ T0
for each t ∈ [0, 1], then

Deg(F, p, h(t, · ),Ω) is independent of t ∈ [0, 1].

Tacitly writing F also for restrictions of F , we can formulate the following prop-
erties which Deg may or may not possess.

(d) (Excision) If (F, p, q,Ω) ∈ T0 and Ω0 ∈ O is contained in Ω with
CoinΩ(F, p, q) ⊆ Ω0, then we have that (F, p, q,Ω0) ∈ T0 and

Deg(F, p, q,Ω0) = Deg(F, p, q,Ω).

(e) (Restriction) Under the same assumptions as above we have (F, p, q,Ω0)
in T0 and

Deg(F, p, q,Ω) 6= 0 ⇒ Deg(F, p, q,Ω0) = Deg(F, p, q,Ω).

(f) (Additivity) If (F, p, q,Ω) ∈ T0 and Ω1,Ω2 ∈ O are disjoint with Ω =
Ω1 ∪ Ω2, then (F, p, q,Ωi) ∈ T0 and

Deg(F, p, q,Ω) = Deg(F, p, q,Ω1) + Deg(F, p, q,Ω2).

In [56], a class of examples of compact triple-degree theories was discussed
where it was also observed that triple-degrees which are defined in a purely
homotopic manner usually fail to satisfy the excision property but satisfy the
weaker restriction property (this is why we consider both properties separately).
For other examples of triple-degrees see [23], [24], [37].
In applications, one needs an extended notion of “homotopy”. To define this,

we consider a further class G1 of topological spaces, assuming once more that for
each Γ ∈ G1 all closed subspaces of Γ are contained in G1.
Let H be a class of triples (H,P,Ω) where Ω ∈ O, H: [0, 1] × Ω → Y and

P : Γ → [0, 1] × X with Γ ∈ G1. In this case, we define Pt:P |P−1({t}×X) → X
(0 ≤ t ≤ 1) by the relation

P (z) = (t, Pt(z)) (z ∈ P−1({t} ×X), t ∈ [0, 1]).

We assume that (H(t, · ), Pt,Ω) ∈ F for each (H,P,Ω) ∈ H and each t ∈ [0, 1].
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By H′, we denote the class of all (H,P,Q,Ω) where (H,P,Ω) ∈ H and (with
the above notation) Q: Γ → Y . In this case, we define Qt (0 ≤ t ≤ 1) as the
restriction of Q to P−1({t} ×X), and for M ⊆ X we use the notation

CoinM (H,P,Q) :=
⋃
t∈[0,1]

CoinM (H(t, · ), Pt, Qt).

By H0, we denote the class of all (H,P,Q,Ω) ∈ H′ where the restriction of Q to
P−1([0, 1]× Ω) is continuous and compact, and

Coin∂Ω(H,P,Q) = ∅.

Definition 2.2. We say that the degree Deg is H-invariant if it has the
following property:

(g) (Homotopy Invariance) If (H,P,Q,Ω) ∈ H0 then

Deg(H(t, · ), Pt, Qt,Ω) is independent of t ∈ [0, 1].

Remark 2.3. If [0, 1]×Γ ∈ G1 for each Γ ∈ G0, then the homotopy invariance
of Deg with respect to the third argument can, in view of the independence of
Γ, be equivalently formulated as follows: Deg is H(F)-invariant where H(F)
denotes the class of all (H,P,Ω) for which there is some (F, p,Ω) ∈ F with
p: Γ → X such that H(t, · ) = F (0 ≤ t ≤ 1) and P : [0, 1] × Γ → [0, 1] × X is
given by P (t, z) = (t, p(z)).

3. Definition of the degree — global case

Roughly speaking, the idea of the definition of the degree for noncompact
function triples is to assume that there is a fundamental set on which the triple
is compact and such that the fundamental set has the property that “everything
which is relevant for the degree” happens on this set.
To define fundamental sets, we proceed the axiomatic way by assuming that

Deg has certain required properties on this set. However, in most cases, these
properties are hard to verify and they may depend on rather particular proper-
ties of the degree under consideration. Therefore, we will in Section 5 describe
a “homotopic” condition which can be used to verify that a set is fundamental
for each degree Deg for F .
We use the notation of the previous section. We point out that in this section

we do not require the excision property of Deg: If Deg has the excision property,
then many properties that we require now globally need only be satisfied locally.
In particular, the notion of fundamental sets and the corresponding homotopic
condition can be relaxed in a way which is much more convenient for many
applications. However, this local approach will be postponed to Section 4.
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Definition 3.1. We put G := G0∪G1. By AE0c(G, Y ) (resp. ANE
0
c(G, Y )) we

denote the family of all K ⊆ Y with the following property: If Γ ∈ G, A ⊆ Γ is
closed and f :A→ Y is continuous and compact with a continuous extension to
Γ (resp. to a neighbourhood of A) and f(A) ⊆ K, then f possesses a continuous
compact extension to Γ (resp. to a neighbourhood of A) and which assumes only
values in K.
By AEc(G, Y ) (resp. ANEc(G, Y )) we denote the family of all K ⊆ Y which

satisfy the above property even without the assumption that f has a continuous
extension.

Note that we assume only that the range of the map is contained in a compact
subset of Y (not necessarily in a compact subset of K). However, in most
applications K ⊆ Y will be closed and then this distinction is not important.

Proposition 3.2. Let Z be a locally convex Hausdorff space, and let G
contain only metric spaces.

(a) Let Y ⊆ Z have the property that the closed convex hull of each compact
subset of Y is compact. If K ⊆ Y is a (neighbourhood) retract of Z
(and K is closed in Z) then K ∈ AEc(G, Y ) (resp. K ∈ ANEc(G, Y )).

(b) If K ⊆ Z is convex and has with respect to Z an interior point and
a metrizable closure K, then K ∈ AEc(G, Y ) ⊆ ANEc(G, Y ) whenever
K ⊆ Y ⊆ Z.

Proof. Given some Γ ∈ G, some closed A ⊆ Γ and some continuous compact
map f :A→ Y with f(A) ⊆ K, we find for the first claim a convex compact set
C ⊆ Z with f(A) ⊆ C. By Dugundji’s extension theorem [16], we can extend f
to a continuous map f : Γ → C. By hypothesis, there is a retraction ρ:Z0 → K
where Z0 := Z (resp. Z0 ⊆ Z is an open neighbourhood of K). Let Z1 := Z
(resp. Z1 ⊆ Z an open neighbourhood of C ∩K with Z1 ⊆ Z0; this is possible
since Z is regular and C ∩ K is compact). Then Γ0 := Γ resp. Γ0 := f−1(Z1)
is an open neighbourhood of A, and ρ ◦ f : Γ1 → K is a continuous extension of
f |A and has its range in the compact set ρ(C ∩ Z1).
For the second claim, we note that by [34, Theorem 4.5] each continuous

compact map f :A→ Y with closed A ⊆ Γ ∈ G and f(A) ⊆ K has an extension
to a continuous map f : Γ→ K such that f(Γ) is contained in a compact subset
C ⊆ Z. In particular, f(Γ) is contained in the compact set C ∩K ⊆ Y . �

We point out that due to the application of Dugundji’s extension theorem,
the proof of Proposition 3.2 makes essential use of the axiom of choice. However,
the (countable) axiom of dependent choices suffices if all metric spaces in G are
separable, see [34, Remarks 3.4 and 4.6].
Note that for a Banach space Z each subset Y ⊆ Z automatically has the

property required in the first part of Proposition 3.2 in view of Mazur’s lemma.
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However, if Z is incomplete, this assumption might be a severe restriction for Y .
Therefore, we consider further tests for the properties of Definition 3.1.
Recall that a metrizable space K is called an AR (resp. ANR) if K is home-

omorphic to a (neighbourhood) retract of a convex subset of a locally convex
space. See [11] or [30] for the general theory of ARs and ANRs.

Proposition 3.3. Let K be an AR, resp. ANR.

(a) If K ⊆ Y is closed and G contains only T4 (e.g. normal) spaces then
K ∈ AEc(G, Y ), resp. K ∈ ANEc(G, Y ).

(b) If K ⊆ Y is closed and Y is a T4 space then K ∈ AE0c(G, Y ), resp.
K ∈ ANE0c(G, Y ).

(c) If K is contained in a compact subset of Y and if G contains only metric
spaces, then K ∈ AEc(G, Y ), resp. K ∈ ANEc(G, Y ). This holds even
if K is not metrizable.

Proof. Concerning (a), note that if K ⊆ Y is closed and f :A → K is
continuous and such that f(A) ⊆ K is contained in a compact subset C ⊆ Y ,
then C0 := C ∩K is compact and satisfies f(A) ⊆ C0 ⊆ K. Hence, we obtain
no weaker statement if we replace Y by K. However, if Y = K, the claim is
a special case of [34, Theorem 4.7].
To see (b), let Γ ∈ G and A ⊆ Γ be closed, and let F : Γ0 → Y be a continuous

extension of a map f :A→ K where Γ0 := Γ (resp. Γ0 ⊆ Γ is a neighbourhood of
A) such that f(A) is contained in a compact subset C ⊆ Y . Then C0 := C∩K is
compact and satisfies f(A) ⊆ C0 ⊆ K. Since (a) impliesK ∈ AEc({Y },K) (resp.
K ∈ ANEc({Y },K)), we can extend the identity map of C0 ⊆ K to a continuous
map J :U → K where U := Y (resp. U ⊆ Y0 is a neighbourhood of C0) and such
that J(U) is contained in a compact subset of K. Then Γ1 := F−1(U) satisfies
Γ1 = Γ (resp. Γ1 ⊆ Γ is a neighbourhood of A), and J ◦ F |Γ1 : Γ1 → K is
a continuous extension of f whose range is contained in a compact subset of
K ⊆ Y .
For claim (c), let Γ ∈ G and A ⊆ Γ closed, and let f :A→ K be continuous.

We find a convex subset Z of a locally metric space, a homoeomorphism h of K
onto a subset K0 ⊆ Z and a retraction ρ of V := Z (resp. of a neighbourhood
V ⊆ Z of K0) onto K0. By Dugundji’s extension theorem, the map h ◦ f has
a continuous extension H: Γ → Z. Then U := H−1(V ) is Γ (resp. a neighbour-
hood of A), and F := h−1 ◦ ρ ◦H|U :U → K is a continuous extension of f . �

For the proof of (c), we needed the axiom of choice if G contains also non-
separable metric spaces. It is remarkable that in all other cases the (countable)
axiom of dependent choices suffices.
For (F, p, q,Ω) ∈ T it will be convenient to use the notations

FixM (F, p, q) := F (CoinM (F, p, q)) (M ⊆ Ω)
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and for K ⊆ Y also

AM (F, p,K) := p−1(F−1(K) ∩M) (M ⊆ Ω).

Definition 3.4. Let Deg be a fixed compact triple-degree for F . We call
K ⊆ Y a retraction candidate for (F, p, q,Ω) ∈ T if the following holds.

(a) FixΩ(F, p, q) ⊆ K.
(b) We have

(3.1) CoinF−1(K)∩∂Ω(F, p, q) = ∅.

(c) The restriction of q to AΩ(F, p,K) is continuous and compact and as-
sumes its values in K.

(d) If q̃i: Γ→ K (i = 1, 2) are extensions of the restriction q|AΩ(F,p,K) such
that (F, p, q̃i,Ω) ∈ T0 then

(3.2) Deg(F, p, q̃1,Ω) = Deg(F, p, q̃2,Ω).

In the following, A will always stand for one of the families AEc(G, Y ),
AE0c(G, Y ), ANEc(G, Y ), or ANE

0
c(G, Y ) – the choice being made once and for

all. We fix also a subfamily A0 ⊆ A.

Definition 3.5. A retraction candidate K0 for (F, p, q,Ω) is pre-fundamen-
tal if either K0 = ∅ or K0 ∈ A0 and for any retraction candidate K1 ∈ A0
for (F, p, q,Ω) with K0 ∩ K1 6= ∅ at least one of the sets K2 := K0 ∩ K1 or
K2 := K0 ∪K1 belongs to A and has the following property:

• If q̃i: Γ→ Ki (i = 0, 2) is an extension of the restriction q|AΩ(F,p,Ki) and
(F, p, q̃i,Ω) ∈ T0, then

(3.3) Deg(F, p, q̃0,Ω) = Deg(F, p, q̃2,Ω).

Note that if we increase A0, we increase the class of those (F, p, q,Ω) which
possess a pre-fundamental set in A0. On the other hand, if we consider a fixed
pre-fundamental set K ∈ A0 it may happen that K is not pre-fundamental with
respect to a larger family A′0.
The above notions will be sufficient to provide an extension of Deg which

is homotopy invariant. However, to provide an extension which satisfies the
restriction, excision, or additivity properties, we need a further notion. If we use
this notion, we will always tacitly assume that F has the property that for each
(F, p,Ω) ∈ F and each Ω0 ∈ O with Ω0 ⊆ Ω also (F, p,Ω0) ∈ F .

Definition 3.6. A pre-fundamental set K for (F, p, q,Ω) is strictly funda-
mental if K is pre-fundamental for each (F, p, q,Ω0) where Ω0 ∈ O satisfies
Ω0 ⊆ Ω and CoinF−1(K)∩∂Ω0(F, p, q) = ∅.
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We call K (weakly) fundamental if K is pre-fundamental for each (F, p, q,Ω0)
where Ω0 ⊆ Ω is as above and CoinΩ(F, p, q) ⊆ Ω0 (resp. CoinΩ(F, p, q) ⊆ Ω0).

The reader who compares the above definitions with [5] (see also [4]) will
find that the definitions of “retraction candidate”, “pre-fundamental” and “fun-
damental” have some analogies but that the definition of “strictly fundamental”
sets is missing in [4], [5]. This is a mistake in [4], [5], because for “only” funda-
mental sets the proof of the additivity of the index in [4], [5] is false. We will
need strictly fundamental sets also only in the context of the additivity property.
It follows from the very definition of (strictly) fundamental sets:

Proposition 3.7. If K is (strictly) fundamental for (F, p, q,Ω) then K is
(strictly) fundamental for each (F, p, q,Ω0) where Ω0 ∈ O satisfies Ω0 ⊆ Ω,
CoinF−1(K)∩∂Ω0(F, p, q) = ∅, and CoinΩ(F, p, q) ⊆ Ω0 (the latter assumption can
be dropped if K is strictly fundamental).

Definition 3.8. By T1, resp. T ′1 , T ′′1 , we denote the class of all (F, p, q,Ω)
in T with the following properties:

(a) (F, p, q,Ω) has a pre-fundamental, resp. fundamental, strictly funda-
mental set.

(b) Either A ⊆ AEc(G, Y ) or assume the following: If a restriction of q
to a closed set is continuous, then this restriction has a continuous
extension (with values in Y ).

The latter condition is trivially satisfied if q is continuous. Clearly, T ′′1 ⊆
T ′1 ⊆ T1.
We also introduce a corresponding definition for homotopies. For (H,P,Ω) ∈

H and K ⊆ Y , we introduce the notation

AM (H,P,K) := P−1(H−1(K) ∩ ([0, 1]×M)) (M ⊆ Ω).

Definition 3.9. ByH1, resp.H′1, H′′1 , we denote the class of all (H,P,Q,Ω)
where (H,P,Ω) ∈ H and Q: Γ→ Y (where Γ denotes the domain of P ) are such
that the following holds:

(a) (H(t, · ), Pt, Qt,Ω) (0 ≤ t ≤ 1) has a pre-fundamental, resp. fundamen-
tal, strictly fundamental set K which is independent of t.

(b) The restriction of Q to AΩ(H,P,K) is continuous and compact and
assumes its values in K.

(c) Either A ⊆ AEc(G, Y ) or assume the following: If a restriction of Q
to a closed set is continuous, then this restriction has a continuous
extension (with values in Y ).

Now we can formulate the main result of this section.



Degree and Index Theories for Noncompact Function Triples 89

Theorem 3.10. Let F provide a compact H-invariant triple-degree Deg. Let
A0 ⊆ A ⊆ AE0c(G, Y ). Then there is a unique degree DEG which associates to
each (F, p, q,Ω) ∈ T1 an element of G such that the following holds:

(a) (Normalization) If Y ∈ A0 then each (F, p, q,Ω) ∈ T0 belongs to T ′′1 ⊆
T ′1 ⊆ T1, and

DEG(F, p, q,Ω) = Deg(F, p, q,Ω).

(b) (Weak Existence) If CoinΩ(F, p, q) = ∅ and all pre-fundamental sets for
(F, p, q,Ω) are empty, then DEG(F, p, q,Ω) = 0.

(c) (Permanence) DEG(F, p, q,Ω) depends only on (F, p, q|AΩ(F,p,K),Ω) if
K is pre-fundamental for (F, p, q,Ω) ∈ T1. Moreover, if (F, p, q̃,Ω) ∈ T0
is such that q̃ has its range in K and satisfies q̃ = q on AΩ(F, p,K),
then

DEG(F, p, q,Ω) = DEG(F, p, q̃,Ω).

This degree DEG possesses automatically the following properties:

(d) (Independence from Γ) If (F, pi, qi,Ω) ∈ T (i = 0, 1) are such that there
is a surjective homeomorphism J : p−10 (Ω) → p

−1
1 (Ω) with p0|p−10 (Ω) =

p1 ◦ J and q0|p−10 (Ω) = q1 ◦ J then either none or both of (F, pi, qi,Ω)
(i = 0, 1) belongs to T1 (or T ′1 ) and in this case

DEG(F, p0, q0,Ω) = DEG(F, p1, q1,Ω).

(e) (Existence) DEG(F, p, q,Ω) 6= 0 implies CoinΩ(F, p, q) 6= ∅.
(f) (Homotopy Invariance) If (H,P,Q,Ω) belongs to H1 (resp. H′1, H′′1 )
then (H(t, · ), Pt, Qt,Ω) belongs to T1 (resp. T ′1 , T ′′1 ) for each t ∈ [0, 1]
and

DEG(H(t, · ), Pt, Qt,Ω) is independent of t ∈ [0, 1].

If Deg satisfies the excision, restriction, resp. additivity property, then also the
restriction of DEG to the class T ′1 , resp. T ′′1 , satisfies automatically the corre-
sponding properties:

(g) (Excision) If (F, p, q,Ω) ∈ T ′1 (resp. ∈ T ′′1 ) and Ω0 ∈ O is contained in
Ω with CoinΩ(F, p, q) ⊆ Ω0 then (F, p, q,Ω0) ∈ T ′1 (resp. ∈ T ′′1 ) and

DEG(F, p, q,Ω0) = DEG(F, p, q,Ω).

(h) (Restriction) Under the same assumptions as above we have (F, p, q,Ω0)
in T ′1 (resp. in T ′′1 ) and

DEG(F, p, q,Ω) 6= 0 ⇒ DEG(F, p, q,Ω0) = DEG(F, p, q,Ω).
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(i) (Additivity) If (F, p, q,Ω) ∈ T ′′1 and Ω1,Ω2 ∈ O are disjoint with Ω =
Ω1 ∪ Ω2, then (F, p, q,Ωi) ∈ T ′′1 (i = 1, 2) and

DEG(F, p, q,Ω) = DEG(F, p, q,Ω1) + DEG(F, p, q,Ω2).

The homotopy invariance and the independence of Γ imply as in Remark 2.3:

Corollary 3.11. The above degree DEG satisfies for each (F, p,Ω) ∈ F
with [0, 1]× p−1(Ω) ∈ G = G0 ∪ G1 the following property:
(j) (Homotopy Invariance in the Third Argument) Let h: [0, 1] × Γ → Y
satisfy:
(j1) (F, p, h(t, · ),Ω) ∈ T has a pre-fundamental set K which is inde-
pendent of t ∈ [0, 1].

(j2) The restriction of h to [0, 1]×AΩ(F, p,K) is continuous and com-
pact.

(j3) Either A ⊆ AEc(G, Y ) or assume the following: If a restriction of
h to a closed set is continuous, then this restriction has a continuous
extension.

Then DEG(F, p, h(t, · ),Ω) is independent of t ∈ [0, 1].

Before we turn to the proof, let us note that the permanence property means
that our extended degree is actually a relative degree (on fundamental sets).

Proof. Let (F, p, q,Ω) ∈ T1 be arbitrary and K be pre-fundamental. If
K = ∅, we have necessarily CoinΩ(F, p, q) = ∅ and we define

(3.4) DEG(F, p, q,Ω) := 0.

Otherwise, ∅ 6= K ∈ A0 ⊆ A. Hence, we can extend the restriction of q to the
closed set AΩ(F, p,K) ⊆ Γ to a continuous compact map q̃: Γ → Y with range
in K. We denote the system of all such functions q̃ by BΩ(F, p, q,K). Note that
we have for each q̃ ∈ BΩ(F, p, q,K) and M ⊆ Ω

(3.5) CoinM (F, p, q̃) = CoinM∩F−1(K)(F, p, q̃) = CoinM∩F−1(K)(F, p, q).

For M := ∂Ω, we obtain in particular (F, p, q̃,Ω) ∈ T0, and so we can define

(3.6) DEG(F, p, q,Ω) := Deg(F, p, q̃,Ω) (q̃ ∈ BΩ(F, p, q,K)).

Since K is a retraction candidate, this definition does not depend on the partic-
ular choice of q̃ ∈ BΩ(F, p, q,K). Let us show that it does not depend on the
particular choice of K either and that it does not collide with (3.4).
To see the latter, we note first that in case CoinΩ(F, p, q) = ∅ the right-

hand side of (3.6) vanishes: This follows from (3.5), applied for M = Ω and the
existence property of Deg. (This argument implies also the existence property
of DEG.)
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Now if K0 and K1 are two pre-fundamental sets and q̃i ∈ BΩ(F, p, q,Ki)
(i = 0, 1), we have Ki ⊇ FixΩ(F, p, q). By what we just observed we may assume
that the latter set is nonempty. Hence, K0 ∩K1 6= ∅ and so at least one of the
sets K2 := K0 ∩K1 or K2 := K0 ∪K1 has the property of Definition 3.5. Note
that we have

(3.7)
AΩ(F, p,K2) ⊆ AΩ(F, p,K0) ∩AΩ(F, p,K1)

resp. AΩ(F, p,K2) = AΩ(F, p,K0) ∪AΩ(F, p,K1).

In particular, the restriction of q to AΩ(F, p,K2) ⊆ AΩ(F, p,K0) ∪AΩ(F, p,K1)
is continuous and compact with values in K2 ∈ A and thus possesses an ex-
tension to a continuous compact map q̃2: Γ → Y with values in K2, i.e. q̃2 ∈
BΩ(F, p, q,K2).

An analogous calculation as above shows that this implies (F, p, q̃2,Ω) ∈ T0.
Since Ki (i = 0, 1) is pre-fundamental, we obtain from (3.3) that

Deg(F, p, q̃i,Ω) = Deg(F, p, q̃2,Ω) (i = 0, 1)

which implies that (3.6) is indeed independent of the particular choice of K.

We have seen that DEG has even the existence property. The permanence
property is clear by construction (because the definition is independent of the
particular choice of q̃ and K and because BΩ(F, p, q,K) 6= ∅).
If (F, p, q,Ω) ∈ T0 then K := Y is a retraction candidate and thus clearly

pre-fundamental if Y ∈ A0 (put K2 := K0 ∪ K1 in Definition 3.6). The same
argument for Ω0 ⊆ Ω shows that K is even strictly fundamental. In particular,
(F, p, q,Ω) ∈ T ′′1 , and in (3.6) the choice q̃ := q is admissible. This proves the
normalization property.

The uniqueness of DEG follows from our definition: If all pre-fundamental
sets K for (F, p, q,Ω) ∈ T1 are empty, then the weak existence property implies
that we must have (3.4). So assume that K 6= ∅. Then BΩ(F, p, q,K) contains
some function q̃ (as we have seen), and by the permanence and normalization,
we see that (3.6) is the only possible definition of DEG.

To see the independence from Γ, let (F, pi, qi,Ω) ∈ T (i = 0, 1). Each retrac-
tion candidate K ⊆ Y for (F, p0, q0,Ω) is a retraction candidate for (F, p1, q1,Ω)
(and thus vice versa). In fact, noting that J is a homeomorphism of closed sub-
spaces and thus J(M) = J(M) and J−1(N) = J−1(N), one can verify straight-
forwardly that q̃1 ∈ BΩ(F, p1, q1,K) if and only if q̃1 ◦J is the restriction of some
q̃0 ∈ BΩ(F, p0, q0,K), and since deg is independent of Γ, the corresponding de-
grees coincide. It follows analogously that K is pre-fundamental for (F, p0, q0,Ω)
if and only if K is pre-fundamental for (F, p1, q1,Ω) (and the corresponding de-
grees coincide). The same argument applies for each Ω0 ⊆ Ω and thus also
a corresponding statement for fundamental sets holds.
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We now prove the homotopy invariance. Let K and AΩ(H,P,K) be as in
Definition 3.9. The restriction of Q to AΩ(H,P,K) is by assumption continuous
and has its range in K. The case K = ∅ is trivial, and otherwise we have
K ∈ A0 ⊆ A and thus find an extension Q̃ of this restriction to a continuous
compact map with values in K. Since clearly Q̃t ∈ BΩ(H(t, · ), Pt, Qt,K), we
have

DEG(H(t, · ), Pt, Qt,Ω) = Deg(H(t, · ), Pt, Q̃t,Ω),
and the claim follows from the homotopy invariance of Deg.
To see that the excision, resp. restriction property holds, let K be (strictly)

fundamental for (F, p, q,Ω) ∈ T ′1 , and let Ω0 ∈ O satisfy

CoinΩ(F, p, q) ⊆ Ω0 ⊆ Ω.

Note that

CoinF−1(K)∩∂Ω0(F, p, q) ⊆ CoinF−1(K)∩∂Ω(F, p, q) ∪ (Ω0 ∩ Coin∂Ω0(F, p, q)) = ∅,

and so Proposition 3.7 implies that K is (strictly) fundamental for Ω0. Hence,
(F, p, q,Ω0) belongs to T ′1 (resp. to T ′′1 ). Since the case CoinΩ(F, p, q,Ω) = ∅ is
trivial, we may assume that K 6= ∅ and find some q̃ ∈ BΩ(F, p, q,K) with (3.6).
Since K is in particular pre-fundamental for (F, p, q,Ω0), and since clearly q̃ ∈
BΩ0(F, p, q,K) and thus (repeating an earlier argument) (F, p, q̃,Ω0) ∈ T0, we
obtain by the definition of DEG that

DEG(F, p, q,Ω0) = Deg(F, p, q̃,Ω0).

Together with (3.6), it follows that the excision, resp. restriction property of
DEG is a consequence of the corresponding property of Deg.
To prove the additivity, let (F, p, q,Ω) ∈ T ′′1 with a fundamental set K, and

let Ω1,Ω2 ∈ O be disjoint with Ω = Ω1∪Ω2. Since ∂Ωi ⊆ ∂Ω (i = 1, 2), we obtain
from Proposition 3.7 thatK is fundamental for (F, p, q,Ωi). Hence, (F, p, q,Ωi) ∈
T ′′1 , and for each q̃ ∈ BΩ(F, p, q,K) we have also q̃ ∈ BΩi(F, p, q,K). We obtain

DEG(F, p, q,Ωi) = Deg(F, p, q̃,Ωi) (i = 1, 2).

Together with (3.6), we find that the additivity of DEG follows from the addi-
tivity of Deg. �

4. Definition of the degree — local case

Roughly speaking, the approach of this section works under the following
assumptions (we will actually need slightly less).

(a) T0 provides a compact triple-degree Deg which satisfies the excision
property.
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(b) O is solid in the open sets, i.e. if Ω1 ⊆ Ω2 are open with Ω2 ∈ O, then
Ω1 ∈ O.

(c) X is normal (resp. regular), and the closure of CoinΩ(F, p, q) contains
no point of ∂Ω (resp. the closure is a compact subset of Ω).

(d) The function p−1 is upper semicontinuous or, equivalently, p is a closed
map.

It is natural to conjecture that, under these assumptions, one can relax the notion
of fundamental sets such that all properties for fundamental sets are required only
“in sufficiently small neighbourhoods of CoinΩ(F, p, q)”. In particular, instead
of requiring A ⊆ AE0c(G, Y ) as in the previous section, we will require now
A ⊆ ANE0c(G, Y ). As in the previous section, we fix a family A0 ⊆ A.

Definition 4.1. We say that K ⊆ Y is locally (strictly) fundamental for
(F, p, q,Ω) ∈ T if there is some Ω0 ∈ O with

(4.1) CoinΩ(F, p, q) ⊆ Ω0 ⊆ Ω

such that K is weakly (resp. strictly) fundamental for (F, p, q,Ω0).

The very definition implies:

Proposition 4.2. Let (F, p, q,Ω) ∈ T , and let Ω0 ∈ O satisfy (4.1). Then
K ⊆ Y is locally (strictly) fundamental for (F, p, q,Ω) if and only if K is locally
(strictly) fundamental for (F, p, q,Ω0).

Definition 4.3. We say that a closed set C ⊆ X is O-normal if for each
nonempty closed C0 ⊆ C and each open U ⊆ X with C0 ⊆ U there is some
Ω0 ∈ O with Ω0 ⊆ U and C0 ⊆ Ω0.

Example 4.4. Let O be solid in the open sets.

(a) If Ω is a T4 space (e.g. normal) then each closed subset is O-normal.
(b) If Ω is a T3 space (e.g. regular) then each compact subset is O-normal.

Definition 4.5. By T2 (resp. T ′2 ) we denote the class of all (F, p, q,Ω) ∈ T
such that the following holds for some Ω0 ∈ O with Ω0 ⊆ Ω.

(a) The set C := CoinΩ(F, p, q) is contained in Ω0 and O-normal.
(b) p|p−1(Ω0) is a closed map, i.e. for each closed A ⊆ p−1(Ω0) we have
p(A) ∩ Ω0 ⊆ p(A).

(c) (F, p, q,Ω) has a locally (strictly) fundamental set K ⊇ F (C).
(d) Either A ⊆ ANEc(G, Y ) or assume the following: If a restriction of q
to a closed set A ⊆ p−1(Ω0) is continuous, then this restriction has
a continuous extension q̃: Γ0 → Y to some neighbourhood Γ0 of A.

Clearly, T ′2 ⊆ T2. Concerning homotopies, we define:
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Definition 4.6. By H2 (resp. H′2) we denote the class of all (H,P,Q,Ω)
where (H,P,Ω) ∈ H and Q: Γ→ Y (where Γ denotes the domain of P ) are such
that the following holds for some K ⊆ Y and some Ω0 ∈ O with Ω0 ⊆ Ω.

(a) The set C := CoinΩ(H,P,Q) is contained in Ω0 and O-normal.
(b) P |P−1([0,1]×Ω0) is a closed map, i.e. for each closed A ⊆ P−1([0, 1]× Ω0)
we have P (A) ∩ ([0, 1]× Ω0) ⊆ P (A).

(c) K ⊇ H(C) is weakly (resp. strictly) fundamental for each of the quadru-
ples (H(t, · ), Pt, Qt,Ω0) (0 ≤ t ≤ 1).

(d) The restriction of Q to AΩ0(H,P,K) is continuous and compact and
assumes only values in K.

(e) Either A ⊆ ANEc(G, Y ) or assume the following: If a restriction of q
to a closed set A ⊆ P−1([0, 1]× Ω0) is continuous, then this restriction
has a continuous extension Q̃: Γ0 → Y to some neighbourhood Γ0 of A.

The main theorem of this section now reads as follows.

Theorem 4.7. Let F provide a compact H-invariant triple-degree Deg which
satisfies the excision property. Then there is a degree DEG which associates to
each (F, p, q,Ω) ∈ T2 an element of G such that the following holds:

(a) (Normalization) If Y ∈ A0 then each (F, p, q,Ω) ∈ T0 belongs to T ′2 ⊆
T2, and

DEG(F, p, q,Ω) = Deg(F, p, q,Ω).

(b) (Weak Existence) If CoinΩ(F, p, q) = ∅ and all locally fundamental sets
for (F, p, q,Ω) are empty, then DEG(F, p, q,Ω) = 0.

(c) (Permanence) Put C := CoinΩ(F, p, q,Ω). If K ⊇ F (C) is locally fun-
damental for (F, p, q,Ω) ∈ T1 then DEG(F, p, q,Ω) depends only on
(F, p, q|AΩ(F,p,K),Ω). Moreover, if C ⊆ Ω0 ⊆ Ω and (F, p|p−1(Ω0), q̃,Ω0)
in T0 is such that q̃ has its range in K and satisfies q̃ = q on AΩ0(F, p,K)
then

DEG(F, p, q,Ω) = DEG(F, p, q̃,Ω0).

This degree DEG possesses automatically the following properties:

(d) (Independence from Γ) If (F, pi, qi,Ω) ∈ T (i = 0, 1) are such that there
is a surjective homeomorphism J : p−10 (Ω) → p

−1
1 (Ω) with p0|p−10 (Ω) =

p1 ◦ J and q0|p−10 (Ω) = q1 ◦ J then either none or both of (F, pi, qi,Ω)
(i = 0, 1) belongs to T2 (or T ′2 ) and in this case

DEG(F, p0, q0,Ω) = DEG(F, p1, q1,Ω).

(e) (Existence) If CoinΩ(F, p, q) = ∅, then DEG(F, p, q,Ω) = 0.
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(f) (Homotopy Invariance) If (H,P,Q,Ω) belongs to H2 (resp. H′2) then
(H(t, · ), Pt, Qt,Ω) belongs to T2 (resp. T ′2 ) for each t ∈ [0, 1] and

DEG(H(t, · ), Pt, Qt,Ω) is independent of t ∈ [0, 1].

(g) (Excision) If (F, p, q,Ω) ∈ T2 (resp. ∈ T ′2 ) and Ω0 ∈ O is contained in
Ω with CoinΩ(F, p, q) ⊆ Ω0 then (F, p, q,Ω0) ∈ T2 (resp. ∈ T ′2 ) and

(4.2) DEG(F, p, q,Ω0) = DEG(F, p, q,Ω).

If Deg is additive, then also the restriction of DEG to T ′2 is additive:
(h) (Additivity) If (F, p, q,Ω) ∈ T ′2 and Ω1,Ω2 ∈ O are disjoint with Ω =
Ω1 ∪ Ω2, then (F, p, q,Ωi) ∈ T ′2 (i = 1, 2) and

DEG(F, p, q,Ω) = DEG(F, p, q,Ω1) + DEG(F, p, q,Ω2).

Corollary 4.8. The above degree DEG satisfies for each (F, p,Ω) ∈ F with
[0, 1]× p−1(Ω) ∈ G = G0 ∪ G1 the following property.
(i) (Homotopy Invariance in the Third Argument) Let h: [0, 1]× Γ→ Y be
such that (F, p, h(t, · ),Ω) ∈ T and the following holds for some K ⊆ Y
and some Ω0 ∈ O with Ω0 ⊆ Ω:
(i1) C :=

⋃
t∈[0,1] CoinΩ(F, p, h(t, · )) is contained in Ω0 and O-normal.

(i2) p|p−1(Ω0) is a closed map.
(i3) K ⊇ F (C) is weakly (resp. strictly) fundamental for each of the
quadruples (F, p, h(t, · ),Ω0) (0 ≤ t ≤ 1).

(i4) The restriction of h to [0, 1]×AΩ0(F, p,K) is continuous and com-
pact and assumes only values in K.

(i5) Either A ⊆ ANEc(G, Y ) or assume: If a restriction of h to a closed
subset A ⊆ [0, 1]× p−1(Ω0) is continuous, then this restriction has
a continuous extension h̃: Γ0 → Y to some neighbourhood Γ0 of A.

Then (F, p, h(t, · ),Ω) belongs to T2 (resp. T ′2 ) for each t ∈ [0, 1] and

DEG(F, p, h(t, · ),Ω) is independent of t ∈ [0, 1].

Proof. Let (F, p, q,Ω) ∈ T2 be arbitrary, C := CoinΩ(F, p, q), and K ⊇
F (C) locally fundamental. If K = ∅, we put

(4.3) DEG(F, p, q,Ω) := 0.

If K 6= ∅, we denote by BΩ(F, p, q,K) the system of all pairs (q̃,Ω0) satisfying
the requirement of the permanence property, i.e. (F, p|p−1(Ω0), q̃,Ω0) ∈ T0, C ⊆
Ω0 ⊆ Ω and such that q̃ has its range in K and satisfies q̃ = q on AΩ0(F, p,K).
Let us first show that BΩ(F, p, q,K) is not empty. Choose some Ω1 ∈ O with

C ⊆ Ω1 ⊆ Ω such that K is weakly fundamental for (F, p, q,Ω1), in particular
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K ∈ A0 ⊆ A. Since C is O-normal, we may assume without loss of generality
that Ω1 is contained in the set Ω0 of Definition 4.5. The restriction of q to
the closed set AΩ1(F, p,K) ⊆ Γ has an extension to a continuous compact map
q̃: Γ0 → Y with range in K where Γ0 ⊇ AΩ(F, p,K) is open in the space p−1(Ω1).
Since C ⊆ F−1(K), we have

p−1(C) ⊆ AΩ1(F, p,K) ⊆ Γ0.

Since p−1 is upper semicontinuous on Ω1, we find some open U ⊆ Ω1 with C ⊆ U
and p−1(U) ⊆ Γ0. Since C is O-normal, we thus find some Ω0 ∈ O with Ω0 ⊆ U
and C ⊆ Ω0. In particular, the restriction of q̃ to p−1(Ω0) ⊆ Γ0 is continuous
and compact and assumes its values in K. Moreover,

CoinM (F, p, q̃) = CoinM∩F−1(K)(F, p, q̃)(4.4)

= CoinM∩F−1(K)(F, p, q) (M ⊆ Ω0),

and so (put M = ∂Ω0) we have (F, p, q̃,Ω0) ∈ T0. Hence we have found some
(q̃,Ω0) ∈ BΩ(F, p, q,K), as claimed. We now prove that we can define

(4.5) DEG(F, p, q,Ω) := Deg(F, p, q̃,Ω0) ((q̃,Ω0) ∈ BΩ(F, p, q,K)),

i.e. that the right-hand side of (4.5) is independent of the particular choice of
(q̃,Ω0) and K and that the definition does not collide with (4.3). To see this,
note first that the same calculation as above (put M = Ω0 in (4.4)) shows that

(4.6) CoinΩ(F, p, q) = CoinΩ0(F, p, q̃) ((q̃,Ω0) ∈ BΩ(F, p, q,K)).

In case C = ∅, it follows that the right-hand side of (4.5) vanishes by the existence
property of Deg (independent of the choice of (q̃,Ω0) and K). This proves the
existence property of DEG and that the definition (4.5) is compatible with (4.3).
Assume now that Ki ⊇ F (C) are two locally fundamental sets and (q̃i,Ωi) ∈

BΩ(F, p, q,Ki) (i = 0, 1). Since the case C = ∅ was treated above, we may thus
assume that K0 ∩K1 6= ∅.
Put K2 := K0 ∪ K1 and K3 := K0 ∩ K1. If Kj ∈ A (j = 2 or j = 3) we

can in view of (3.7) extend the restriction q|AΩ(F,p,Kj) to a continuous compact
map q̃j : Γ′ → Y with range in Kj where Γ′ ⊇ AΩ(F, p,Kj) is open. A similar
argument as in the beginning of the proof shows that we find some Ωj ∈ O with
C ⊆ Ωj ⊆ Ω0 ∩ Ω1 such that (F, p, q̃j ,Ωj) ∈ T0. If Kj /∈ A, we put Ωj := Ω
(j = 2, 3).
Since Ki (i = 0, 1) is locally fundamental, there is some Ω4+i ∈ O with

C ⊆ Ω4+i ⊆ Ω such that Ki is weakly fundamental for (F, p, q,Ω4+i). Since C is
O-normal, we find some Ω′ ∈ O with C ⊆ Ω′ ⊆ Ωi (i = 0, . . . , 5). Note that (4.6)
implies that (F, p, q̃i,Ω′) ∈ T0 (i = 0, 1) and, by the excision property,

Deg(F, p, q̃i,Ωi) = Deg(F, p, q̃i,Ω′) (i = 0, 1).
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The sets K0 and K1 are both pre-fundamental for (F, p, q,Ω′). In particular, at
least one of the sets K2 = K0 ∪K1 or K3 = K0 ∩K1 must have the property of
Definition 3.5 which means that we have either for j = 2 or j = 3 that Kj ∈ A
and

Deg(F, p, q̃i,Ω′) = Deg(F, p, q̃j ,Ω′) (i = 0, 1).

Combining the above formulas, we thus proved that

Deg(F, p, q̃0,Ω0) = Deg(F, p, q̃1,Ω1),

and so (4.5) is indeed independent of the particular choice of (q̃,Ω0) or K.
The existence property has been proved above. The independence of Γ and

the normalization property is established by the same arguments as in the proof
of Theorem 3.10. The permanence property follows immediately from (4.5) and
the fact that there is some (q̃,Ω0) ∈ BΩ(F, p, q,K) with Ω0 ⊆ Ω.
The uniquenes of DEG(F, p, q,Ω) is trivial if all locally fundamental sets are

empty, because then CoinΩ(F, p, q) = ∅ and (4.3) must hold by the weak existence
property. However, otherwise, since BΩ(F, p, q,K) 6= ∅, we must have (4.5) by
the permanence and normalization property.
To prove the excision property, let K be locally (strictly) fundamental for

(F, p, q,Ω) ∈ T2. By Proposition 4.2, K is locally (strictly) fundamental for
(F, p, q,Ω0), and so (F, p, q,Ω) ∈ T2. The formula (4.2) is an immediate conse-
quence of (4.5), because we find some (q̃,Ω1) ∈ BΩ(F, p, q,K) with Ω1 ⊆ Ω0.
To prove the homotopy invariance, let C and K ⊇ H(C) be as in Defini-

tion 4.6. Since C is O-normal, we find some Ω0 ∈ O such that Ω0 is contained
in the set Ω0 of Definition 4.6, and C ⊆ Ω0. In particular,

Coin∂Ω0(H(t, · ), Pt, Qt) = ∅,

and the restriction of Q to AΩ0(H,P,K) is continuous and compact with values
in K. The definition now immediately implies that K is locally (strictly) funda-
mental for (H(t, · ), Pt, Qt,Ω) and that (H(t, · ), Pt, Qt,Ω) belongs to T2 (resp.
T ′2 ) for each t ∈ [0, 1] (note here that CoinΩ(H(t, · ), Pt, Qt) is a closed subset of
C and thus O-normal). In view of the excision property of DEG, it suffices to
prove that

DEG(H(t, · ), Pt, Qt,Ω0) is independent of t ∈ [0, 1].

Since the case C = ∅ is trivial (all corresponding degrees are 0), we assume that
K 6= ∅ and thusK∈A0. SinceK is pre-fundamental for each (H(t, · ), Pt, Qt,Ω0)
(0 ≤ t ≤ 1), the continuous and compact restriction of Q to the closed set
AΩ0(H,P,K) attains its values in K ∈ A and thus has an extension to a contin-
uous compact map Q̃ on some neighbourhood U of AΩ0(H,P,K) with values in
K. Since P−1 is upper semicontinuous, P−1([0, 1]×C) ⊆ U , and C is O-normal,
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we find some Ω1 ∈ O with C ⊆ Ω1 ⊆ Ω0 such that P−1([0, 1] × Ω1) ⊆ U . We
have

CoinH(t, · )−1(K)∩∂Ω1(H(t, · ), Pt, Q̃t) ⊆ C ∩ ∂Ω1 = ∅,

and so (H(t, · ), Pt, Q̃t,Ω1) ∈ T0 which implies

(Q̃t,Ω1) ∈ BΩ(H(t, · ), Pt, Qt,Ω0).

Hence, we have by (4.5)

DEG(H(t, · ), Pt, Qt,Ω0) = Deg(H(t, · ), Pt, Q̃t,Ω1) (0 ≤ t ≤ 1).

Since Deg is H-invariant, the right-hand side is independent of t.
Now we prove the additivity for (F, p, q,Ω) ∈ T ′2 . Let Ωi ∈ O (i = 1, 2) be

disjoint with Ω = Ω1 ∪ Ω2, Ci := CoinΩi(F, p, q) (i = 1, 2) and

C := CoinΩ(F, p, q) = C1 ∪ C2.

Let K ⊇ F (C) be locally strictly fundamental. Choose (q̃,Ω0) ∈ BΩ(F, p, q,K).
In particular, K is strictly fundamental for (F, p, q,Ω0). Note that Ci are closed
subsets of C and thus also O-normal. Moreover, since C ⊆ Ω = Ω1 ∪ Ω2 and
Ci is a closure of a subset of Ωi, it follows that Ci ⊆ Ωi (i = 1, 2). Hence,
Ci ⊆ Ωi,0 := Ω0 ∩ Ωi (i = 1, 2). Since Ω0 ⊆ Ω we have also Ωi,0 ⊆ Ωi (i =
1, 2). In particular, Coin∂Ωi,0(F, p, q) = ∅. Hence, K is strictly fundamental
for (F, p, q,Ωi,0) and thus locally strictly fundamental for (F, p, q,Ωi). It follows
that (F, p, q,Ωi) ∈ T ′2 and, moreover, (q̃,Ωi,0) ∈ BΩi(F, p, q,K). Hence,

DEG(F, p, q,Ωi) = Deg(F, p, q̃,Ωi,0) (i = 1, 2)

and DEG(F, p, q,Ω) = Deg(F, p, q̃,Ω0). Since Ω0 = Ω1,0 ∪Ω2,0, the additivity of
DEG now follows from the addditivity of Deg. �

5. Homotopic tests for fundamental sets

In the previous sections, we have seen how a compact degree can be extended
to certain noncompact (F, p, q,Ω) ∈ T . However, the crucial assumption was that
one can find a fundamental, resp. a locally fundamental set K. In this section,
we discuss, how one can verify that a given set K has this property. Necessary
conditions are, roughly speaking, that K is invariant under the multivalued map
q ◦ p−1 ◦ F−1, that K contains all fixed points of this map, and that this map is
compact on K. If K ∈ AEc(G, Y ), resp. K ∈ ANEc(G, Y ), this already implies
that K is a retraction candidate as the following Proposition 5.1 shows. It is
remarkable that these hypotheses are independent of the particular choice of the
degree Deg. This is why we speak in this section of homotopic tests.
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Proposition 5.1. Let (F, p, q,Ω) ∈ T and K ⊆ Y contain FixΩ(F, p, q).
Suppose that (3.1) holds and that the restriction of q to AΩ(F, p,K) is continuous
and compact and assumes its values in K. Finally, let [0, 1]×p−1(Ω) ∈ G. Then
for each compact triple-degree Deg for F the set K is a retraction candidate for
(F, p, q,Ω), if at least one of the following conditions is satisfied:

(a) K ∈ AEc(G, Y ),
(b) K∈ANEc(G, Y ), Deg satisfies the excision property, C :=CoinΩ(F, p, q)
is contained in Ω and O-normal, F (C) ⊆ K, and there is a neighbour-
hood Ω0 ⊆ Ω of C such that p|p−1(Ω0) is a closed map.

Proof. We have to verify the last property of Definition 3.4. Thus, let
Γ := p−1(Ω) and q̃i: Γ→ K (i = 0, 1) be extensions of the restriction q|AΩ(F,p,K)
such that (F, p, q̃i,Ω) ∈ T0. We define

h(t, z) :=

{
q̃i(z) if t = i ∈ {0, 1},
q(z) if z ∈ AΩ(F, p,K).

Then h is a continuous compact map defined on a closed subset A of Π :=
[0, 1] × p−1(Ω) ∈ G with values in K. Hence, h has an extension to Π0 := Π
(resp. to a neighbourhood Π0 ⊆ Π of A) such that h is continuous and compact
and h(Π0) ⊆ K. The latter implies for each t ∈ [0, 1]

CoinΩ(F, p, h(t, · )) =CoinΩ∩F−1(K)(F, p, h(t, · ))(5.1)

=CoinΩ∩F−1(K)(F, p, q)

=CoinΩ∩F−1(K)(F, p, q) = CoinΩ(F, p, q)

where we used the definition of h on AΩ(F, p,K) for the second, and (3.1) for
the third equality. In case Π0 = Π, we conclude by the homotopy invariance of
Deg that

(5.2) Deg(F, p, q̃0,Ω) = Deg(F, p, q̃1,Ω)

and are done. This proves in particular the claim under the first hypothesis
(i.e. if K ∈ AEc(G, Y )). For the other hypothesis, note that F (C) ⊆ K implies
p−1(C) ⊆ AΩ(F, p, q). Since [0, 1] is compact and for each t0 ∈ [0, 1] there is
an open neighbourhood Γ0 ⊆ Γ of p−1(C) such that {t} × Γ0 ⊆ Π0 for all t
in a neighbourhood of t0, we conclude that even [0, 1] × Γ0 ⊆ Γ for some open
neighbourhood Γ0 ⊆ Γ of p−1(C). Let Ω0 be as in the hypothesis. By the
upper semicontinuity of p−1|Ω0 , we may assume that p−1(Ω0) ⊆ Γ0. Since C is
O-normal, we find some Ω1 ∈ O with C ⊆ Ω1 and Ω1 ⊆ Ω0 ⊆ Ω. Note that h
is defined, continuous and compact on [0, 1] × Ω1. By (5.1), we conclude that
(F, p, h(t, · ),Ω1) ∈ T0, and so the homotopy invariance of Deg implies

Deg(F, p, h(0, · ),Ω1) = Deg(F, p, h(1, · ),Ω1).
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Moreover, the excision property of Deg implies in view of (5.1) that

Deg(F, p, h(i, · ),Ω1) = Deg(F, p, h(i, · ),Ω) = Deg(F, p, q̃i,Ω) (i = 0, 1).

Combining these equalities, we find (5.2), as required. �

Proposition 5.1 is a very convenient tool in order to verify that a given set
K is a retraction candidate. We would like to have a similar (homotopic) tool
to verify that K is pre-fundamental, i.e. a tool to verify (3.3). This condition
is always satisfied if, roughly speaking, one of the sets K0 and K2 is a strong
deformation retract of the other and the deformation can be chosen such that it
avoids certain coincidences outside the smaller set.

Definition 5.2. Let (F, p, q,Ω) ∈ T , and let K1 ⊆ K2 ⊆ Y . Then we
call K1 an (F, p, q,Ω)-deformation retract of K2 if there is a continuous map
R: [0, 1]×K2 → Y such that the following holds.
(a) R([0, 1]×K2) ⊆ K2, R(0, · ) = id, and R(1,K2) ⊆ K1.
(b) R(1, · ) = id on K1 ∩ q(AΩ(F, p,K1)).
(c) R(t, · ) = id on K1 ∩ q(p−1(F−1(K1)∩ ∂Ω)) ⊆ K1 ∩ q(AΩ(F, p,K1)) for
each t ∈ [0, 1].

(d) FixF−1(K2)∩∂Ω(F, p,R(t, q( · ))) ⊆ K1 for each t ∈ [0, 1].
If we can even replace ∂Ω by Ω in the last two requirements, then we call K1
a strong (F, p, q,Ω)-deformation retract.

Proposition 5.3. Let K1 be an (F, p, q,Ω)-deformation retract of K2. Let
q̃i (i = 1, 2) be extensions of the restriction of q to AΩ(F, p,Ki) which assume
only values in Ki and such that (F, p, q̃i,Ω) ∈ T0. Then we have for each compact
triple-degree Deg (for F) for which K1 is a retraction candidate for (F, p, q,Ω)
that

Deg(F, p, q̃1,Ω) = Deg(F, p, q̃2,Ω).

Proof. With R as in Definition 5.2, consider the homotopy

h(t, z) := R(t, q̃2(z)).

Since R is defined and continuous on the compact set [0, 1] × q̃2(p−1(Ω)), the
homotopy h is compact. We claim that (F, p, h(t, · ),Ω) ∈ T0 for each t ∈ [0, 1].
In fact, suppose on the contrary that there are t ∈ [0, 1], x ∈ ∂Ω, and

z ∈ p−1(x) with y := F (x) = h(t, z). Since q̃2(z) ∈ K2, we have F (x) =
h(t, z) ∈ K2, and so x ∈ F−1(K2). In particular, we have z ∈ AΩ(F, p,K2) which
implies q̃2(z) = q(z), and so F (x) = R(t, q(z)). Since x ∈ F−1(K2) ∩ ∂Ω, our
assumption on R thus implies F (x) ∈ K1. Hence, z ∈ AΩ(F, p,K1) which implies
q(z) = q̃1(z) ∈ K1. Clearly, q(z) ∈ q(p−1(F−1(K1) ∩ ∂Ω)). Our assumption
on R thus implies R(t, q(z)) = q(z), and so F (x) = q(z) = q̃1(z). Hence,
x ∈ Coin∂Ω(F, p, q̃1), a contradiction to our assumption (F, p, q̃1,Ω) ∈ T0.
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This contradiction shows that indeed (F, p, h(t, · ),Ω) ∈ T0 for each t ∈ [0, 1],
and so the homotopy invariance of Deg implies

Deg(F, p, q̃2,Ω) = Deg(F, p, h(0, · ),Ω) = Deg(F, p, h(1, · ),Ω).

The function h(1, · ) attains its values in K1 and is (by our choice of R) an
extension of q|AΩ(F,p,K1). Since K1 is a retraction candidate, this implies

Deg(F, p, q̃1,Ω) = Deg(F, p, h(1, · ),Ω),

and the claim follows. �

Corollary 5.4. Let K0 be a retraction candidate for (F, p, q,Ω) ∈ T and
either be empty or belong to A0. Then K0 is pre-fundamental for (F, p, q,Ω) if
for each retraction candidate K1 ∈ A0 for (F, p, q,Ω) with K0 ∩K1 6= ∅ at least
one of the following holds:

(a) K0 ∩K1 belongs to A and is a retraction candidate for (F, p, q,Ω) and
an (F, p, q,Ω)-deformation retract of K0.

(b) K0 ∪K1 belongs to A, and K0 is an (F, p, q,Ω)-deformation retract of
K0 ∪K1.

It will be convenient to introduce some further notions.

Definition 5.5. We call K ⊆ Y union-admissible if for each K ′ ∈ A0 with
K ∩K ′ 6= ∅ we have K ∪K ′ ∈ A.

As an example, we prove (using Dugundji’s extension theorem and thus the
axiom of choice if Y is not separable):

Proposition 5.6. Let Y be a metrizable convex subset of a locally convex
space, and suppose that each K ∈ A0 is closed (in Y ) and convex. Let one of
the following assumptions be satisfied.

(a) G contains only T4 spaces.
(b) A = AE0c(G, Y ) or A = ANE

0
c(G, Y ).

Then each K ∈ A0 ∪ {∅} is union-admissible.

Proof. Each K ∈ A0 is an AR. Moreover, for each K ′ ∈ A0 for which the
intersection K ∩K ′ ∈ A0 is nonempty, this intersection is also convex and thus
also an AR. Since K and K ′ are closed in K ∪K ′, it follows that K ∪K ′ is an
AR, see e.g. [11, § 6]. By Proposition 3.3, we conclude K ∪K ′ ⊆ A. �

Definition 5.7. We call K ⊆ Y a (strong) deformation candidate for
(F, p, q,Ω) ∈ T if the following holds:
(a) K is either empty or belongs to A0 and is a (strong) (F, p, q,Ω)-defor-
mation retract of Y .

(b) FixΩ(F, p, q) ⊆ K.
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The following theorem is a summary of our previous observations.

Theorem 5.8. Let (F, p, q,Ω) ∈ T and K ⊆ Y satisfy:

(a) K is a (strong) deformation candidate for (F, p, q,Ω).
(b) K is union-admissible.
(c) [0, 1]× p−1(Ω) ∈ G and K ∈ AEc(G, Y ).
(d) CoinF−1(K)∩∂Ω(F, p, q) = ∅.
(e) The restriction of q to AΩ(F, p,K) is continuous and compact and as-
sumes its values in K.

Then K is pre-fundamental (resp. strictly fundamental) for (F, p, q,Ω).

For some applications the invariance condition q(AΩ(F, p,K)) ⊆ K is too re-
strictive. Instead, one would like to require only the invariance q(AΩ(F, p,K)) ⊆
K or, even better, an invariance of the type

(5.3) q(AΩ0(F, p,K)) ⊆ K

where Ω0 ⊆ Ω is an arbitrary small neighbourhood of C := CoinΩ(F, p, q).
The weaker assumption (5.3) is in the attitude of the “pushing assumption”

which was apparently first introduced in [21], [22] and further employed in [3]
and [2]. Moreover, the dropping of the closure in (5.3) simplifies some consider-
ations in connection with compactness assumptions on countable sets as we will
see in Section 7. This is indeed possible in the local setting of Section 4. We
summarize our previous observations in this special case.

Theorem 5.9. Let (F, p, q,Ω) ∈ T and K ⊆ Y . Let Deg satisfy the excision
property and suppose that there is some Ω0 ∈ O with Ω0 ⊆ Ω such that the
following holds.

(a) K is a strong deformation candidate for (F, p, q,Ω0).
(b) K is union-admissible.
(c) [0, 1]× p−1(Ω) ∈ G and K ∈ ANEc(G, Y ).
(d) C := CoinΩ(F, p, q) is contained in Ω0 and O-normal.
(e) F (C) ⊆ K.
(f) p|p−1(Ω0) is a closed map.
(g) The restriction of q to AΩ0(F, p,K) is continuous and compact and
assumes its values in K.

Then K is locally strictly fundamental for (F, p, q,Ω); in particular, if A ⊆
ANEc(G, Y ), then (F, p, q,Ω) ∈ T ′2 ⊆ T2. More precisely, K is strictly funda-
mental for (F, p, q,Ω′0) whenever Ω

′
0 ∈ O satisfies C ⊆ Ω′0 and Ω

′
0 ⊆ Ω0.

The last remark in Theorem 5.9 is important in connection with the homo-
topy invariance of DEG (where Ω0 has to be chosen independent of t).
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6. Finding small deformation candidates

By the previous section, we reduced the main difficulty of the degree for
noncompact (F, p, q,Ω) ∈ T to the existence of (strong) deformation candidates
which are sufficiently small and invariant under the multivalued map q◦p−1◦F−1.
In this section, we discuss how one can prove the existence of such sets K. The
idea is to define K as the intersection of “hull candidates”.
We assume in this section that we have given a fixed hull function c: 2Y → 2Y

with the property

(6.1) M1 ⊆M2 ⊆ Y ⇒ M1 ⊆ c(M1) ⊆ c(M2) ⊆ Y

We think of c as a function which associates to each set M ⊆ Y a corresponding
“hull”. The most important case will be when Y is a convex subset of a topo-
logical vector space and c(M) := conv(M) denotes the convex hull of M .

Definition 6.1. Let c satify (6.1). Then we call K ⊆ Y a hull candidate
for (F, p, q,Ω) ∈ T if

(6.2) F (x) ∈ c(q(p−1(x)) ∪K) ⇒ F (x) ∈ K (x ∈ Ω)

and if either K = ∅ or K ∈ A0.

Definition 6.2. We call a hull candidate K proper if either K = ∅ or if
there is a continuous function R: [0, 1]× Y → Y with the following properties:

(a) R(0, · ) = id, and R(1, Y ) ⊆ K.
(b) R(t, · ) = id on K ∩ q(AΩ(F, p,K)) for each t ∈ [0, 1].
(c) R(λ, y) ∈ c({y} ∪K) for each (λ, y) ∈ [0, 1]× F (Ω).

Proposition 6.3. Each proper hull candidate K for (F, p, q,Ω) is a strong
deformation candidate and satisfies even

FixΩ(F, p, q) ⊆ K.

Proof. Let K be a nonempty hull candidate and R be the corresponding
function. On each open Ω0 ⊆ Ω, the function has all properties of Definition 5.2
with K1 := K and K2 := Y . Only the last of these properties requires a proof.
Thus, let λ ∈ [0, 1] and y ∈ FixΩ(F, p,R(λ, q( · ))). This means that y = F (x) ∈
R(λ, q(p−1(x))) for some x ∈ Ω. Consequently, y = F (x) ∈ c(q(p−1(x)) ∪ K),
and so (6.2) implies y ∈ K, as required.
Similarly, y = F (x) ∈ FixΩ(F, p, q) implies

F (x) ∈ q(p−1(x)) ⊆ c(q(p−1(x)) ∪K),

and so y ∈ K by (6.2). �
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Proposition 6.4. Let Y be a convex subset of a topological vector space,
and let c := conv. Let K ⊆ Y be convex and a retract of Y or empty. If K
is a hull candidate for (F, p, q,Ω) ∈ T , then K is automatically a proper hull
candidate and thus a strong deformation candidate.

Proof. Let r:Y → K be the retraction. The required map is then given by
R(λ, y) := (1− λ)y + λr(y). �

Assume now that A0∪{∅} is closed under intersections and that Y ∈ A0. In
this case, we can define a function cA0 : 2

Y → 2Y by

cA0(M) =
⋂
{K ∈ A0 :M ⊆ K}.

If there is some relation between cA0 (i.e. the set A0) and the function c, one may
expect that one can consider intersections of hull candidates to obtain a minimal
hull candidate. The following result is the main observation in this connection:
The relation between c and cA0 is expressed by assumption (6.5). In connection
with homotopies it is important to find sets which are simultaneously hull candi-
dates for a whole class of sets (Fi, pi, qi,Ωi) ∈ T (with i from some index set I).
For most applications, the function G in the following result will usually be just

G(K) =
⋃
i∈I
qi(AΩi(Fi, pi,K)).

However, in some cases, one might want to find “small” hull candidates K which
contain e.g. even the closure of the above set (or a slightly smaller set) – therefore,
we consider a more general class of functions G. Moreover, in many applications
of degree theory it is desirable to find fundamental sets which contain a certain
given set V ⊆ Y . We thus formulate rather general:

Proposition 6.5. Let A0 ∪ {∅} be closed under intersections, let Y ∈ A0,
and suppose that the function c: 2Y → 2Y satisfies (6.1). Let (Fi, pi, qi,Ωi) ∈ T
(i ∈ I), and let G:A0 ∪ {∅} → 2Y satisfy

(6.3) G(K) ⊇ qi(p−1i (F
−1
i (K) ∩ Ωi)) (K ∈ A0, i ∈ I).

Assume also that G is monotone, i.e.

(6.4) K1 ⊆ K2 ⇒ G(K1) ⊆ G(K1) (K1,K2 ∈ A0 ∪ {∅}).

Then, for each V ⊆ Y , there exists a smallest set K0 ⊆ Y which contains V ,
is simultaneously a hull candidate for each (Fi, pi, qi,Ωi) (i ∈ I), and satisfies
G(K0) ⊆ K0. Moreover, if

(6.5) c(K) = K (K ∈ A0 ∪ {∅})

then this smallest set K0 satisfies automatically

(6.6) K0 = cA0(G(K0) ∪ V ).
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Proof. Let K be the family of all sets K with the above properies. Then
Y ∈ K, and so K0 :=

⋂
K exists. Then V ∪ G(K) ⊆ K. Moreover, if Fi(x) ∈

c(qi(p−1i (x))∪K0), then we have for each K ∈ K that Fi(x) ∈ c(qi(p
−1
i (x))∪K)

and so, since K is a hull candidate for (Fi, pi, qi,Ωi), also Fi(x) ∈ K. Since either
K0 = ∅ or K0 ∈ A0, it follows that K0 is a hull candidate for (Fi, pi, qi,Ωi). This
proves K0 ∈ K, i.e. there exists indeed a smallest set K0 ∈ K.
Clearly, K1 := cA0(G(K0)∪ V ) ⊆ cA0(K0) = K0. Hence, G(K1) ⊆ G(K0) ⊆

G(K1). Moreover, if Fi(x) ∈ c(qi(p−1i (x))∪K1) then Fi(x) ∈ c(qi(p
−1
i (x))∪K0),

and so Fi(x) ∈ K0. It follows that Fi(x) ∈ K0, i.e. x ∈ F−1i (K0), and so

Fi(x) ∈ c(qi(p−1i (F
−1
i (K0))) ∪K1) ⊆ c(G(K0) ∪K1) = c(K1) = K1.

Since either K1 = ∅ or K1 ∈ A0, we have shown that the set K1 is a hull
candidate for (Fi, pi, qi,Ωi). Hence, K1 ∈ K which implies K1 ⊇ K, and so
K = K1. �

The crucial observation is now that in many cases the relation (6.6) alone
implies the compactness of the restriction qi|AΩi (Fi,qi,K0) and thus (under natural
additional assumptions) that K0 is fundamental. We discuss this now.

7. The convex case

We are going to apply the previous results for the case that Y is a convex
subset of a locally convex space. The most important special case reads as
follows. (Note that without additional assumptions, we need the general axiom
of choice in the form of Dugundji’s extension theorem for the following proof).

We consider the following situation: Let Y be a metrizable convex subset
of a locally convex space, and let A0 be the family of all closed (in Y ) convex
subsets of Y . Assume that G = G0 is the class of all spaces Γ with the property
that [0, 1]× Γ is a T4 space.

Theorem 7.1. Consider the above situation. Let (Fi, pi, qi,Ωi) ∈ T (i ∈ I)
and let G:A0 ∪ {∅} → 2Y satisfy (6.4) and

G(K) ⊇ qi(AΩi(Fi, pi,K)) (K ∈ A0).

Assume that there is some V ⊆ Y such that for each K ∈ A0 the relation

(7.1) K = Y ∩ conv(G(K) ∪ V )

implies that the restriction qi|AΩi (Fi,pi,K) is continuous and compact and satisfies

CoinF−1i (K)∩∂Ωi(Fi, pi, qi) = ∅ (i ∈ I).
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Then there is some K ⊆ Y satisfying (7.1) which is strictly fundamental for each
(Fi, pi, qi,Ωi) for i ∈ I.

Proof. Let c(M) := conv(M) (or c(M) := Y ∩ conv(M)), and let K := K0
be the set of Proposition 6.5. By Proposition 6.4, K is a strong deformation
candidate, and by Proposition 5.6, K is union-admissible. Theorem 5.8 thus
implies that K is strictly fundamental for (Fi, pi, qi,Ωi). �

Concerning the degree of Section 4, we obtain similarly:

Theorem 7.2. Consider the situation described in front of Theorem 7.1. Let
(Fi, pi, qi,Ω) ∈ T (i ∈ I), and assume that

C :=
⋃
i∈I
CoinΩ(Fi, pi, qi)

is O-normal and contained in Ω. Let Ω0 ∈ O be given with C ⊆ Ω0 ⊆ Ω. Let
G:A0 ∪ {∅} → 2Y satisfy (6.4) and

G(K) ⊇ qi(AΩ(Fi, pi,K)) (K ∈ A0).

Assume that there is some V ⊆ Y such that for each K ∈ A0 with (7.1) the
restriction qi|AΩ0 (Fi,pi,K) is continuous and compact. Then there is some K ⊆ Y
with (7.1) which is locally strictly fundamental for each (Fi, pi, qi,Ω) (i ∈ I).
More precisely, for each Ω′0 ∈ O with C ⊆ Ω′0 and Ω

′
0 ⊆ Ω0 there is some K

with (7.1) which is strictly fundamental for each (Fi, pi, qi,Ω′0) (i ∈ I).

Note that in most applications of Theorem 7.1, resp. Theorem 7.2, the func-
tions qi are continuous. In this case the only essential assumption is that the
relation (7.1) for some K ∈ A0 implies that qi(AΩi(Fi, pi,K)) is contained in
a compact subset of Y . Note that in view of (6.3) this set is always contained
in K. In particular, the essential assumption is satisfied if (7.1) implies that K
has a compact closure in Y . This condition is satisfied, in particular, if Y is
a closed convex subset of a Banach or Fréchet space, V is compact, and G has
a bounded range and is condensing with respect to the Hausdorff or Kuratowski
measure of noncompactness.

However, in many applications, in particular for integral operators of vector
functions, one can obtain sharp estimates for measures of noncompactness only
on countable sets, see e.g. [6], [42], [29], [39], [33], [59]. We thus aim to replace
(7.1) by a similar equality for countable sets. Such results are in the attitude
of [13], [14], [32], [41], [54], [57], [58]. Two essentially different approaches in
this direction are possible, depending on whether we are considering countable
subsets of X or of Y . Let us first consider the former case. For this case, we
obtain the following results corresponding to Theorems 7.1 and 7.2.
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We consider the following situation: Let Y be a closed convex metrizable
subset of a locally convex space, and let A0 be the family of all closed convex
subsets of Y . Assume that G = G0 is the class of all spaces Γ with the property
that [0, 1]×Γ is a T4 space. Let (H,P,Q,Ω) ∈ H′ and assume that Ω is a metric
space.
The result concerning the local situation of Section 4 (i.e. corresponding to

Theorem 7.2) is simpler: Essentially, we are able to replace (7.1) by (7.3) for
countable subsets C0 ⊆ X.

Theorem 7.3. Suppose in the above situation that

C := CoinΩ(H,P,Q) =
⋃
t∈[0,1]

CoinΩ(H(t, · ), Pt, Qt)

is contained in Ω and O-normal. Let Ω0 ∈ O satisfy C ⊆ Ω0 ⊆ Ω and be such
that Q is continuous on P−1([0, 1]× Ω0) and that Q(P−1(t, x)) is separable for
each (t, x) ∈ [0, 1] × Ω0. Assume also that V ⊆ Y is separable, V ⊇ H([0, 1] ×
C) \ conv(Q(P−1([0, 1]× C))),

(7.2) conv(Q(P−1([0, 1]× Ω0)) ∪ V ) \H([0, 1]× Ω0) is closed,

and that P |P−1([0,1]×Ω0) is a closed map. Suppose that for each countable C0 ⊆
[0, 1]× Ω0 with

(7.3) H(C0) = H([0, 1]× Ω0) ∩ conv(Q(P−1(C0)) ∪ V )

the set Q(P−1(C0)) is compact. Then (H,P,Q,Ω) ∈ H′2 ⊆ H2 and the set K of
Definition 4.6 can be chosen such that it contains V .

Note that usually (e.g. if CoinΩ(H,P,Q) is closed)

H([0, 1]× C) \ conv(Q(P−1([0, 1]× C))) = ∅,

and in this case the choice V = ∅ is admissible.

Remark 7.4. Actually, we find in Theorem 7.3 for each Ω′0 ∈ O with C ⊆ Ω′0
and Ω

′
0 ⊆ Ω0 some K ⊇ V which is strictly fundamental for (H(t, · ), Pt, Qt,Ω′0)

(0 ≤ t ≤ 1) and such that the restriction Q|AΩ0 (H,P,K) is compact and assumes
its values in K.

Since Ω0 is open, the assumption (7.2) is rather natural: In fact, for many
classes F which provide a triple-degree it is the case that F is an open map for
each (F, p,Ω)∈F , and then of course H([0, 1]×Ω0) is open for each (H,P,Ω)∈F .
However, the requirement (7.2) is actually not essential for Theorem 7.3: It
merely simplifies the equality (7.3) slightly. Without this requirement, we have to
be more careful with the closures in (7.3) and have to consider the two inclusions
separately:
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Theorem 7.5. An analogous result to Theorem 7.3 (and Remark 7.4) holds
without the assumption (7.2) provided that we replace (7.3) by the pair of inclu-
sions:

H(C0) ⊆ H([0, 1]× Ω0) ∩ conv(Q(P−1(C0)) ∪ V ),(7.4)

H(C0) ⊇ H([0, 1]× Ω0) ∩ conv(Q(P−1(C0)) ∪ V ).(7.5)

Theorem 7.5 has the following analogue to the global situation of Section 3
(i.e. corresponding to Theorem 7.1).

Theorem 7.6. Consider the situation described in front of Theorem 7.3,
and assume that Q is continuous and Coin∂Ω(H,P,Q) = ∅. Let Q(P−1(t, x))
be separable for each (t, x) ∈ [0, 1] × Ω. Assume also that V ⊆ Y is separable.
Suppose that for each countable C0 ⊆ [0, 1]× Ω with

H(C0) ⊆ H([0, 1]× Ω) ∩ conv(Q(P−1(C0)) ∪ V ),(7.6)

H(C0) ⊇ H([0, 1]× Ω) ∩ conv(Q(P−1(C0)) ∪ V ),(7.7)

the set Q(P−1(C0)) is compact. Then (H,P,Q,Ω) ∈ H′′1 ⊆ H′1 ⊆ H1, and the
set K of Definition 3.9 can be chosen such that it contains V .

The proof of the above theorems follows from the following result which is
proved completely analogously to [58, Proposition 4.1 and Corollary 4.2]:

Lemma 7.7. Let D be a metric space, and Y be a closed convex metrizable
subset of a locally convex space Z. Let H:D → Z and Φ:D → 2Z be such that
Φ(x) is separable for each x ∈ D. Let V ⊆ Z be separable, and M ⊆ D satisfy

(7.8) H−1(conv(Φ(M) ∪ V )) =M.

Then for each countable C1 ⊆M there is some countable C0 ⊇ C1 with C0 ⊆M
such that

(7.9) H(D) ∩ conv(Φ(C0) ∪ V ) ⊆ H(C0) ⊆ H(D) ∩ conv(Φ(C0) ∪ V ).

In particular, if for each countable C0 ⊆M with (7.9) the set Φ(C0) is compact,
then Φ(M) is compact. If conv(Φ(M) ∪ V ) \H(D) is closed, then (7.9) can be
equivalently rewritten as

(7.10) H(C0) = conv(Φ(C0) ∪ V ) ∩H(D).

Proof of Theorem 7.6. Apply Theorem 7.1 with

(Ft, pt, qt,Ωt) := (H(t, · ), Pt, Qt,Ω) and G(K) := Q(AΩ(H,P,K)).
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We are done, if we can show that the relation K = conv(G(K) ∪ V ) implies
that G(K) is compact. To see this, we apply Lemma 7.7 with D := [0, 1] × Ω,
Φ(W ) := Q(P−1(W )), and M := H−1(K). Since Q is continuous, we have

(7.11) Φ(W ) ⊆ Q(P−1(W )) (W ⊆ D).

In particular, our assumptions imply that Φ(t, x) is separable. Moreover,

P−1(M) = AΩ(H,P,K),

and so

Φ(M) = Q(AΩ(H,P,K)) = G(K),

in particular

conv(Φ(M) ∪ V ) = conv(G(K) ∪ V ) = K.
Hence, (7.8) holds. In view of (7.11), the inclusions (7.6) and (7.7) are just
reformulations of (7.9). Lemma 7.7 thus implies that Φ(M) = G(K) is compact,
as required. �

Proof of Theorems 7.3 and 7.5. The proofs are similar to the above
proof of Theorem 7.6: Apply Theorem 7.2 and put D := [0, 1]×Ω0 and G(K) :=
Q(AΩ0(H,P,K)) in the above arguments; for Theorem 7.3 note that the set
conv(Φ(M) ∪ V ) \H(D) is closed if (7.2) holds and that (7.3) (resp. (7.6) and
(7.7)) is a reformulation of (7.10) (resp. of (7.9)). �

If we want conditions in terms of countable subsets of Y (not of X), we have
the following two results (corresponding to the local, resp. global situation of
Section 3, resp. 4). Note that if Yn are “sufficiently large”, the inclusions (7.12)
and (7.13) together come pretty close to the equality

C0 = conv(Q(P−1(H−1(C0) ∩ ([0, 1]× Ω))) ∪ V )

which is a “countable” version of (7.1).

Theorem 7.8. Consider the situation described in front of Theorem 7.3, and
assume that Q is continuous and that Coin∂Ω(F, P,Q) = ∅. Let V ⊆ Y and let
Yn ⊆ Y (n = 1, 2, . . . ) be such that Yn∩V and Yn∩Q(P−1(H−1(y)∩([0, 1]×Ω)))
are separable for each y ∈ Y and each n. Suppose that for each countable C0 ⊇ Y
with

C0 ⊆ conv(Q(P−1(H−1(C0) ∩ ([0, 1]× Ω))) ∪ V ),(7.12)

(7.13) Yn ∩ C0 ⊇Yn ∩ conv(Q(P−1(H−1(C0)) ∩ ([0, 1]× Ω)) ∪ V ),

for n = 1, 2, . . . , the set Q(P−1(H−1(C0) ∩ ([0, 1]× Ω))) is compact. Then
(H,P,Q,Ω) ∈ H′′1 ⊆ H′1 ⊆ H1, and the set K of Definition 3.9 can be cho-
sen such that it contains V .
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Theorem 7.9. Consider the situation described in front of Theorem 7.3.
Suppose that

(7.14) C := CoinΩ(H,P,Q) =
⋃
t∈[0,1]

CoinΩ(H(t, · ), Pt, Qt)

is contained in Ω and O-normal. Let Ω0 ∈ O satisfy C ⊆ Ω0 ⊆ Ω and be such
that Q is continuous on P−1([0, 1]×Ω0) and that P |P−1([0,1]×Ω0) is a closed map.
Let V ⊆ Y , V ⊇ H(C) \ conv(Q(P−1(C))), and let Yn ⊆ Y (n = 1, 2, . . . ) be
such that Yn ∩V and Yn ∩Q(P−1(H−1(y)∩ ([0, 1]×Ω0))) are separable for each
y ∈ Y and each n. Suppose that for each countable C0 ⊇ Y with

C0 ⊆ conv(Q(P−1(H−1(C0) ∩ ([0, 1]× Ω0))) ∪ V ),(7.15)

(7.16) Yn ∩ C0 ⊇Yn ∩ conv(Q(P−1(H−1(C0)) ∩ ([0, 1]× Ω0)) ∪ V ),

for n = 1, 2, . . . , the set Q(P−1(H−1(C0) ∩ ([0, 1]× Ω0))) is compact. Then
(H,P,Q,Ω) ∈ H′2 ⊆ H2 and the set K of Definition 4.6 can be chosen such that
it contains V . Actually even the property of Remark 7.4 holds.

Theorems 7.8 and 7.9 follow from the following Lemma 7.10 which can be
proved analogously to the proof of [58, Proposition 4.3].
In this lemma, we use for H:D → 2Y and M ⊆ Y the notation

H−1(M) := {x ∈ D : H(x) ⊆M}.

Lemma 7.10. Let D be a metric space, and Y be a closed convex metrizable
subset of a locally convex space. Let H,Φ:D → 2Y and K,V ⊆ Y satisfy

(7.17) K = conv(Φ(H−1(K)) ∪ V ).

Let Yn ⊆ Y (n = 1, 2, . . . ) be such that Yn∪V and Yn∩Φ(H−1(y)) are separable
for each y ∈ K and each n. Then for each countable C1 ⊆ K there is some
countable C0 ⊇ C1 with C0 ⊆ K such that

C0 ⊆ conv(Φ(H−1(C0)) ∪ V ),(7.18)

Yn ∩ C0 ⊇ Yn ∩ conv(Φ(H−1(C0)) ∪ V ) (n = 1, 2, . . . ).(7.19)

In particular, if for each countable C0 ⊆ K with (7.18) and (7.19) the set
Φ(H−1(C0)) is compact, then Φ(H−1(K)) is compact.

Proof of Theorem 7.8. Using the notation of the proof of Theorem 7.6,
in particular, G(K) := Q(AΩ(H,P,K)), we have to show that the relation K =
conv(G(K) ∪ V ) implies that G(K) is compact. To see this, we apply Lemma
7.10 with D := [0, 1]×Ω andΦ(W ) := Q(P−1(W )). Since Φ(H−1(K)) = G(K),
assumption (7.17) is just a reformulation of (7.1). Moreover, in view of (7.11), the
inclusions (7.12) and (7.13) are reformulations of (7.18) and (7.19), respectively.
Lemma 7.7 thus implies that Φ(H−1(K)) = G(K) is compact, as required. �
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Proof of Theorem 7.9. The proof is similar to the above proof of Theo-
rem 7.8: Apply Theorem 7.2 and put

D := [0, 1]× Ω0 and G(K) := Q(AΩ0(H,P,K))

in the above arguments, noting that (7.15) and (7.16) are reformulations of (7.18)
and (7.19), respectively. �

8. Applications for countably condensing maps

Recall that the Hausdorff measure of noncompactness of a set M in a pseu-
dometric space is defined as the infimum of all ε > 0 such that M has a finite
ε-net N in the space, i.e. dist(x,N) ≤ ε for each x ∈ M . Similarly, the Kura-
towski measure of noncompactness is the infimum of all ε > 0 such that M can
be covered by finitely many sets of diameter at most ε. A natural generalization
of these measures of noncompactness in Y is the following definition in the sense
of [1], [51]:

Definition 8.1. Let U be a partially ordered set. We call γ: 2Y → U
a monotone V -measure of noncompactness (on Y ) if

(a) γ(convM) = γ(M) for each M ⊆ Y .
(b) γ(M1) ≤ γ(M2) for each M1 ⊆M2 ⊆ Y .
(c) γ(M ∪ V ) = γ(M) for each M ⊆ Y .

In case V = ∅, we simply speak of a monotone measure of noncompactness.

Example 8.2. Let Y be a convex subset of a locally convex metrizable
space Z, and let (‖ · ‖n)n∈N be a corresponding countable family of continuous
seminorms in Z generating the topology. Let U := [0,∞]N, and put γ(M) :=
(γn(M))n where γn denotes either the Kuratowski measure of noncompactness
with respect to ‖ · ‖n or the Hausdorff measure of noncompactness in either
the space Y or Z with respect to ‖ · ‖n. Then γ is a monotone V -measure of
noncompactness for each precompact set V .

Definition 8.3. Let A be some set, Φ:A → 2Y and F :A → Y . We call Φ
V -countably F -condensing on A if for each countable C0 ⊆ A for which Φ(C0)
is not compact there is some partially ordered set U and a monotone V -measure
of noncompactness γ: 2Y → U such that

γ(Φ(C0)) 6≥ γ(F (C0)).

If A ⊆ Y , we call G:A→ 2Y V -countably condensing on A if G is V -countably
i-condensing on A where i:A→ Y is the inclusion map.
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Example 8.4. Consider the situation of Example 8.2. Let F :A → Y and
Φ:A→ 2Y be such that for each n ∈ N there is a function γ̃n: 2A → [0,∞] with

γn(F (C0)) ≥ Lnγ̃n(C0) (C0 ⊆ A countable),(8.1)

γn(Φ(C0)) ≤ `nγ̃n(C0) (C0 ⊆ A countable),(8.2)

where 0 ≤ `n < Ln ≤ ∞. Assume that either one of the sets Φ(A) or F (A)
is bounded (i.e. bounded with respect to each of the seminorms ‖ · ‖n) or that
γ̃n(C0) < ∞ (n ∈ N) for each countable C0 ⊆ A. If Y is complete (or if the
relation γ̃n(C0) = 0 (n ∈ N) for some countable C0 ⊆ A implies that Φ(C0) is
compact), then Φ is V -countably F -condensing on A for each V ⊆ Y for which
V is a compact subset of Y .
In particular, let A ⊆ Y and G:A→ 2Y satisfy for each n ∈ N

(8.3) γn(G(C0)) ≤ qnγn(C0) (C0 ⊆ A countable)

with some qn ∈ [0, 1). Let either A or G(A) be bounded. If Y is complete (or A
is complete and G sends compact sets into compact sets) then G is V -countably
condensing on A for each V ⊆ Y with compact V ⊆ Y .

Note that none of the conditions (8.1), (8.2) or (8.3) changes under compact
perturbations of the maps. In particular, (8.3) holds if G is a single-valued
compact perturbation of a contraction (with respect to each ‖ · ‖n), and similarly
(8.2) holds if Φ is a compact perturbation of Lipschitz map (and γ̃n denotes
a corresponding measure of noncompactness). But also for many multivalued
maps good estimates of the type (8.2) are known, see e.g. [33]. Roughly speaking,
the conditions (8.1) and (8.2) mean that “Φ is more compact than F is proper”.

Proposition 8.5. The compactness assumption of Theorem 7.5 (resp. The-
orem 7.6) is satisfied if Φ := Q◦P−1 is V -countably H-condensing on [0, 1]×Ω0
(resp. on [0, 1]× Ω).

Proof. The inclusion (7.4), resp. (7.6), implies that

H(C0) ⊆ conv(Φ(C0) ∪ V ).

We thus have for each monotone V -measure γ of noncompactness

γ(H(C0)) ≤ γ(conv(Φ(C0) ∪ V )) = γ(Φ(C0) ∪ V ) = γ(Φ(C0)).

Hence, Φ(C0) is compact. �

Proposition 8.6. The compactness assumption of Theorem 7.8, resp. The-
orem 7.9, is satisfied if

G(y) := Q(P−1(H−1(y) ∩ ([0, 1]× Ω))),
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respectively
G(y) := Q(P−1(H−1(y) ∩ ([0, 1]× Ω0))),

is V -countably condensing on Y .

Proof. For each monotone V -measure γ of noncompactness the relation
(7.12), resp. (7.15), implies γ(C0) ≤ γ(conv(G(C0) ∪ V )) = γ(G(C0)). �

9. An application

As pointed out in the introduction, the theory presented in this paper is new
even in the case p = id. As new application of this case, we prove a continuation
theorem.
Let X be a real reflexive separable Banach space with dual space X∗. Let

Ω ⊆ X be open and bounded.

Definition 9.1. We say that F : Ω→ X∗ is a Skrypnik map, if the following
holds:

(a) F (Ω) is bounded.
(b) F is demicontinuous, i.e. Ω 3 xn → x implies F (xn)⇀ F (x).
(c) The relations Ω 3 xn ⇀ x and lim supn→∞ 〈F (xn), xn − x〉 ≤ 0 imply
that there is a subsequence xnk → x.

Let T be the class of all (F, id,Ω) as above. The Skrypnik degree theory [53]
implies that T provides a compact triple-degree with values in G = Z. Moreover,
as has been proved in [56], this degree is additive and satisfies the exhaustion
property.

Theorem 9.2 (Continuation Theorem for Skrypnik Maps). Let X be a real
reflexive separable Banach space, 0 ∈ Ω ⊆ X open and bounded, and F : Ω→ X∗

be a Skrypnik map. Let h: [0, 1] × X → X∗ be continuous and such that the
following holds:

(a) q = h(0, · ) is compact and has one of the following properties:
(a1) 〈F (x)− q(x), x〉 ≥ 0 for all x ∈ Ω.
(a2) There is some open ball Br ⊆ Ω around 0 which contains {x ∈ Ω :
F (x) = q(x)} and such that F − q is odd on Br.

(b) There are no (t, x) ∈ [0, 1]× ∂Ω with F (x) = h(t, x).
(c) For each countable C ⊆ Ω for which H([0, 1]× C) is not compact, there
is a monotone measure γ of noncompactness with γ(H([0, 1] × C)) 6≥
γ(F (C)).

Then F (x) = H(1, x) has a solution x ∈ Ω.

Proof. Put H(t, x) := F (x) and note that

D := {(t, x) ∈ [0, 1]× Ω : H(t, x) = h(t, x)}
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is closed. Indeed, if (tn, xn)∈D converges to (t, x), then H(tn, xn) = h(tn, xn)→
h(t, x), and the demicontinuity of H implies (t, x) ∈ D. Since [0, 1] is compact,
the projection of [0, 1]×Ω to the second component is a closed map, see e.g. [12,
Proposition I.8.2]. In particular,

C :=
⋃
t∈[0,1]

{x ∈ Ω : H(t, x) = h(t, x)}

is closed. By hypothesis, C ⊆ Ω. Apply now Theorem 7.5 with Ω0 := Ω, P := id,
Q := h, and V := ∅. In view of Proposition 8.5, we have (H,P,Q,Ω) ∈ H′2 ⊆ H2.
By the homotopy invariance and normalization of the degree of Theorem 4.7, we
thus have

DEG(F, id, h(1, · ),Ω) = Deg(F, id, q,Ω).

The right-hand side is the Skrypnik degree of the map F − q on Ω (see e.g. [56]).
Our hypotheses on q imply that this degree is 1, resp. odd, see Theorem 1.3.4
and Theorem 1.3.5 in [53]. In particular, F (x) = H(1, x) has a solution by the
existence property of Deg. �

Corollary 9.3 (Leray–Schauder Principle for Monotone Maps). Let X be
a real reflexive separable Banach space, 0 ∈ Ω ⊆ X open and bounded, and
F : Ω→ X∗ be demicontinuous with bounded range and such that there is a non-
decreasing function r: [0,∞)→ [0,∞) with

〈F (x)− F (y), x− y〉 ≥ r(‖x− y‖) (x, y ∈ Ω).

Suppose also that F (0) = 0. Let G: Ω → X∗ be continuous with the following
properties:

(a) The Leray–Schauder boundary condition holds:

λF (x) 6= G(x) (x ∈ ∂Ω, λ ≥ 1).

(b) G is {0}-countably F -condensing on Ω.

Then F (x) = G(x) has a solution x ∈ Ω.

Proof. Apply Theorem 9.2 with H(t, x) := tG(x). The monotonicity as-
sumption implies that F is a Skrypnik map (see e.g. [56]) and that in view of
F (0) = 0 the first assumption of Theorem 9.2 holds. Note that for each monotone
{0}-measure γ of noncompactness the equality

γ(H([0, 1]× C)) = γ(conv({0} ∪G(C))) = γ(G(C))

holds. Hence, if F (x) = G(x) has no solution in ∂Ω, Theorem 9.2 implies that
F (x) = G(x) has a solution in Ω. �
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Centre Belge de Recherches Matheématiques Liege 1970 (Louvain, Belgique); Vander

éditeur, 1971, pp. 1–9.

[45] R. D. Nussbaum, The fixed point index for local condensing maps, Ann. Mat. Pura
Appl. 89 (1971), 217–258.



Degree and Index Theories for Noncompact Function Triples 117

[46] , Degree theory for local condensing maps, J. Math. Anal. Appl. 37 (1972), 741–

766.

[47] , Generalizing the fixed point index, Math. Ann. 228 (1977), 259–278.
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