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EXISTENCE AND MULTIPLICITY RESULTS
FOR SEMILINEAR EQUATIONS WITH MEASURE DATA

ALBERTO FERRERO — CLAUDIO SACCON

ABSTRACT. In this paper, we study existence and nonexistence of solutions
for the Dirichlet problem associated with the equation —Au = g(z,u) + p
where p is a Radon measure. Existence and nonexistence of solutions
strictly depend on the nonlinearity g(z,u) and suitable growth restrictions
are assumed on it. Our proofs are obtained by standard arguments from
critical theory and in order to find solutions of the equation, suitable func-
tionals are introduced by mean of approximation arguments and iterative
schemes.

1. Introduction

Let 2 C R”™ be a connected open bounded domain with smooth boundary
and let n > 2. Denote by M(Q) the space of Radon measures, i.e. the dual
space of the Banach space Co(f2) of continuous functions in Q which vanish on
the boundary, endowed with the usual L°°-norm. We study elliptic problems

of the type

—Au = g(z,u) + in Q,
(L1) g(x,u) +p

u=20 on 0f),

where p € M(Q) and g:Q x R — R is a Caratheodory function.
Previous results on semilinear and quasilinear equations with measure data
have been obtained, see [4]-[6], [8]. In some of these papers the model problem

2000 Mathematics Subject Classification. 35J15, 35J20.
Key words and phrases. Dirichlet problem, Radon measures, critical point theory.

(©2006 Juliusz Schauder Center for Nonlinear Studies

285



286 A. FERRERO C. SACCON

(1.1) is studied and existence and nonexistence results are obtained under the
fundamental assumption g(z,s)s < 0. Some difficulties arise when existence
of solutions of (1.1) is studied due to the fact that the associated action functional
J is not defined in the whole Sobolev space H} (), where J is given by

(1.2) J(v):%/Q|Vv|2d:r—/QG(:r,v)dac—/deu

for all v € H} (2)NCy(Q2). Here and in the rest of the paper we denote by G(z, s)
the function [ g(z,t) dt for any s € R.

In some of the above mentioned papers (see [5], [8]), this difficulty is over-
come by replacing the measure p with a sequence of regular functions {f,}
which converges weakly to p in the sense of measures and g(x, s) with a suitable
sequence of truncated functions g,,(z,s) (see (38) in [5]) so that, according to
(1.2) the corresponding functionals J(™) are defined in the whole H}(f2). Then
a sequence {u,,} of solutions of the “regularized” problems

AU = g (T, Um) + fyn  in £,
13) { G (T, ) +

Um =0 on 01,

is obtained via minimization and boundedness in L'(Q) of g,,(z, u,,) is proved,
provided that the assumption g(z,s)s < 0 holds. In order to pass to the limit
in (1.3), a growth restriction at infinity on g is needed. This restriction involves
the critical exponent 2, = 2(n — 1)/(n — 2), see Theorem 3 in [5] and Theorem
A.1in [4]. Note that 2, < 2* = 2n/(n — 2) where 2* denotes the critical Sobolev
exponent. Without this growth restriction the existence of solutions of (1.1) is
guaranteed only under suitable assumptions on the measure p, see [8] and [9].

Our purpose is to understand what happens when the condition g(z, s)s <0
is dropped. A completely different behavior of problem (1.1) is expected without
this assumption. In our first result we consider the equation (1.1) and assuming
that g(x, s) has a nonresonant linear behavior as |s| — oo, in Theorem 2.1 we
prove that (1.1) admits a solution. Here the above mentioned approximation
argument is employed: in the proof of Theorem 2.1 the measure p is replaced
by a sequence {u,,} and the existence of a solution u,, for the corresponding
problem (1.1) is obtained by [10]. Thanks to the linear asymptotic behavior
at infinity of g(z, s) we prove boundedness in L'(f) of the sequence {u,,} and
using Theorem 8.1 in [14] we pass to the limit in the “regularized” problem thus
obtaining the existence of a solution.

Then we investigate what happens when g = g(s) has a superlinear behavior
at infinity. To this purpose we study the problem
{ —Au = g(u)+ep in Q,

1.4
(14) u=20 on 012,
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where p is a nonnegative nontrivial Radon measure and € > 0. In Theorem 2.2,
we assume that g = g(s) satisfies the growth restriction |g(s)| < C(1 + |s[P~1)
for any s € R with p < 2, = 2(n—1)/(n —2). Here we prove the existence
of a nonnegative solution u. of (1.4) for any € € (0,e*) for a suitable ¢* > 0.
Moreover we prove that the restriction € € (0,e*) is also necessary for existence
of nonnegative solutions of (1.4).

Our next purpose is to understand if (1.4) admits an extremal solution, i.e.
a solution corresponding to € = €*. In Theorem 2.5, we give a partial answer to
this problem: we prove existence for ¢ = ¢* at least when g is a polynomial-type
function. The proof of Theorem 2.5 is obtained from a convergence result on the
sequence of solutions u. as € — £*. In order to prove boundedness of {u.}, some
precise asymptotic estimates are needed and therefore we restrict our result to
the case of a polynomial-type nonlinearity g.

Then in Corollary 2.4, by a super-subsolution argument, we prove existence
of solutions of (1.4) for u € M(Q) without any restriction on the sign of p.

Next, we investigate whether the model problem (1.4) admits at least two
positive solutions. It was proved in [16] that for g(s) = |s|P=2s, p < 2* and
w € H™Y(Q), p > 0, then (1.4) admits two positive solutions for any ¢ small
enough. In Theorem 2.6 we extend this multiplicity result to the case of a non-
negative nontrivial Radon measure under the more restrictive growth condi-
tion p < 2,. Actually, our multiplicity result is proved for a more general
polynomial-type nonlinearity g. In the proof of Theorem 2.6, precise asymptotic
estimates are needed in order to prove boundedness of Palais—Smale sequences
(see Lemma 9.2) and hence the extension of this result to the more general
nonlinearity ¢ introduced in Theorem 2.2 is far from being straightforward.

In the proofs of Theorems 2.2 and 2.6 an iterative scheme is introduced.
This approach enables us to define a new equation and a corresponding action
functional denoted by Iy . (see (4.11), (4.12) for the definition of the equation
and the functional Iy ). This new problem is equivalent to (1.4) in the sense
that admits a solution if and only if (1.4) admits a solution. The functional
In, is obtained after suitable “horizontal and vertical translations” from the

1
J(v) = f/ \Vv|2dx—/ G(v)dz:fs/ vdp,
2 Ja Q Q
for all v € HY(Q) N Co(Q), where G(s) = f;g(t) dt (see Theorem 2.7). With

this procedure, we obtain a functional Iy . defined in the whole H{ () from

functional

a functional which is defined only on a subspace of H3(Q). The multiplicity
result in Theorem 2.6 then follows from an application to the functional Iy .
of the mountain-pass theorem [3].

Finally, we want to understand whether the growth restriction p < 2, on
g(s) = |s|P~2s is also necessary for the existence of nonnegative solutions of (1.4).
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We clarify this question proving in Proposition 2.8 that for p > 2., (1.4) does
not admit a nonnegative solution when p is a Dirac measure concentrated at
an interior point of 2. Since the Dirac mass is a concentrated measure, one
may ask whether existence of nonnegative solutions of (1.4) can be obtained also
for p > 2, when p is a diffuse measure (see [8] for the definition of diffuse and
concentrated measure). The answer in this sense is negative, since there exist
diffuse measures for which (1.4) does not admit a nonnegative solution. More
precisely, in Proposition 2.9 we prove that for any p > 2, there exists a u € L*(Q)
such that (1.4) does not admit a nonnegative solution.

This paper is organized as follows. The next section is devoted to the state-
ments of the main results and Sections 3-12 are devoted to their proofs.

Acknowledgement. While this paper was being published the authors dis-
covered that the superlinear case had been treated, in a quite comprehensive way,
by Amann and Quittner in a previous paper (see [2]), also in the case of a more
general linear elliptic operator Lu = —div(a;;(x)D;u) (plus lower order terms).

In [2], however the approach is quite different from the previously described
one and is basically non variational, the main tool being the fized point index
for order-preserving maps. The proof of the main result relies on continuation
properties of the index with respect to the parameter and on an a priori bound
for all the solutions. Getting such properties requires some amount of regularity
for the coefficients of the linear part which are supposed to be C2(€2).

On the contrary in the present paper the variational aspect of the problem is
recovered, which allows to impose only minimal assumptions. Indeed, although
for the sake of simplicity only the Laplace operator is considered herein, the re-
sults of Theorems 2.2, 2.5 and 2.6 can be easily extended to the case of the linear
part being Lu = —div(a;;(z)D;u), with a;; just measurable and bounded (and
uniformly elliptic of course). To see this it suffices to observe that what is actu-
ally needed to perform the iterative scheme is the validity of (¢) of Lemma 4.3,
which follows from the following regularity argument: if u € WO1 Tq< N/(N-1),
Lu =h with h € L" r > 1, then u € L))" when r < N/2 and u € CY when
r > N/2. This can be easily deduced by the regularity results of [14] (it is worth
noticing that no properties on the second derivative of u are neither proved nor
used). In [14] it is also shown that the operator Lu verifies the strong maximum
principle used to prove positivity of the solutions.

As a final comment it should be noted that the iterative scheme used to
recover the variational nature of the problem is also used in a forthcoming paper
(see [11]), where a problem with jumping nonlinearity is faced, and where degree
arguments seem not suffice to get (at least) the three solutions result proved
therein.
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2. Main results

In this section, we always assume that n > 2 and that Q C R™ is an open
bounded domain with smooth boundary. In the rest of the paper we endow the
Hilbert space H{ () with the scalar product

(w,v) gz = /QVqu dx  for all u,v € H} ().

We study the Dirichlet problem

{ —Au =g(z,u)+p in Q,

2.1
1) u=20 on 01,

where by a solution of (2.1) we mean a function v € L*(Q) with g(z,u) € L*(2)
which satisfies

/—uAgodx:/g(m,u)godx—i—/godu for all p € C2(9Q).
Q Q Q

Here C2(9) denotes the space of functions C?(2) which vanish on 9.

In our first result, we prove existence of solutions of (2.1) assuming that
g(x,s) has a linear asymptotic behavior as |s| — oco. Denote by o(—A) the
spectrum of —A with homogeneous Dirichlet boundary conditions and by A; <
Ao < .... the corresponding eigenvalues.

Let g(z, s) be such that

(2.2) he(z) = mgx lg(x,5)] € L*(Q) for all o > 0.

Assume that

(2.3) lim 9(@.s) _ A(z) uniformly for a.e. z € Q

s—+oo S

with A\ < A(x) < Apy1 and A < Agyq for a suitable & > 0 (here A\g = 0) and
that

(2.4) there exists 3 > 0 such that g(x, s)s > 0

for all |s| > 5 and for a.e. z € Q.

Moreover, we assume that

(2.5) A < A(x) on a subset of Q of positive measure,

(2.6) M) < Ag+1  on a subset of  of positive measure.

Then we establish
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THEOREM 2.1. Letn > 2 and assume that g satisfies (2.2)—(2.6). Then (2.1)
admits a solution u. Moreover, u € Wy (Q) for any ¢ < n/(n —1).
In our second result, we study the following problem
—Au=g(u)+ep in Q,
(2.7) u>0 in Q,
u=20 on 012,

where g is superlinear at infinity, p € M(Q) is a nonnegative nontrivial Radon
measure and € > 0. We assume that

(2.8) g € C*(R) is convex in [0, 00),
(2.9) g'(s) >0 foralls>0.

Moreover, suppose that there exists C' > 0 such that
(2.10) lg(s)] < A|s|+C|s[P~! forall s € R

with 2 < p < 2, and A € (0, \1). Finally, we suppose that
(2.11) lim 908 _
S§—00 S

In the sequel by minimal solution we mean the pointwise smallest nonnegative
solution of (2.7).
Then the following holds

THEOREM 2.2. Letn > 2,2 <p < 2, and let p € M(Q) be a nonnegative
nontrivial Radon measure. Assume that g satisfies (2.8)—(2.11). Then there
exists an extremal value €* > 0 such that:

(a) Ife € (0,e%), then (2.7) admits a minimal solution u..
(b) Ife > e*, then (2.7) admits no solutions.

The assumption A € (0, A1) in (2.10) is necessary for the existence of solutions
of (2.7) as one can see from the following

PROPOSITION 2.3. Letn > 2,2 < p < 2,, € > 0 and let p € M(Q) be
a nonnegative nontrivial Radon measure. Assume that g satisfies (2.8)—(2.11)
and that g(s) = As+o(s) as s — 01 with A > 0. If (2.7) admits a solution, then
A< A1

From Theorem 2.2, we derive an existence result for solutions of

{ —Au=g(u)+ep inQ,

(2.12)
u=0 on 012,

without any assumptions on the sign of p € M(€2). We establish
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COROLLARY 2.4. Letn > 2,2 <p <2, and u € M(Q). Assume that g(s)
and —g(—s) satisfy (2.8)—(2.11) for any s > 0. Then there exists € > 0 such that
for any € € (0,€) problem (2.12) admits a solution.

Then we prove that if g is a polynomial-type function, then (2.7) admits
a solution for € = ¢*.

THEOREM 2.5. Letn > 2, 2 < p < 2,, € > 0 as in Theorem 2.2 and let
uw € M(Q) be a nonnegative nontrivial Radon measure. Assume that g(s) =
As|972s + |s|P72s with2 < g < p <24, A>0if g >2 and A € [0, ) if ¢ = 2.
Then (2.7) admits a solution for e = e*.

Next we prove the existence of a second solution for problem (2.7).

THEOREM 2.6. Letn > 2, 2 < p < 2, and let p € M(Q) be a nonnegative
nontrivial Radon measure. Assume that g(s) = Ms|972s + |s|P72s with 2 < g <
P<2,A>20ifg>2and A€ [0,\) if ¢g=2. Ife € (0,&%) then (2.7) admits
a second solution U, > u, a.e. in Q with €* and u. as in Theorem 2.2.

In the next result we try to clarify the meaning of the procedure introduced
in the proof of Theorem 2.2. Let 1 be a nonnegative nontrivial Radon measure
and let ft,, = pp * o1 where {p,,,} is a sequence of mollifiers. Let J(™) be defined
by

1
J(m)(w)zé/ |Vw|2dx—/G(w)dx—E/umwdx for all w € H} ().
Q Q Q

Let vj(vr?g), 'y](vrtle), hg(,ne) (z,s), f](\,me) be the functions defined in (4.2)—(4.7) with i,
in place of  and N as in Lemma 4.3. Let 1™ be the translated functional

(2.13) I (w) = J) (w 4 vj(vmg)) - J(m)('y](\,nfe)) for all w € H}(Q).
We have

THEOREM 2.7. Let I(™) be the functional defined in (2.13) with e € (0,*).

(a) Assume that g satisfies (2.8)—(2.11). Then there exists T > 0 such that
for any m > the functional I™) admits a local minimizer u%”s) >0
which satisfies ugz,ne) — un . in H(Q) asm — co. Moreover, un « +Yn «
coincides with the minimal solution u. of (2.7) found in Theorem 2.2.

(b) Assume that g(s) = A|s|972%s + [s[P72s with 2 < g < p < 2,, A > 0 if
qg>2and A € [0,\1) if ¢ = 2. Then there exists Tm > 0 such that for
any m > the functional I admits a second critical point U](Vt) >0
which satisfies UJ(\Z? — U* in HY(Q) as m — oo up to subsequences.
Moreover, U = U* 4+ yn ¢ is a solution of (2.7) which satisfies U > u.
a.e. in 2.
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Finally, we show that the growth restriction (2.10) on g is optimal. To this
purpose consider the model problem

—Au=uP"l+ep inQ,
(2.14) u>0 in Q,

u=20 on 0f).
Then we have

PrOPOSITION 2.8. Let n > 2, p > 2, and let p =6, be a Dirac measure
concentrated at a € Q). Then (2.14) admits no solutions for any € > 0.

Assume again that p > 2,. We prove that (2.14) admits no solutions also for
some p € L'(Q).

PROPOSITION 2.9. Let n > 2, p > 2,. Then there exists p € L'(Q) such
that (2.14) admits no solutions for any € > 0.

3. Proof of Theorem 2.1

We start with some preliminary lemmas. In the following two subsections,
we distinguish the cases &k > 1 and k£ = 0 in (2.3)—(2.6).

3.1. The case Ay < A(z) < Agj1, k> 1. Let G(z,s) = [ g(x,t) dt and for
w € L?(Q) define the functional

(3.1) J(v):%/ \Vv|2dx—/G(x,v)dx—//wdx for all v € H} ().
Q Q Q

By (2.2)—(2.6) we deduce that the functional J € C1(H}(2)) so that the critical

points of J solve (2.1). We state the following

LEMMA 3.1. Assume that g satisfies (2.2)—(2.6). If p € L*(Q) then (2.1)
admits a solution uw € H} ().

PRrROOF. See [10]. O

Let f € L?(Q) and consider the following linear problem

—Au=Az)u+ f inQ,
(3.2)
u=20 on 092,

with A(z) as in (2.3). By Lemma 3.1 we infer that (3.2) admits a solution
u € HE(Q). Then, we establish

LEMMA 3.2. Let f € L?(Q) and let u € H} () be the corresponding solution
of (3.2) with AM(z) as in (2.3). Then there exists a constant C > 0 such that

[ull g < ClIfllz2-
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PROOF. Let L = —A: H} () — H~1(Q) and let K: H}(2) — H}(Q) be the
linear operator defined by

Kv=L"'(\(z)v) forallve H} Q).
By (2.5)—(2.6) and Lemma 3 in [10], we deduce that the linear problem
—Au=Az)u in
u=20 on 0,

admits only the trivial solution and hence, since K is a compact linear operator,
we have 1 € p(K) where p(K) denotes the resolvent set of K. In particular
this implies that (K — I)™! € L(H(Q); H3(2)) where I denotes the identity
in H}(Q). If u € H}(Q) is a solution of (3.2), then applying the operator
L' to both sides of (3.2), we obtain (K — I)u = —L~'f and in turn u =
—(K — I)"*L~1f. Then, the last identity yields

lullmg < I = D™ oo 1L e —mpll Fll e
which concludes the proof of the lemma. O

3.2. The case 0 < \(z) < A;. For g € L*(2) consider the functional J
defined in (3.1). The existence of a critical point for J may be obtained by

minimization.

LEMMA 3.3. Assume that g satisfies (2.2)—(2.6) with k = 0. If p € L*(Q),
then (2.1) admits a solution u € H}(Q).

ProOF. We first prove that .J is bounded from below. To this purpose, let
{um} be a sequence such that [|um ||z — oo. Consider now

(3.3) S (um) _ 1 / G(x,u2m) dx — ! 5 / Uy, dex.
o Tumly ™ Tl Je

TunlZy 2
By (2.3)—(2.4), we deduce that for any £ > 0 there exists 0. > 0 such that

2
2 < 5% for all z € Q and all |s| > o..

Hence, by (2.2), we obtain

’ G(x,um) dr — )\( Ju2, dx
o Q2

1
< oellho. |l + S A02|Q + E/ u?, dx.
2 2 Ja
Letting m — oo and € — 0, this yields

x U 1 u2
3.4 / m) / @) tm g
34 ’ Tumly ™ o 2 Tl

—0 asm — oo.
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Define vm = tp/|um|| gz Up to subsequences we may assume that v, — v in
H () and hence by (2.6), (3.4), compact embedding H}(Q) C L?(2) and weak
lower semicontinuity of the H}-norm, we obtain

hm/ (@, tm) dr = lim /)\ Y2, de = ~ /)\ Yo? dx
m—oo HumHHl m— oo

1
< §A1||v|\%2 <5 IIUHHl < liminf - ||vaH1 =

5.

We claim that the limit in the first line of (3.5) is strictly less than 1/2. Indeed,

if we suppose that the equality holds, then by (3.5) we have A1|[v]|7. = [[v[|3
0

which proves that v is an eigenfunction relative to A;; in particular v2 > 0 in Q.
Therefore by (2.6) we have

1 1
f/ M) dr < <A lo)2
2/, 2

and hence the strict inequality in (3.5) holds.
Finally by (3.3) we infer that there exist C' > 0 and m > 0 such that

(3.6) J(um) > C’HumHiIé for all m > m.

This proves that J is bounded from below. Next suppose that {w;,} is a minimiz-
ing sequence for J. Then applying inequality (3.6) to {w,,} we deduce that {w,,}
is bounded in Hg () and hence by (2.3), compact embedding Hg(2) € L%(Q)
and weak lower semicontinuity of the Hi-norm we conclude that the weak limit
of {w,,} in H}(Q) is a global minimizer for J. O

3.3. End of the proof of Theorem 2.1. Let {f,,} € L'(Q) N L?(Q) be
a bounded sequence in L'(Q) and consider the following nonlinear problem

{ ~Au=g(e,u)+ fr i€

3.7
(3.7) u=~0 on 0f).

By Lemma 3.1 for the case \y < A(z) < Ag41 and by Lemma 3.3 for the case
0 < Az) < A1, we deduce that (3.7) admits a solution u,, € H}(Q) for any
m € N. We recall that u,, solves (3.7) in H~1(Q2), i.e.

(3.8) / Vu,Vodz = / 9(x, U )V dx+/ fmvdz  for all v € H} ().
Q Q Q

Then, we establish

LEMMA 3.4. Let {fm} C LY(Q) N L*(Q) and suppose that || fm|lLr < C for
any m € N and let {un} be the corresponding sequence of solutions of (3.7).
Then {u,} is bounded in L' ().
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PrOOF. If we put v, = sign(u,), then ||vy,||L~ = 1 and

(3.9 [t || L1 :/umvmdas.
Q

Introduce the following linear problem

{ —Ap =Ax)p+ vy, inQ,

(3.10)
p=0 on 0f.

By Lemmas 3.1, 3.3 and Lemma 3 in [10], we infer that for any m € N problem
(3.10) admits a unique solution ¢, € H}(Q). Since ||v,,]|L~ = 1 then {v,,} is
bounded L?(£2) and by Lemma 3.2 it follows that {,,} is bounded in HJ(£2). By
Sobolev inequality and L%-estimates for strictly elliptic linear operators (see [1]),
we infer that {¢,,} is bounded in L>°(Q). We use @, as test function in (3.8)

to obtain
(3.11) / Vu Vo, dr = / 9(x, U)o dx +/ fmpmdr for all m € N.
Q Q Q

We need an estimate from above on [, g(, tm)pm dz. By (2.3) we infer that
for any € > 0 there exists 0. > 0 such that

(M) —e)s < glz,s) < (AM(z)+¢e)s forall zeQandall s> o,
M) +e)s <glx,s) < (A(z)—e)s forall z € Qandall s <—o,,
and hence by (2.2), Sobolev embedding and Hélder inequality, we obtain

(3.12)Ag(x,um)¢mdxg/ (@, ) om d

{lum|<oc}

+ (Mx) + &)umem dz

_|_

/{gomzo}m{u,,»aa}

(Mx) + &)umem dz
{pm<0}n{um<—0oc}

(Mz) — e)umpm dx

_|_

A%?rl Eo}ﬁ{um <—O'g}

+ (M) — &)umpm dx

/{(pm<0}ﬂ{um>ag}
<CE)lemllLe + ellumllrr lmll L +/ M) tim pm dz.
Q

Then, by (3.9)—(3.12) we have

0=—- [ Vu,Vo,dr+ / gz, um)pmdr + | fpmde
Q Q Q

< —/Vungpm d:c—|—/ AME) Uy i d
Q Q

+ CE)llemllzee + llumllLr[lomll Lo +/ fmpm da
Q
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- / s 0+ C(&) || 5 + &t 1 | o | 2 + / Fom d

— Jumllr + CE)lemllLe + elluml Lt |om| L= + /Q fmtpm d
and from this we obtain

(1 =ellpmllze)l[umllr < C@E)llemllLe + [ fmll Lt ll@mllzoe-

Since {fn} and {¢y,} are bounded respectively in L' (2) and L*°(Q), choosing
e small enough, it follows immediately that {u,,} is bounded in L(€2). O

Let u € M(Q). Then there exists a sequence {f,,} C L'(2) N L*(Q) such
that ||fmllz: < C and f,, — p in the sense of measures. Let {u,,} be the
corresponding sequence of solutions of (3.7). By Lemma 3.4 we deduce that the
sequence {u,,} is bounded in L'(Q) and by (2.2)—(2.3) and Theorem B.1 in [8]
(see also Theorem 8.1 in [14]), it follows that the sequence {u,,} is bounded
in W, 4(Q) for any 1 < ¢ < n/(n—1) . Up to subsequences we may assume
that there exists u such that u, — u in Wy?(€Q) for any 1 < ¢ < n/(n —1).
Moreover, by (2.2)—(2.3), Sobolev embedding and dominated convergence, it
follows that g(x,um) — g(z,u) in L1(Q).

Passing to the limit in (3.8) with v = ¢ € D(Q2), we obtain

(3.13) / VuVpdx = / g(:mu)g@da?—i—/ wdp  for all p € D(N).
Q Q Q

Note that the variational identity (3.13) holds for any ¢ € Wol’q/(qfl)(Q) C
Co(Q2) for ¢ < n/(n —1). If we choose p € C3(Q), then integrating by parts it
follows that

/—uA(pdxz/g(m,u)(pdx—F/god,u for all p € C3(9).
Q Q Q

This completes the proof of the theorem. O

4. Proof of Theorem 2.2
We start with the following preliminary lemma.

LEMMA 4.1. Letn > 2, p € (2,2%), A € (0,\1) and €1,e2,6 > 0. Ifa €
L™2(Q) and f € L (*+2)(Q) are nonnegative functions, then the problem

(41) { —Au = \u+ kuP~ +era(z)u+eaf(x) in Q,

u=20 on 09,

admits a nonnegative nontrivial solution for 1 and o small enough.
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PRrROOF. The proof of this lemma follows from a standard argument from
critical point theory. Define the functional

_ 1 2 A +12 ’f/ +\p
K@) =5IVelie =5 [ @92do =2 [ @y as
- G(I)(U+)2d‘f*€2/fvd$
2 Ja Q

for all v € H}(Q). Then K € C1(H}(2)) and by the weak comparison principle,
any critical point of K is a nonnegative nontrivial solution of (4.1). By Sobolev
embedding and Poincare inequality we have

>1/\1—)\

KCl
=5 N ||U||?—Ié .

K(v) »

ol

—e1Collall 2 0ll3y — €2C3)1f | onscsn 0]l

and hence for €1 and &5 small enough we have
there exists p, R > 0 such that K(v) > R for all v such that ||v|[z = p.
Moreover, there exists a nonnegative function w such that
|wllgg >p and K(w) <0.

On the other hand, since p € (2,2*) then K satisfies the Palais—Smale condition.
Therefore, the mountain-pass theorem [3] applies and (4.1) admits a nonnegative

nontrivial solution. O

Let v1 . be the unique solution of

—Avy . =ep in §,
(4.2) { he T

v1e=0 on 0,
and by iteration define for k =1,2,...
k k—1
_Avk+l7a = Q<Z'Ui,s> _g(zvi,es) in ,
(4.3) i=1 i=1
Vgt1,e =0 on OS2

The functions vy are well defined in view of Theorem 8.1 in [14] and they
are nonnegative in view of the weak comparison principle (see Lemma 3 in [7]).
Moreover, they satisfy

(4.4) vie € L(Q) forall g € [1, ”2> and all i > 1.
, —
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Suppose that u is a solution of (2.7). We introduce the functions upt1,. =

Uge — Vpt1,e for k=0,1,... where up. = u. Then, the functions uj4; . solve
k+1 k
—Aupyre = g<uk+1,s +> ”w) - 9(2”@6) in €,
45 i=1 i=1
(4:5) Ugt1,e 2> 0 in Q,
Ug+1,e =0 on 0f).

For k > 1 introduce the odd function hy .(x, s), defined by

9(8 +Vhe) = 9(Vh.e) if s >0,
hk@(x?S) = _hk,a(xa _5) if s < 0,

(4.6) hye(w,5) = {
and the function f; . defined by

(4.7) fre =9(Vhe) — 9(Ve—1.¢)-

where v, . = Zle v; ¢ for k > 1 and 7y = 0. Here and in the sequel we denote
by hj, .(z,s) the derivative of hy . (z, s) with respect to s. Then, by adding and
subtracting g(yx+1,c) in (4.5), we see that any solution u of problem (4.5) is
a nonnegative solution of

(48) *AU - hk—"_lvs(gj’ ’LL) + fk-i—l,s in Q,
u=>0 on 0f).

that is a function u € L*(Q) such that hyi1 (2, u) € L*(Q) and

/—uAgadx:/hk_,_Ls(x,u)cpder/ fer1codr for all o € C2(Q).
Q Q Q

The existence of a solution of (2.7) then follows once we prove the existence
of a solution of (4.5) or equivalently of (4.8) for a suitable k.
We start with the following technical lemma

LEMMA 4.2. Let u € L*(2) and v € L?(Q) then uv € L8/ (e+8)(Q).

Proor. This is a straightforward application of the Holder inequality with
p=(a+p3)/Band g=(a+p)/a O

Next we prove

LEMMA 4.3. Let n > 2 and assume that g satisfies (2.8)—(2.11). Then:
(a) there exists a constant C > 0 such that

hige(x,8) < (A 4+ C(yke + $)P72)s forallz €, all s >0 and all k > 1;
(b) there exists a constant C > 0 such that
ee(@,8) <A+ Clyke + s)P7% forallz €Q, all s >0 and all k > 1;

(c) there exists N € N such that vy € L®(Q) and fn . € L*"/(+2)(Q).
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PROOF. By (2.8)—(2.10) for k = 1,2,... we have

0< hk,s(x7 S) = g('Yk,s + S) - g('Yk,s) < g/('Yk,s + 3>3 < ()\1 + C('Yk,a + 5>p_2)3

for any x € Q and s > 0. This proves (a) and (b).
Using again (2.8)—(2.10) for £k =1,2,... we have

k k—1

(49) 0< g<2v¢,5> - Q(Z”m)

i=1 i=1

k k p—2
< g/(zvi,e)vk,s < ()\1 + C(Z”i,s) >'Uk,s
i=1 i=1
where C' > 0 is the constant introduced in (a). Since p < 2, by (4.4) we
deduce that there exists ag > n/2 such that vfgz € L*(Q) for any i > 1. With
this choice of g define ¢ = (29 — n)/nay. For a fixed & > 1 assume that

Ve € LP*(Q). Then by Lemma 4.2 and (4.4) it follows that

k p—2
(4.10) (Z Um) Vk,e € L"“’ﬂ’*‘/(aﬁﬁ’“)(ﬂ).
i=1

We distinguish three cases.

Case 1. If By > 1/c then apBi/(co + Br) > n/2 and hence by (4.3),
(4.9), (4.10), elliptic regularity [1] and Sobolev embedding, we obtain vi41,. €
W2oBk/(@0+h)(Q) ¢ L°(Q).

Case 2. If B, = 1/c with the same procedure of Case 1, we obtain vg41 . €
W2n/2(Q)  L9(Q) for any g > 1 and with another iteration this yields vg 2. €
L>(Q).

Case 3. If By, < 1/c, using again (4.3), (4.9), (4.10), elliptic regularity [1] and
Sobolev embedding, we obtain vy 1. € W2@0Bk/(a0+8k)(Q) C LA+1(Q) with
Bra1 = Bre/(1 —cBr). After a finite number of iterations, we find k& > 1 such
that 37 > 1/c and hence applying Cases 1 and 2 it follows that vz, . € L>(1).

We just proved the existence of N € N such that vy € L>(Q). Finally
by (4.9), Theorem B.1 in [8], p < 2, and vy € L®(R) it follows that fy. €
L2/ (v +2)(Q). O

From now on we look for solutions of

—Au=h elx,u) + 5 in Qv
(411) Ne(T u) + fa,
u=20 on 01},

where hy . and fn . are defined in (4.6)—(4.7). Let In . be the functional defined
by

1
(4.12) IN,s(w):iuvw”%Z —/HNvg(x,w)dx—/ fnewdx
Q Q
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where
Hy.(,s) = / I (2, ) dt.
0
Then we establish:

LEMMA 4.4. Letn > 2 and assume that g satisfies (2.8)—(2.11). Let N be as
in Lemma 4.3. Then it is well defined the functional Iy .: H}(Q) — R. Moreover,
In. € C*(HL(Q)) and its critical points solve problem (4.11) or equivalently
problem (4.5) with k = N — 1. Finally the operator VIy.: H Q) — HE(Q),
defined by

(VINe(u),v)my = <I§V7E(u),v> for all u,v € H(Q)
can be decomposed as
Viy:(u) =u+ Ku=u+ A" (hyo(z,u)+ fne)
where K: H}(Q) — HE(Q) is a compact operator.

PROOF. The proof of this lemma is standard and it follows from Lemma 4.3(a)
and the fact that by (4.4) there exists ag > n/2 such that 75’({3 e L>(Q). O

Before proving existence of solutions for problem (4.11), we need a mono-
tonicity result on the functions hy . and fy . with respect to €. To this purpose

we recall the following maximum principle.

LEMMA 4.5. Let i € M(Q) be a nonnegative nontrivial Radon measure and
let u € L*(Q) be a solution of

(4.13) / —ulApdr = / odp  for all p € C2(Q).
Q Q
Then u > 0 in Q in the sense that inf g u > 0 for any compact set K C ().

PRrROOF. Fix a compact set Ky C  such that u(K;) > 0. For any open set
Q; such that Q; C Q and any function ¢ € C*°(Q) with supp¢ C €, consider
the following Dirichlet problem

{—Az/;:qb in Q,

(4.14) Y =0 on 99.

Then denoting by G(z,y) the Green function for —A in €, from (4.13) we obtain

Jusdn= [ —usvdo= [ wau= [ ( | e dy) du(z)

> [ | ( / Gl dy) (o) = Culi) [ ad.
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forall ¢ € C°(Q), ¢ > 0, supp ¢ C 21, where C' > 0 is a constant which depends
on G(z,y), K1, . This proves that u(z) > Cu(K;) for a.e. z € 3 and hence
the proof of the lemma is complete. O

Now we are ready to prove the following

LEMMA 4.6. Let hye(x,s) and fne be the functions introduced in (4.6)—
(4.7). Then:

(a) for s >0, hye(x,s) is nondecreasing with respect to € in the sense that
for any g1 < g9 we have

hne (x,8) < hne,(z,8) for a.e. z € Q and s> 0;

(b) fn,e is strictly increasing with respect to € in the sense that for any
€1 < €2 we have

INe (@) < [ne,(z)  for ae. z € Q.

Proor. First of all note that in view of the Lemma 4.5, the functions v; .
defined in (4.2)—(4.3) are strictly positive almost everywhere in €2 for any i €
{1,..., N}. Therefore, using (2.8)—(2.9), by induction on i = 1,... , N we prove
that v; . is strictly increasing with respect to € for any ¢ € {1,... ,N}. This is
trivial for 4 = 1. Assuming our claim true for any ¢ < k, we prove that if £1 < &5
then vg41,6;, < Ugt1,e, almost everywhere in 2. By (2.8)—(2.9) we have

d d
(415) %[g(’yk,s) - g(’)/k—l,s)] > gl(’}/k—l,s)Evk,e > 0.

where the derivative dvy . /de is defined by

d
—7
de k,e

The previous limit is well defined by induction on k since in view of Theorem 8.1
n [14], the linear operator (—A)~1: M(Q) — L%(Q) is continuous for any q €
[1,n/(n —2)). If we assume by contradiction that the map & — g(Vk.c)—9(Vh—1,¢)

t—0 t m

— Qi Pkesott T Vkeo LYQ), q € [1’ n >

E=€Q

is not strictly increasing then by (4.15) we infer that there exist 1 < 2 such that
g (Vk—1.c)dvg.c/de = 0 for any € € (1,£2). Since ¢'(yk—1,c) > 0, this contradicts
the fact that the map € — vy is strictly increasing. The strict monotonicity
of € — vj11 . then follows immediately from (4.3) and Lemma 4.5.

By (2.8)—(2.9) and (4.6) we have
d d
d—EhN,g(x, s) =g (s+vn.) —g/(’}/N,E)]dig'YN’g >0 forae. xz€Q, forall s>0.

This proves part (a). Finally, by (2.8)—(2.9) and (4.7), we have

d d
d*gfzv,s > g/('YNfLe)d*eUN,s for a.e. x € Q.
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Therefore, since ¢'(yn—1,) > 0 almost everywhere in Q and vy is strictly
increasing with respect to e, we conclude that fy . is also strictly increasing
with respect to €. d

In the next lemma we prove an existence result for (4.11) for small e.

LEMMA 4.16. Let n > 2 and assume that g satisfies (2.8)—(2.11). Then the
set
E ={e>0:(4.11) has a nonnegative solution v € H}(Q)}

18 an interval and inf E = 0.

PrOOF. First we prove that E is nonempty. Denote for simplicity by vy the
functions vj,1. Define by iteration the following sequence of functions

(4.16) — AT, = [Al + C(%ﬁ@)ﬂ] o

i=1
if k> 2 and vy = vi if K = 1 where C denotes the positive constant introduced
in (4.9). Assuming ¢ < 1, we claim that v, . < €v. By (4.2) we deduce that
v1e. = ev1. By induction on k, suppose that v; . < ev; for any ¢ = 1,... ,k.
Then, using again (4.9), we have

k k—1
0 §g<zvi,e> _g<zvi,s>
= k l:i2 k p—2
§|:>\1+C<Zvi,a> ]Uk,agé‘[)q—FC(Zfﬁi) }5]9
=1

i=1

and by (4.3), (4.16) and the weak comparison principle (see Lemma 3 in [7]), we
deduce that vgy1 . < €vgy1. This proves that vy . < evy, for any k£ < N. This
yields

(4.17) 0< fve < g (ne)one < M+ O Zone < efn

_ N p—2
In= |:)\1+C< E) :|5N
=1

On the other hand, by (2.8), (2.10), (4.6) we have for a fixed o € (0, \; — )

with

(118) [ha(e,s)| < g/(1s] +e)ls] < [+ 0) + Clls| + el
N p—2
<Okl 4P+ 7)o
=1

for all z €  and all s € R. By Lemma 4.3 and Theorem B.1 in [8], we infer that
fx € L2Y(+2)(Q) and a(zx) = C’g(zij\il 0;)P~2 € L"/2(Q). Therefore, in view
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of Lemma 4.1, the homogeneous Dirichlet problem associated to the equation
—Au=\+o0)u+ CruP " +e?2a(z)u+efy

admits a nonnegative nontrivial solution w € Hg(Q) for € small enough. Then,
by (4.17), (4.18) we deduce that w is a supersolution of (4.11) and since the null
function is a subsolution of (4.11), using the super-subsolution method, it follows
that (4.11) admits a nonnegative minimal solution uy,. € H}(2). This proves
that the set E is nonempty. Let us prove that F is an interval. By Lemma 4.6, we
have that hn < (z,s) and fy . are nondecreasing with respect to €. Therefore we
deduce that if € € E then the corresponding solution of (4.11) is a supersolution
for (4.11) corresponding to € € (0,%). Using again the super-subsolution method
we infer that (4.11) admits a nonnegative solution uy. € H}(Q) for any € €
(0,). This completes the proof of the lemma. O

Next we prove a nonexistence result for (2.7) for  large enough.

LEMMA 4.17. Letn > 2 and assume that g satisfies (2.8)—(2.11). Then there
exists € such that (2.7) admits no solutions for € > €.

PROOF. Fix € > 0 and assume that (2.7) admits a solution u. Let e; be
a positive eigenfunction of —A associated to the first eigenvalue A;. Then we

/quel dx:/g(u)elders/eld,u.
Q Q Q

By (2.11) we infer that there exists M > 0 such that g(s) > Ay s for any s > M,
from which we obtain

5/ e1du = / [Aru—g(u)]er dx—!—/ [Mu—g(u)]er dr < My Mller]|
Q {0<u<M} {u>M}

have

and hence
~_ MM|leq]lr

e<e= fg o1 dy
This completes the proof of the lemma. O
END OF THE PROOF OF THEOREM 2.2. By Lemmas 4.16 and 4.17 we deduce
that F is a nonempty bounded interval. If we define ¢* = sup F, then we
conclude that (2.7) admits a solution w. given by u. = uy, + v, for e < &*
and no solutions for £ > €*. O

5. Proof of Proposition 2.3

Define for s > 0 the function g(s) = g(s) — As > 0. Let e; be a positive
eigenfunction of —A associated to the first eigenvalue A;. If u solves (2.7) then

/—uAel dx:/)\uel dz+/§(u)61 dz+€/ e1du
Q Q Q Q

it satisfies
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and in turn

()\1—/\)/ueldacz/ﬁ(u)eldm—l—e/eld,u>0.
Q Q

Q

This proves that A < A;. d
6. Proof of Corollary 2.4

Consider the decomposition p = p* — p~ with g, u= > 0. Introduce the

following problem

(6.1)

—Au=g(u)+ep™ inQ,
u=20 on Of).

By Theorem 2.2 we infer that if £ is small enough then (6.1) admits a nonnegative
solution u;. Moreover, since p+ > u then u; is a supersolution for (2.12), i.e.

/ —u1Apdr > / g(u1)<pda:—|—€/ pdp for all p € C3(Q), ¢ > 0.
Q Q Q
On the other hand, if we introduce the problem

—Au=g(u) —ep~ in €,
u=0 on 0f)

then by Theorem 2.2 and (2.8), we deduce that if € is small enough then (6.2) ad-
mits a nonpositive solution uy. Moreover, since —u~ < p then us is a subsolution
for (2.12), i.e.

/—uQAgodxg/g(uQ)cpdx+e/<pdu for all p € C2(2), ¢ > 0.
Q Q Q

We just proved the existence of a supersolution u; and a subsolution us with

(6.2)

u1 > ug. Since g is an increasing function, the existence of a solution of (2.12)
then follows from the super-subsolution method (see Lemma 3 in [7] for more
details).

7. Further properties of minimal solutions of (4.11)

In this section we denote by up, the minimal solution of (4.11) found in
Lemma 4.16. We prove that the function uy,. is a local minimizer for the
functional Iy for any € € (0,¢*). To this purpose we define the weighted
eigenvalue problem depending on ¢

{ —Ay = /\g/(uN,a + ’YN,E)¢ in €,

(1) v=0 on O,

and the number

(7.2) A1 (e) = inf {|v¢||2LQ cp € HY(Q), /Qg/(uME + N )Y dr = 1}.
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First of all note that the integral in (7.2) is well defined since ¢'(une +YNe) €
L™?%(Q). This follows from (4.4) and ¢'(s) = O(s?~2) as s — oo with p < 2,.
Using the compact embedding H}(Q) C L*(Q; ¢/ (un e + Yn.e) dz), by standard
arguments, we deduce that A\;(e) admits a minimizer which is a solution of (7.1)
with A = A1(g). Thanks to the strong maximum principle (see Theorem 8.19
in [10]), we get that problem (7.2) admits a positive minimizer ;. We are ready
to prove the following

LEMMA 7.1. Letn > 2 and assume that g satisfies (2.8)—(2.11). Ife € (0,e*)
then un ¢ 15 a local minimizer for Iy ..

PROOF. For any fixed ¢ € (0,e*), let € € (g,*). We claim that A;(g) >
1. Consider the corresponding minimal solutions of (4.11) uy, and uyz. By
Lemma 4.6, (2.8) and the weak comparison principle we have uy . < unz and

(7.3) /Q V(u

z—un,)Vwdz

2

[hnz(z,unz) — hne(x, une)|wde + / (fnz— fye)wde
Q

\%

I
S~ S — 5

[hne(z,ung) — hne(z, une)|wde
[9(unz+TNe) — g(une +Ne)] wde
>

QI(UN,s +INe)(unz — un)wdz

for all w € H} (), w > 0 a.e. in Q. Choosing w = ¢; > 0, by (7.1) and (7.3) we
obtain

A1(e) /Q g (un: +ne)(unz — une)thr doe = /QV%V(UN; —un,)dz
> /QQI(UN@ +Ne)(unz —une)Prdr >0
which proves that A;(g) > 1. Since
IVl > Ma(e) [ o Cuwe + )0 de for all 4 € HY(6)
then, for all 1 € HZ(£2), we obtain

2 / 2 ]‘ 2
(T4) V2 - /Q § (e + . d > <1/\1(€)>||V¢||L2~

By (4.6), Lemma 4.4 and (7.4), we deduce that there exists C' > 0 such that

(75) (T (uw ) ) = [Volln — / Wy o un )62 dz > C|[ VY2

for all ¢ € HJ (). This proves that uy . is a local minimizer for Iy .. O
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8. Proof of Theorem 2.5

Before proving the existence of a solution of (2.7) for ¢ = &*, we need the
following technical inequality

LEMMA 8.1. For any r > 2 there exists o > 0 such that
(8.1) (r—1)(t+s) 2> —(t+s) ts+t"ts > o[(t+s) " Ls—t" " s—(r—1)t" 25
for any s,t > 0.

ProoOF. The proof of (8.1) becomes trivial for » = 2 and hence we may
assume r > 2. Divide both sides of (8.1) by s” > 0 and put y = t/s. Then the
proof of the lemma is complete once we prove that

(82) (r—1)(+y) 2—(1+y) ' +y "t >oll+y) -y = (r— 1)y

for all y > 0. Define for y > 0 the functions

(8.3) U(y)=(r—-11+y) >+y = (1+y) "
and
(8.4) O(y)=1+y) =y = (r—1)y %

By Lagrange Theorem we have

o) = = 1)2(r—2)

for a suitable &, € (y,y + 1). On the other hand, by (8.3) we have

f;_?’ >0 foraly>0

r—1

1 r—2 1
U(y) = IU_(T_Q)\I’(ZU) =(r—1) (1 + y) +y— y(l + y) for all y > 0.

By a second order Taylor expansion we obtain

(8.5) \i<y)=(7“_1)2<’”_2);+o<;> 0 asy— oo
Moreover,
<, (r=1)(r—2)(r—3) N\ r=-1@r-2 1\"*

for all y > 0 and this with (8.5) implies that ¥(y) > 0 for any y > 0 and in turn
that U(y) > 0 for any y > 0. Using again a second order Taylor expansion we
obtain

Wiy == =2) 1)2<r “2 oyt and () =2 ra o)
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as y — oo. Therefore, there exists ¥ > 0 such that U(y)/®(y) > 1/2 for any
y > 7y and hence

(8.6) U(y) >o®(y) forally >7andall o € (0,1/2).
On the other hand, since ® and ¥ are strictly positive in [0, c0) then
(8.7) U(y) > o®(y) forall y €[0,7] and all o € (0, M)

where M = min,cjo 7 V(s)/P(s).
Finally, by (8.6)—(8.7) we obtain ¥(y) > o®(y) for all y > 0 with ¢ <
min{1/2, M}. This proves (8.1). O

Next we deal with the existence of a solution of (4.11) for ¢ = ¢* = sup E.

LEMMA 8.2. Let n > 2 and assume that g(s) = As|97%s + |s|P~2s with
2<qg<p<2,A>20ifg>2and A€ [0,\) if g =2. Ife =¢&* then (4.11)
admits a minimal solution uy c.

PrOOF. Consider ¢ € (0,e*) and the corresponding minimal solution uy ..
Then uy . solves

(8.8) / Vun Vwdr = / hne(x, une)w der/ fnewdx
Q Q Q

for all w € H}(Q). By (4.6) and (7.4), we have
(8.9) / |Vuy o|? dz > / h'N)E(J:,uN,E)u?Vﬁ dz.

Q Q
Choosing w = un . in (8.8), this yields
(8.10) / hg\,ﬁ(az,uN)E)u?v)s de < / Ane(T, une)un,e da:+/ INcunedz.

Q Q Q

Replacing g(s) = A|s|772s + |s|P~2s in (4.6) and applying Lemma 8.1, we obtain
for ¢ > 0 small enough

(8.11) /Qhﬁ\,’e(x7uN,€)u?V,€ dx
> (1+o0) /Q hne (T, une)un,e de — U/QQI(WN@)U?V,E dz.
By (8.10) and (8.11) we have
J/QhN,e(I,UN,s)UN,s dx < CT/QQ'(’YN,E)U?V,E d:CJr/QfN,EUN,s dx

and hence by (8.8) with w = uy . we obtain

(8.12) UHVUMEHiz < 0/ g'(’yNﬁ)u?\,ﬁ dx + (o + 1)/ fNeune dx.
Q Q
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If we define V2
V|5
Ai(e) = in —
1(e) veHL (0} Jo ' (YN,)Y? da
then by (8.12), Holder inequality, Sobolev embedding and Lemma 4.6, we infer

o(1- 55 ) Iveved

This implies that {uy .} is bounded in H} () uniformly with respect to € once

2L2 < (e + DO fN e

L2/t [|UN e ||H3 :

we prove that

(8.13) lim Ay (e) > 1.

e—e*

To this purpose consider a sequence {1 .} of minimizers of A;(g) such that
Y1 > 0in Q and [, ¢'(Yn,)¥i.de = 1. Then {¢1 .} is bounded in Hg(f2)
and hence up to subsequences we may assume that 1, . — ¥* in H}(2) as
¢ — €*. By Theorem B.1 in [8] and monotone convergence (see Lemma 4.6)
we infer that ¢'(yn.) — ¢'(Yn.e) in L™2(Q) as e — &* and since by Sobolev
embedding ¢7. — (¢*)? in L™ ("=2(Q), then we have [, ¢ (Yn.)¢i.dz —
Jo 9/ (4N .e+)(@*)? dz up to subsequences. This proves that

(8.14) / § (yn ) @) dz = 1.

For any fixed € € (0,¢*), we deduce by Lemmas 4.5 and 4.6 that uy. >
unz > 0 almost everywhere in Q for any ¢ € (g,¢*). Moreover, by (8.14), weak
lower semicontinuity of the Hj-norm and monotone convergence, we have

. V|2, V|2,
lim Aq(e) > >
1 () = e W B dr  Jog et un ) (0P da
. IV 3
e—e” fQ g,(lyN,s + UN,E)('IZJ*)2 dx
* 12
> lim Vo7 lim A\ (e) > 1

<1
e=e o9/ (Wve +une) (W) de — eme
where the last inequality follows from the proof of Lemma 7.1. This proves
(8.13).

Up to subsequences we may assume that there exists u* € Hg(Q) such that

(8.15) uye —u* in H}(Q) ase — *

and
une —u* ae inQase—e™

By Lemma 4.4 we deduce that hy . (x,u) € L>*/("+2)(Q) for any u € H}(Q) and
€ > 0. Therefore by Lemma 4.6 and monotone convergence we have

(8.16) hne(®,une) — hyes(@,u*) in L2V FD(Q) as e — e*.
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For the same reason, we deduce that
(8.17) fne— fnee in L2VF2(Q) as e — e*,

Therefore by (8.15)—(8.17), passing to the limit in (8.8) we obtain

/Vu*deacz/hN7E*(x,u*)wdas—|—/fN75*wdm
Q Q Q

for all w € H}(Q). This completes the proof of the lemma. O

END OF THE PROOF OF THEOREM 2.5. The existence of a solution wug«
of (2.7) follows immediately from Lemma 8.2 defining ue+ = un e + Ynex. O

9. Proof of Theorem 2.6

The existence of a second solution of (2.7) is obtained as critical point of the
functional Iy defined in (4.12). In this section we will use the same notations as
in the proof of Theorem 2.2. First we prove that Iy . satisfies the PS condition.
In order to prove boundedness of PS sequences we need a technical inequality.

LEMMA 9.1. For any r > 2 there exists o > 0 such that, for any s,t > 0,

2 2
(9.1) (t+s) " ts+t" s — Z(t+s)" 4+ t"
T T

1 1 -1
Z o 7(t+5)r_ 7tr_tr713_ Ltr7252 .
r r 2

ProOF. The proof of (9.1) becomes trivial for » = 2 and hence we may
assume r > 2. Divide both sides of (9.1) by s” > 0 and put y = t/s. The
proof of (9.1) is equivalent to ¥(y) > o®(y) for all y > 0 with

92) W) = 4y 4y = 2y L
(9.3) dy) = %[(1 Fy) =y — gl - r ; 1 r—2

The inequality (9.1) may be obtained applying the procedure introduced in the
proof of Lemma 8.1 to the functions ¥ and ® defined in (9.2)—(9.3). O

We are ready to prove that the functional Iy . satisfies the PS condition.

LEMMA 9.2. Let n > 2 and assume that g(s) = Ns|972%s + |s|P~2s with
2<qg<p<2,A>04fg>2and A€ [0,\) if ¢ =2. Then Iy, satisfies the
PS condition.



310 A. FERRERO C. SACCON

ProOOF. Let {u,,} be a PS sequence for Iy .. Then we have
(94) C+ O(HUm”Hé) =2+ 0)INne(um) — <I§V’€(um),um>

g
= Sl + [ bxc(o )i = (24 0) (o 1)) d
Q

—(1—|—0)/QfN,Eumdx.

Replacing g(s) = A|s|772s + |s|P~2s in (4.6) and applying Lemma 9.1, we obtain
for ¢ > 0 small enough

(9.5) /Q o et Y, — (2 0) Hv o, ) i > 2 /Q o (v )i, da.

Therefore, by (9.4) and (9.5) we infer
(9.6)

o
€+ ollunllng) = § (IVunlts = [ gOmeridde) = (1+0) [ et o
Q Q
But from (7.2) and the proof of Lemma 7.1, we deduce that

ME = me IVl
veH (@\{0} [o g’ (W)Y da —
and hence by (9.6), Holder inequality and Sobolev embedding, we obtain
o 1
€+ olllumllig) 2 § (1= 55 ) IV um s = (14 )l el fum i

and in turn

o 1
5 (1= 55 Tl < O ollumllg) + (14 2)C e

which proves that the sequence {u,,} is bounded in HE (). Up to subsequences,

L2n/(n+2) ||um||Hé

we may assume that there exists u € H}(Q2) such that u,, — u in H}(Q) and
Uy, — w in L7(Q) for any r € [1,2%).

Since {uy, } is a PS sequence, by Lemma 4.4 it follows that w,, = VIN c(um)—
Ku,, and u,, — u strongly in Hg (). O

Next we prove the existence of a second solution of (4.11).

LEMMA 9.3. Let n > 2 and assume that g(s) = As|972s + |s|[P~2s with
2<qg<p<2,A>201iqg>2and X €[0,\1) if ¢ =2. Then for any ¢ €
(0,e*), (4.11) admits a nonnegative solution Uy with In c(Un,e) > Ine(une).
Moreover, Un,. > un, almost everywhere in Q.

Proor. In Lemma 9.2 we proved that the functional Iy . satisfies the PS
condition. In view of (7.5) in Lemma 7.1, we deduce that there exist p > 0 and
R > In(un,) such that

(9.7) Inc() > R for all ¢ such that || — un | g = p.
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Moreover, since p > 2 we deduce that there exists a nonnegative nontrivial
function w € HE(Q) such that [jw — unelmy > pand Ine(w) < Ine(une).
Then, we define the functional

~ 1
(9.8) Tew) = 519913 - /Q H (2,6 dar — /Q Frvothda

for all ¢» € H}(Q). Replacing Iy . with TN,E in the proofs of Lemmas 4.4 and
9.2 it follows that Iy . € C1(H{(£2)) and satisfies the PS condition.
Introduce the set of paths I' defined by

T = {y € C%([0,1]; Hy()) : 7(0) = un ., ¥(1) = w}
and define the minimax level

= inf I; t)).
ce = Inf max Ne((1))
Since Ine(¥)) < Ino(¢) for any ¢ € H(Q), Ing(un) = Ine(un,:) and
Iy (w) = Inc(w), by (9.7) it follows that ¢. > Iy (une) > Ine(w). By
the the mountain-pass theorem [3], we infer that Iy . admits a critical point
Un. at level c.. In particular Uy . solves the equation

_AUN,E = hN,E(xa U]—Vi_,e) + fN,a-

Moreover, by the weak comparison principle, it follows that Ux. > 0. This
proves that Uy . is a nonnegative solution of (4.11). Since un . is the nonnegative
pointwise smallest solution of (4.11) and uy . does not coincides with Uy ¢, by
Lemma 4.5 we conclude that Uy > uy, almost everywhere in (2. O

END OF THE PROOF OF THEOREM 2.6. The proof of the theorem follows
immediately from Lemma 9.3 defining U. = Uy + v, for any € € (0,¢*). O

10. Proof of Theorem 2.7

Let {pm} be a sequence of mollifiers and let p,, = pp, * p. For any m € N,
let vi(jg) be the functions defined in (4.2)—(4.3) with pu,, in place of p and let
”y](;:;) = Zle UEZ}) for k = 1,...,N where N is the integer introduced in the
proof of Theorem 2.2. In this proof we fix € € (0,e*) where €* is the extremal
value for the existence of solutions of (2.7). We proved in Lemma 7.1 that for any
e € (0,e*), the functional Iy . defined in (4.12) admits a local minimizer uy ..
We show that for any m large enough the functional I](Vme) also admits a local

m)

minimum (see (4.12) for the definition of I](V . ). First we prove the following

LEMMA 10.1. Let fy](\;?s), h%ns), H](\;ns) defined as in the proof of Theorem 2.2
with ., in place of w. If sy, — s in R then:

(a) HI(VmE) (x,8m) = Hn(x,8) as m — oo for a.e. x € Q;
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(b) hg\’;g(x,sm) < a+b(z)s+ csP~t for all m, all s € R and a.e. x € Q
where a,c € R, b€ L*(Q), ag > n/2 and p < 24;
(c) hg(,ng) (%, 8m) = hne(z,s) as m — oo for a.e. x € Q;

(d) (h%’fﬁ)'(z,sm) — hiy(x,8) asm — oo for a.e. z € Q.

PROOF. Since {,,} is bounded in L'(Q), by Theorem B.1 in [8], Sobolev
embedding and (4.2)-(4.3) we have up to subsequences

(10.1) o™ - vie in L"(Q) as m — oo, for all r € [1,n/(n — 2)).

’IE

Since H](Vma) (x,s) and Hy(z,s) are even with respect to s, by (4.6), (10.1) we
have up to subsequences

|$m]

lim H{Y (7, 5m) = lim gV + ) — g(v ) dt

m— 00 m— 00 0

=l [GOR + lsml) = GON) = 9K m]

=G(yne t18]) = Glyv,e) — g(vw.e)ls|
=Hyc(z,|s]) = Hy (2, 5)

for a.e. x € Q where G(s) = [; g(t) dt. This proves (a).
The proof of (b) follows from (10.1) and Lemma 4.3(a). The proofs of (¢)—(d)

are similar to the proof of (a) and they are based on the pointwise convergence
(m)

ZE

— v; . and the continuity of g and ¢’. O

LEMMA 10.2. Let € € (0,e*). Then there exists m > 0 such that for any

m > m the functional I](Vms) admits a local minimizer uSVE) > 0. Moreover, we

(

have ujf,ns) — uy in H} () as m — oo.

PrOOF. We start by proving the existence of a local minimizer. In view
of Lemma 9.3, define p > 0 and R > Iy (un,) such that

Ine(y) >R forall ¢ € 0B,

where B, = {¢ € H}(Q) : |[¢ — unellmp < ph. We claim that I](Vme) converges
uniformly to Iy. on B,. It suffices to show that if {z,,} C B, then up to
subsequences we have

(10.2) I (2m) — Ine(2m)| — 0 as m — oo

Indeed, since {z,,} is bounded in H}(£2) up to subsequences there exists z € B,
such that z,, — z in L"(Q) for any r < 2*. By Lemma 10.1 we have

|1y m)(zm) Ine(2m)| < ‘/Hj(\,me) X, Zm) dx — HN,E(x,zm)dx

’/stzmdx—/fN,ezmdx
Q

— 0
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as m — oo. This proves (10.2).
By (10.2) we infer that there exists 7 > 0 such that

(10.3) inf IVY > 1§ (uy.e) for all m > m.
P

On the other hand, since E is compact with respect to the weak topology

I(m)

of H}(2), by weak lower semicontinuity, we infer that Ne admits a global

minimum in B, which, in view of (10.3), is achieved by a function n N o= B,.

Therefore u%ne) is a local minimizer for Iz(vn? Since II(VmE)(|w|) < I(m)( ) for any

w € H () we may assume that ug\,’) > 0 up to replace it with |UN E|
Since Iy € C?*(H}(2)), by Lemma 7.1 we may choose p > 0 small enough

such that
(10.4) (IN (W), ¥) = Cl¢|3  for all w € B, and all ¥ € Hy (%)

for a suitable constant C > 0.

It remains to prove that ugz,ns) — une in H}(Q). We may assume up to

subsequences that u( ) — % € B, in H}(Q). By Lemma 10.1(a), (b), (10.1) and
weak lower semlcontmuity of the H}(Q)-norm we have
(10.5) I (@) < liminf 7§ (uly)

< limsup I(m) (u%”s)) < lim IJ(\;”E) (w) = Iy (w)

m—0o0

for all w € E. This proves that w is a minimizer for Iy . in B,. Moreover,

choosing w = @ in (10.5) we obtain I](Vms) (ug\@) — Iy (@). It follows immediately

that HUE\T;EHH[} — |ullg2 and hence by the weak convergence ug\Tg — U we get
ug\}ns) — 7 in H}(Q). The minimizer % necessarily coincides with uy . since by

(10.4) In . is strictly convex in B,. O

Next we prove that for m large enough, the functional I ](V"? admits a second

critical point.

LEMMA 10.3. Let g(s) = A[s|772s + [s[P72%s with 2 < ¢ < p < 24, A > 0 if
g>2and XA €[0,\) if g =2 and let € € (0,&*). Then there exists T > 0 such
that for any m > m the functional I](vms) admits a second critical point U](\?’? >0

such that UI(\;UE) — U* in HY(Q) as m — oo up to subsequences. Moreover, U*

is a critical point for In ¢ with In¢(Une) > In(une).

PROOF. Let 7 as in Lemma 10.2. According to (9.8), let TJ(V”? be defined by

W) = LI - / HYY (2,04 d / £ de
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for all 9 € HZ(£2). Then by (10.2), we deduce that

I( )(uN€)<1an( ™ for all m > m

and moreover, by (10.2), there exists w > 0 such that [[w —un |z > p and
ﬂN@( )< I (m)(uN ¢). Therefore by Lemma 9.2, it follows that the functional
T](Vmg satisfies all the assumptions of the mountain-pass theorem [3] and hence
admits a critical point UI(\TE) with TI(VmE)(UJ(Vms)) f(m)(uNg) > I( )(ug\T,"E)) Us-
ing the weak comparison principle it follows that UJ(Vm) > 0 and hence Uz(v ™)
a critical point for I](\, ™) Then we prove that the sequence {U ](v } is bounded in
H}(€2). Using the uniform convergence (10.2) and the minimax characterization

of U ](Vrf?, we deduce that there exists C' > 0 such that
I (UG < € for all m € N.

Therefore, since U ](Vma) is a critical point for Ij(vms) then by (9.6) we have, for any
o> 0,

> @+ o)1 (UG — (Y U, Uy

O' m m m
>[I0 - [ oD@y - a o) [ 12052 a0

(o) 1 m
z 5 (1 - Agm)(€)> ”VZ’JJ(V,E)H%2 - (1 + U)C”f ||L2"/("+2) HUNe HHl
where I ”2
m Vi
A (e) =

VEHIQMO} [, o/ (v )2 da
Since the sequence {f](\,”?} is bounded in L2"/("*+2)(Q) in order to prove bound-

edness of {U J(VTZ)} we need to show that {A(lm)(s)} is bounded away from one for

large m. Since ugf,"g) is a local minimizer for IJ(V”? for any m > m, then we have

0 < (G W) = 19013 = [ 5052+ i)t do
for all 1 € HZ(£2) and hence, by the proof of Lemma 7.1, we get

v 2
A >N () = in [Vl

>1
PeHIOMOY [, o (v + u))e? de

for all m > m. Suppose by contradiction that there exists a subsequence still
denoted by {A™ (£)} such that limy, ..o AU™ (e) = 1. Let {zb%";)} be a sequence

of minimizer for A{™ (¢) such that

/Q ¢ dr = 1.



SEMILINEAR EQUATIONS WITH MEASURE DATA 315

Then {WZ’} is bounded in H}(Q) so that we may assume that z/}f;) — * in
H}(Q). Then by weak lower semicontinuity, Lemma 10.1(d), (10.1) and the fact
that g’('y](\,n;)) is uniformly bounded in L™/2() we have [, ¢'(vn,c)(¢*)%*dz = 1
and

lim A (e) > /||V¢*||2L2 > ()1
m—oo ng (’YN,E)(w*) dx

which is a contradiction. This proves that {U ](\,n?} is bounded in H} () and hence
up to subsequences there exists U* € HE(Q) such that UJ(\,TTLE) — U* in H}(Q)

as m — oo. Since Uj(vﬁ? is a critical point for I](\TE), then from Lemma 4.4 and

Lemma 10.1 it follows that U* is a critical point for Iy . and moreover U ](Vn? —

U* in H}(Q). We have to prove that U* does not coincide with uy .. Since for
any m large enough U ](Vmg) is a mountain-pass critical point for I I(Vms) then by the
proof of Lemma 10.2 it follows that for any 0 < o < (infsp, fN,E — ’IVN’E(uN,E))/Q
there exists m > 0 such that

’Iv](vm)(U(”?) > gni ™ > g%fp FIVN7E -0 > fIVN’E(uNﬁ) + 0.

,€ VN, B, Ne
Therefore, since U](\Z’E) — U* in H}(Q) then

Ine(U*) = Ino(U*) = lim Iy (UGY) > Ine(une) = Ine(un.c).

m— 00 €
This completes the proof of the lemma. O
END OoF THE PROOF OF THEOREM 2.7. The proof of the proposition follows

immediately from Lemmas 10.2 and 10.3 since

10 (w) = T (w0 44§ = T (3§2) = 157 (w)

€

for all w € H}(Q), w > 0. O

11. Proof of Proposition 2.8

Suppose by contradiction that for any € > 0 (2.14) admits a solution u €
LP=1(Q). Let uy(z) = €G(x,a) where G(z,a) denotes the Green function for
—A in . Then we have

/Q—(u —ug)Apdr = /Qup_lgodx >0 forallpeC3(Q), >0

and by the weak comparison principle (see Lemma 3 in [7]) we obtain
(11.1) u>ug, >0 a.e in Q.

On the other hand we have u,(z) ~ Clx — a|™™*2 as x — a and since p > 2,,
we infer u, ¢ LP~1(Q2). And this with (11.1) contradicts u € LP~1(€Q).
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12. Proof of Proposition 2.9

12.1. The case p > 2.. Up to translation assume that 0 € Q. Choose
p=f € LYQ) with f(z) = |z|* with a € (—n,—2) and consider the Poisson
equation

—Av=c¢f in{Q,
v=20 on 0f).

Then we have v(z) ~ Clx|*T2 as z — 0.

If we choose o € (—n, —(n+2(p — 1))/(p — 1)), then v ¢ LP~1(Q). As in the
proof of Proposition 2.8, using the weak comparison principle, we deduce that if
u € LP1(Q) is a solution (2.14) with u = f, then u > v > 0 almost everywhere
in  a contradiction.

12.2. The case p = 2,. As in the previous case, assume 0 € ) and choose
p = f € LYQ) with f(z) = |z]7"/(log|z/a])? and B,/2(0) D Q. Let v be
a radial solution of —AT = ¢ f in 2. Then T = T(r) solves the ordinary differential

equation
—(r" 1) = — | forallr= lz| < e
r(log (r/a))? 2
We may choose 7 in the form
B a/2 - a
(12.1) o(r) = —/ S Tlog(s/a) ds, forallr < 5

Let w be a harmonic function in € such that v = w + 7 is equal zero on 0.
Then v solves the Dirichlet problem

—Av=c¢f inQ,
v=0 on 0f).

If w € LP~1(Q) is a solution of (2.14) with u = f, by the weak comparison
principle we have u > v > 0 almost everywhere in Q. If we show that v ¢ LP~(Q)
we reach a contradiction. It is enough to prove that 7 ¢ LP~1(Q). By (12.1), we

c a (n=2+8) a
> - 000 (n=24+p8) _ [ = —
o(r) > n—2 i(r (2) ) forallr<2

infer

where § € (—n+2,0) and C is a suitable positive constant. For R > 0 such that
Bpr(0) C Q we have

C p—1 a —(n—2+B)7p-1
/ Y (z) dx > () / {|m|(n2+ﬂ) _ <> ] dr
Q n—2+p Br(0) 2
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p—1
> <C) / [|x|—(p—1)(n—2+[3)
n—2+ ﬂ Br(0)

o\ —(24)
— pla|-#-D-248) <2> ] i

and since p — 1 = n/(n —2), denoting by w,_1 the measure of the (n — 1)-

dimensional unit sphere in R™ we obtain

p—1
/Q@p*l(x) dr > <n—§+ﬁ) Wp—1

R q\ ~(2+h)
. / [r—nﬁ/(n—%—l_ p<2> rn—3—2ﬁ/(n—2)] dr
0

p—1
(O N o2 pesieey
n—2+p " ng

—(n—2+p)
a n—2
_ et 2  Rr2-28/(n-2) 00
p(2> (n—2)?-28

as 3 — 0. This proves that v ¢ LP~1(Q).
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