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SYMMETRIC HOMOCLINIC SOLUTIONS

TO THE PERIODIC ORBITS IN THE MICHELSON SYSTEM

Daniel Wilczak

Abstract. The Michelson system [6] x′′′+x′+0.5x2 = c2 for the parame-
ter value c = 1 is investigated. It was proven in [8] that the system possesses
two odd periodic solutions. We shall show that there exist infinitely many
homoclinic and heteroclinic connections between them. Moreover, we shall
show that the family of homoclinic solutions contains a countable set of
odd homoclinic solutions.

1. Introduction

Consider the third order ODE

(1.1) x′′′ + x′ +
1

2
x2 = c2.

The above equation has attracted attention of the scientists and it has been stud-

ied in several papers [3], [4], [6]–[10] because of its relevance to the Kuramoto–

Sivashinsky PDE

(1.2) ut + uxxxx + uxx + uux = 0.

In particular (1.1) arises as the equation for a steady state or a traveling wave

solutions of (1.2).

The numerical simulations show that for the parameter values 0 < c < 1.2

the equation (1.1) possesses extremely complicated and chaotic dynamics. For
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c≫ 0 it was shown [5] that there exists only one bounded non-stationary solution
— a heteroclinic orbit connecting equilibrium points (x, x′, x′′) = (±c

√
2, 0, 0).

When the parameter decreases the cocoon bifurcations of the two-dimensio-

nal unstable and stable manifolds of the equilibrium points appear [4] and lead

to the very complicated dynamics. In particular, for c = 1 it was proven in

[9], [10] the existence of symbolic dynamics on two symbols and the existence of

infinitely many heteroclinic connections between equilibrium points (±c
√
2, 0, 0).

In [8] it was proven that for the parameter value c = 1 the system possesses

two odd periodic solutions. Let us denote these solutions by S1 and S2. These

periodic orbits are presented in Figure 1. In this paper we would like to prove

the following results.
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Figure 1. The two odd periodic solutions S1 (left panel) and S2 (right
panel) established in [8].

Theorem 1.1. The equation (1.1) with the parameter value c = 1 possesses

infinitely many heteroclinic solutions connecting periodic orbits S1, S2 in both

directions.

Theorem 1.2. The equation (1.1) with the parameter value c = 1 possesses

infinitely many homoclinic solutions both to the S1 and S2 periodic orbits. More-

over, both families of such homoclinic solutions contain a countable set of odd

homoclinic solutions.

Let us briefly explain how the set of homoclinic and heteroclinic orbits looks

like. One observes that the periodic orbits presented in Figures 1 and 6 are

‘close’ to each other in some neighbourhood of x = x′′ = 0 and x′ = −2.35. We
will show that there are solutions of (1.1) defined for all t ∈ R which stay close
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to the periodic orbits S1 and S2. These solutions can be coded by the sequences

(ij)j∈Z ∈ {1, 2}Z in the following way: if ij = 1 then the orbit makes loop close
to S1 and if ij = 2 then the solution makes loop close to S2. The heteroclinic

or homoclinic orbits correspond to the sequences which satisfy im = im+1 for

all m ≥ M > 0 and in = in−1 for all n ≤ N < 0. Hence, heteroclinic and
homoclinic solutions can make some finite number of loops close to S1 and S2 as

it is coded by (iN , iN+1, . . . , iM−1, iM ) and finally they converge to the periodic

orbits SiN and SiM in negative and positive time, respectively.

The paper is organized as follows. In Sections 2 and 3 we recall the main

topological tools proved in [1], [2], [12]. In Section 4 we present a more general

statement of Theorem 1.1 and Theorem 1.2 and we give the proofs.

2. Topological tools: h-sets and covering relations

In this section we present main topological tools used in this paper. The

crucial notion is that of covering relation [2].

2.1. h-sets. Notation. For a given norm in R
n by Bn(c, r) we will denote

an open ball of radius r centered at c ∈ R
n. When the dimension n is obvious

from the context we will drop the subscript n. By Bn we will denote the unit

ball Bn(0, 1). We set R
0 = {0}, B0(0, r) = {0}, ∂B0(0, r) = ∅.

For a given set Z, by intZ, Z, ∂Z we denote the interior, the closure and the

boundary of Z, respectively. For a map h: [0, 1]× Z → R
n we set ht = h(t, · ).

By Id we denote the identity map. For a map f , by dom(f) we will denote the

domain of f . For N ⊂ Ω, N -open and c ∈ R
n by deg(f,N, c) we denote the local

Brouwer degree. For the properties of this notion we refer the reader to [4] (see

also Appendix in [2]).

Definition 2.1 ([2, Definition 1]). A h-set N is an object consisting of the

following data:

(a) |N | — a compact subset of Rn, we define dim(N) = n,
(b) u(N), s(N) ∈ {0, 1, 2, . . .}, such that u(N) + s(N) = dim(N) = n,
(c) a homeomorphism cN :R

n → R
n = R

u(N) × R
s(N), such that

cN (|N |) = Bu(N)(0, 1)×Bs(N)(0, 1).

We set

Nc = Bu(N)(0, 1)×Bs(N)(0, 1),
N−c = ∂Bu(N)(0, 1)×Bs(N)(0, 1),
N+c = Bu(N)(0, 1)× ∂Bs(N)(0, 1),
N− = c−1N (N

−

c ), N
+ = c−1N (N

+
c ).
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Hence a h-set N is a product of two closed balls in some coordinate system.

The numbers, u(N) and s(N), stand for the dimensions of nominally unstable

and nominally stable directions, respectively. The subscript c refers to the new

coordinates given by homeomorphism cN . Observe that if u(N) = 0, then N
− =

∅ and if s(N) = 0, then N+ = ∅. The geometry of Definition 2.1 is presented in
Figure 2.

N -

N -N +

N +

|N|
|N|

N-

N-

Figure 2. (left) an h-set with u(N) = s(N) = 1, (right) an h-set with
u(N) = 1 and s(N) = 2.

Definition 2.2 ([2, Definition 3]). Let N be a h-set.

(a) We define a h-set NT as follows

• |NT | = |N |,
• u(NT ) = s(N), s(NT ) = u(N).

(b) We define a homeomorphism cNT :R
n → R

n = R
u(NT ) × R

s(NT ), by

cNT (x) = j(cN (x)),

where j:Ru(N) × R
s(N) → R

s(N) × R
u(N) is given by j(p, q) = (q, p).

Observe that NT,+ = N− and NT,− = N+. This operation is useful in the

context of inverse maps.

2.2. Covering relations. Here we present a definition and some properties

of covering relations — the main topological tool used in this paper.

Definition 2.3 ([2, Definition 6]). Assume N,M are h-sets in R
n, such that

u(N) = u(M) = u and s(N) = s(M) = s. Let f : |N | → R
n be a continuous

map. Let fc = cM ◦ f ◦ c−1N :Nc → R
u × R

s. We say that

N
f
=⇒M (N f -covers M)
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if and only if the following conditions are satisfied:

(a) there exists a continuous homotopy h: [0, 1]×Nc → R
u ×R

s, such that

the following conditions hold true

h0 = fc,

h([0, 1], N−c ) ∩Mc = ∅,
h([0, 1], Nc) ∩M+c = ∅.

(b) There exists a linear map A:Ru → R
u, such that

h1(p, q) = (A(p), 0), for p ∈ Bu(0, 1) and q ∈ Bs(0, 1),
A(∂Bu(0, 1)) ⊂ R

u \Bu(0, 1).

Intuitively, N
f
=⇒M if f stretchesN in the ‘nominally unstable’ direction, so

that its projection onto ‘unstable’ direction inM covers in topologically nontriv-

ial manner projection of M . In the ’nominally stable’ direction N is contracted

by f . As a result N is mapped across M in the unstable direction, without

touching M+. The geometry of this concept is presented in Figure 3.

M - M -

f(N  )-

f(N  )-

M+

M+

|M|

f(N  )−

f(N  )−

Figure 3. The geometry of covering relations (left) u(N) = u(M) = 1,
s(N) = s(M) = 1 and (right) u(N) = u(M) = 1, s(N) = s(M) = 2.

Definition 2.4 ([2, Definition 7]). Assume N , M are h-sets in R
n, such

that u(N) = u(M) = u and s(N) = s(M) = s. Let g: Ω ⊂ R
n → R

n. Assume

that g−1: |M | → R
n is well defined and continuous. We say that

N
g⇐=M (N g-backcoversM)

if and only if MT
g−1

=⇒ NT .
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Definition 2.5. Assume N , M are h-sets and f is a continuous map. We

say that

N
f⇐⇒M (N generally f -covers M)

if one of the two following conditions is satisfied:

N ⊂ dom(f) and N
f
=⇒M,

|M | ⊂ dom(f−1) and N f⇐=M.

We would like to stress that the relation N
P⇐⇒M is not symmetric.

Definition 2.6. Let N be an h-set. Let b:Bu(N) → |N | be continuous and
let bc = cN ◦ b. We say that b is a horizontal disk in N if there exists a homotopy
h: [0, 1]×Bu(N) → Nc, such that

h0 = bc,

h1(x) = (x, 0), for all x ∈ Bu(N),
h(t, x) ∈ N−c , for all t ∈ [0, 1] and x ∈ ∂Bu(N).

Definition 2.7. Let N be an h-set. Let b:Bs(N) → |N | be continuous and
let bc = cN ◦ b. We say that b is a vertical disk in N if there exists a homotopy
h: [0, 1]×Bs(N) → Nc, such that

h0 = bc,

h1(x) = (0, x), for all x ∈ Bs(N),
h(t, x) ∈ N+c , for all t ∈ [0, 1] and x ∈ ∂Bs(N).

The geometry of these definitions is presented in Figure 4. In this case

the horizontal disc is a curve (u(N) = 1) which can be deformed into the line

connecting center points of the both components of N−. Moreover, the end

points of this curve belong to N− throughout this deformation. Similarly, the

vertical disc is a curve (s(N) = 1) which can be deformed into the line connecting

center points of the top and bottom walls. Moreover, the end points of this curve

belong to N+ throughout this deformation.

Notice, that if u(N) = s(N) then we can find a disc which is both horizontal

and vertical in N — see Figure 5. Obviously, the required homotopies in the

Definitions 2.6 and 2.7 are different.

The following theorem is one of the basic results in the covering relations

method.
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N - N -

N+

N+

N+

N+

N− N−

Figure 4. A horizontal disc in a h-set N with u(N) = 1 and s(N) = 1
(left). A vertical disc in a h-set N with u(N) = 2 and s(N) = 1 (right).

N −

N −N +

N +

horizontal and vertical disc b([-1,1])

Figure 5. A curve b forms both horizontal and vertical discs in N .

Theorem 2.8 ([12, Theorem 3]). Let k ≥ 1. Assume Ni, i = 0, . . . , k, are
h-sets and for each i = 1, . . . , k we have either

Ni−1
fi
=⇒ Ni

or |Ni| ⊂ dom(f−1i ) and
Ni−1

fi⇐= Ni.

Assume that bh is a horizontal disk in N0 and bv is a vertical disk in Nk. Then

there exists a point x ∈ int|N0|, such that:

x = bh(t), for some t ∈ Bu(N0)(0, 1),
fi ◦ fi−1 ◦ · · · ◦ f1(x) ∈ int|Ni|, for i = 1, . . . , k,
fk ◦ fk−1 ◦ · · · ◦ f1(x) = bv(z), for some z ∈ Bs(Nk)(0, 1).

A direct consequence of Theorem 2.8 is the following
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Corollary 2.9. Assume Ni, i = 0, 1, . . . , are h-sets and for each i =

1, 2, . . . we have either

Ni−1
fi
=⇒ Ni

or |Ni| ⊂ dom(f−1i ) and
Ni−1

fi⇐= Ni.
Assume that bh is a horizontal disk in N0. Then there exists a point x ∈ int|N0|,
such that:

x = bh(t), for some t ∈ Bu(N0)(0, 1),
fi ◦ fi−1 ◦ · · · ◦ f1(x) ∈ int|Ni|, i = 1, 2, . . .

3. Hyperbolicity

The goal of this section is to describe the tools which allow for a map, in

the presence of hyperbolic fixed points, to prove an existence of homo- and

heteroclinic trajectories.

In this section we recall the results from [1] with some additions.

3.1. General theorems. Let P :Rn → R
n be a C1-map. For any set X we

define an interval matrix [DP (X)] ⊂ R
n×n to be an interval enclosure of DP (X)

given by

M ∈ [DP (X)] if and only if inf
x∈X
DP (x)ij ≤Mij ≤ sup

x∈X

DP (x)ij

for i, j = 1, . . . , n.

Lemma 3.1 ([11, Lemma 4.1]). Let N be a convex set. Assume x0, x1 ∈ N .
Then

P (x1)− P (x0) ∈ [DP (N)] · (x1 − x0).
Moreover, there exists a matrix M ∈ [DP (N)] such that

P (x1)− P (x0) =M · (x1 − x0)

Consider a two-dimensional function f(x) = (f1(x), f2(x))
T , where x =

(x1, x2)
T . We assume that f(0) = 0, i.e. 0 is a fixed point of f . For a con-

vex set U , such that 0 ∈ U we define intervals λ1(U), ε1(U), ε2(U) and λ2(U)

by

Df(U) =

(
λ1(U) ε1(U)

ε2(U) λ2(U)

)

.

Since f(0) = 0 then from Lemma 3.1 it follows that

f1(x) ∈ λ1(U)x1 + ε1(U)x2, f2(x) ∈ ε2(U)x1 + λ2(U)x2.
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Let

ε′1(U) = sup{|ε| : ε ∈ ε1(U)}, ε′2(U) = sup{|ε| : ε ∈ ε2(U)},
λ′1(U) = inf{|λ1| : λ1 ∈ λ1(U)}, λ′2(U) = sup{|λ2| : λ2 ∈ λ2(U)}.

Let us define the rectangle Nα1,α2 by

Nα1,α2 = [−α1, α1]× [−α2, α2] for α1, α2 > 0.

Definition 3.2 ([1, Definition 1]). Let x∗ be a fixed point for the map f .

We say that f is hyperbolic on N ∋ x∗, if there exists a local coordinate system
on N , such that in this coordinate system

x∗ = 0,

ε′1(N)ε
′

2(N) < (1− λ′2(N))(λ′1(N)− 1),
N = Nα1,α2 ,

where α1 > 0, α2 > 0 are such that the following conditions are satisfied

ε′1(N)

λ′1(N)− 1
<
α1
α2
<
1− λ′2(N)
ǫ′2(N)

.

It is easy to see that for the map f to be hyperbolic on N it is necessary that

λ′1 > 1, λ
′

2 < 1 and the linearization of f at x∗ is hyperbolic with one stable and

unstable direction.

Theorem 3.3 ([1, Theorem 3]). Assume that f is hyperbolic on N . Then

(a) if fk(x) ∈ N for k ≥ 0, then limk→∞ fk(x) = x∗,
(b) if yk ∈ N and f(yk−1) = yk for k ≤ 0, then limk→−∞ yk = x∗.

The next theorem shows how we can combine covering relations and hy-

perbolicity in order to prove the existence of asymptotic orbits with prescribed

itinerary.

Theorem 3.4 ([1, Theorem 4]). Assume that g is hyperbolic on Nm and f

hyperbolic on N0. Let xg ∈ Nm be a fixed point for g and xf ∈ N0 be a fixed
point for f . If

(3.1) N0
f⇐⇒ N0 f0⇐⇒ N1 f1⇐⇒ N2 f2⇐⇒ . . . fm−1⇐⇒ Nm g⇐⇒ Nm

then there exists a sequence (xk)
0
k=−∞, f(xk) = xk+1 for k < 0 such that

xk ∈ N0 for k ≤ 0,
fi−1 ◦ fi−2 ◦ . . . ◦ f0(x0) ∈ Ni for i = 1, . . . ,m,

gn ◦ fm−1 ◦ . . . ◦ f0(x0) ∈ Nm for n > 0,
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lim
k→−∞

xk = xf ,

lim
k→∞
gk ◦ fm−1 ◦ · · · ◦ f0(x0) = xg .

The above theorem can be used without any modifications for proving the

existence of trajectories converging to periodic orbits. In this case we consider

higher iterates of maps f and g in (3.1).

4. The application to the Michelson system

In this section we show how the presented methods may be applied in order

to prove Theorems 1.1 and 1.2. We rewrite the equation (1.1) as a first order

system in R
3 with a parameter value fixed to c = 1, i.e.

(4.1)







ẋ = y,

ẏ = z,

ż = 1− y − 1
2
x2

Let us observe that the system (4.1) possesses the following reversing symmetry

(4.2) R(x, y, z, t) = (−x, y,−z,−t)

which means that if t→ (x(t), y(t), z(t)) is a solution of (4.1) then t→ (−x(−t),
y(−t),−z(−t)) is a solution too. The existence of symmetry (4.2) implies that
each solution of (1.1) with initial condition y = y′′ = 0, y′ ∈ R is an odd function.

4.1. Representation of h-sets. In this section we deal with h-sets possess-

ing exactly one unstable direction and one stable direction which are parallelo-

grams. Therefore we use the following representation. A h-set N in R
2 may be

defined by specifying (x, u, s), where x, u, s ∈ R
2, are such that u, s are linearly

independent. We then set

|N | := {v ∈ R
2 | there exists t1, t2 ∈ [−1, 1] such that v = x+ t1s+ t2u}

=x+ [−1, 1] · u+ [−1, 1] · s

and take u as the nominally unstable direction and s as the nominally stable

direction. The homeomorphism cN is taken as the affine map cN (v) =M
−1(v−

x), whereM = [uT , sT ] is a square matrix. In this representationNc = B1×B1 =
[−1, 1]2 is a product of unit balls in the maximum norm.
In such a situation we will write N = h(x, u, s).

4.2. Definition of the sets. Consider the Poincaré section Θ = {(x, y, 0) |
x, y ∈ R}. Since the third coordinate on Θ is constant and equal to zero we will
use x, y coordinates only to describe the points on Θ and we will identify Θ with

R
2. The vector field is tangent to the section on parabola {(x, 1 − x2/2, 0) ∈

R
3 | x,∈ R}, hence the Poincaré return map is not defined on the whole section.
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However, as it has been proven in [9], [10] the Poincaré map is well defined and

continuous on some subset of Θ. Here we recall the main definitions.

We define five h-sets Ni = h(xi, ui, si), i = 1, . . . , 5, where

x1 = (0.00, 1.55), u1 = (0.14, 0.06), s1 = (−0.14, 0.06),
x2 = (0.00, 0.51), u2 = (0.09, 0.13), s2 = (−0.09, 0.13),
x3 = (1.41, 0.97), u3 = (0.06, 0.05), s3 = (−0.06, 0.05),
x4 = (0.00,−2.35), u4 = (0.06, 0.10), s4 = (−0.06, 0.10),
x5 = (−1.41, 0.97), u5 = (−0.06, 0.05), s5 = (0.06, 0.05).

These sets are chosen as neighbourhoods of the intersections of periodic orbits

found by Troy [8] with the Poincaré section Θ — see Figure 6.

-1 1
x

-1

1

y

N1

N2

N3

N4

N5

Figure 6. The numerical evidence of the existence of covering relations
established in Lemma 4.1. Red and blue colors (when in color) correspond

to N
−
i

and their images.

Let N =
⋃5
i=1 |Ni|. The following lemma has been proven in [9].

Lemma 4.1 ([9, Lemma 5.1]). Let P : Θ −→◦ Θ denote the Poincaré return
map for the Michelson system. Then N ⊂ dom(P ) and

(4.3)
N2

P
=⇒ N3 P

=⇒N4 P
=⇒ N5 P

=⇒ N2,
N1

P
=⇒ N4 P

=⇒ N1.
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Note that in (4.3) there are two different loops of covering relations corre-

sponding to the two symmetric periodic solutions S1 and S2. The main observa-

tion is that these loops contain the common h-set N4 which allows to construct

essentially different sequences of covering relations of an arbitrary length.

Now we define the hyperbolic sets around the odd periodic solutions. Define

q1 = 1.5259617305037, q2 = 0.5000256485352, η = 4 · 10−13,
I1 = [q1 − η, q1 + η], I2 = [q2 − η, q2 + η].

Lemma 4.2 ([10, Lemmas 5.12–5.14]). There are two points S∗1 , S
∗

2 ∈Fix(R)
and there are two pairs of h-sets H1, G1 and H2, G2 centered at S

∗

1 , S
∗

2 respec-

tively, such that the following conditions hold true:

(a) S∗1 ∈ {0} × I1 is a unique fixed point of P 2 in |H1|,
(b) S∗2 ∈ {0} × I2 is a unique fixed point of P 4 in |H2|,
(c) |H1| ⊂ |G1| ⊂ |N1| and |H2| ⊂ |G2| ⊂ |N2|,
(d) P 2 is well defined and continuous on |G1|,
(e) P 4 is well defined and continuous on |G2|,
(f) P 2 is hyperbolic on H1 and H1

P 2

=⇒ H1,
(g) P 4 is hyperbolic on H2 and H2

P 4

=⇒ H2,
(h) H1

P 2

=⇒ G1 P
2

=⇒ N1 and N1 P
2

⇐= G1 P
2

⇐= H1,
(i) H2

P 4

=⇒ G2 P
4

=⇒ N2 and N2 P
4

⇐= G2 P
4

⇐= H2.

The proof of the existence of backcovering relations

(4.4) N1
P 2⇐= G1 P

2

⇐= H1, N2
P 4⇐= G2 P

4

⇐= H2

is not explicitly presented in [10]. The assertion is a consequence of the symmetry

of these sets in the sense of the following definitions.

Definition 4.3. Let Q be a h-set in R
n. Let L : Rn → R

n be a homeomor-

phism. We define a h-set L ∗Q as follows:
(a) |L ∗Q| = L(|Q|),
(b) u(L ∗Q) = u(Q) and s(L ∗Q) = s(Q),
(c) cL∗Q = cQ ◦ L−1.

We define a h-set LT ∗Q by LT ∗Q = (L ∗Q)T .

Informally speaking, L∗Q is just a natural symmetric image of Q and LT ∗Q
is a symmetric image of Q, but we additionally switch the ‘expanding’ and

‘contracting’ directions.

Definition 4.4. A h-set Q is called R-symmetric if RT ∗Q = Q.

We have the following
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Lemma 4.5. Let R:R2n → R
2n be a reversing symmetry for a map f and

Q1
f⇐⇒ Q2, then RT ∗Q2 f⇐⇒ RT ∗Q1.

Proof. From the definition of covering relations and reversing symmetry it

follows immediately that

if Q1
f
=⇒ Q2 then RT ∗Q2 f⇐= RT ∗Q1,

if Q1
f⇐= Q2 then RT ∗Q2 f

=⇒ RT ∗Q1. �

In fact, the sets H1, H2, G1, G2, N1, N2 are R-symmetric, hence from

Lemma 4.5 we get that if Q1
P
=⇒ Q2 holds for some Q1, Q2 ∈ {H1, H2, G1, G2,

N1, N2} then Q2 P⇐= Q1. Therefore (4.4) holds true.
Let S1 and S2 denote the periodic orbits associated with the fixed points S

∗

1

S∗2 of the suitable Poincaré map, i.e.

Sj = {S∗j (t) | t ∈ R} for j = 1, 2,

where t→ S∗j (t) is a solution of (4.1) with an initial condition S∗j (0) = S∗j .

Definition 4.6. We say that the sequence (i0, . . . , in) ∈ {1, . . . , 5}n+1 is
admissible with respect to P if

Nij
P
=⇒ Nij+1 for j = 0, . . . , n− 1.

Now we are in the position to present a more general statement of Theo-

rems 1.1 and 1.2.

Theorem 4.7. Assume (i0, . . . , in) ∈ {1, . . . , 5}n+1 is an admissible se-
quence with respect to P such that i0, in ∈ {1, 2}. Then there exists a solution
u:R→ R

3 of (4.1) satisfying the following conditions:

(a) the solution u(t) is defined for t ∈ R;

(b) there are real numbers 0 = t0 < . . . < tn such that u(tj) ∈ |Nij | for
j = 0, . . . , n;

(c) the ω-limit set ω(u) = Sin ;

(d) the α-limit set α(u) = Si0 .

Hence, if i0 = in then u is a homoclinic solution to Si0 = Sin and if i0 6= in then
u is a heteroclinic connection between Si0 and Sin .

Proof. From the assumptions and Lemma 4.2 we get that

Hi0
Pk

=⇒ Hi0
Pk

=⇒ Gi0
Pk

=⇒ Ni0
P
=⇒ · · · P=⇒ Nin

P l⇐= Gin
P l⇐= Hin

P l⇐= Hin ,

where k = 2 if i0 = 1 and k = 4 if i0 = 2. Similarly l = 2 if in = 1 and l = 4

if in = 2. From Lemma 4.2 we know that P
k is hyperbolic on Hi0 and P

l is
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hyperbolic on Hin . Now, Theorem 3.4 implies that there exists u0 ∈ |Ni0 | such
that

P j(u0) ∈ |Nij |, for j = 1, . . . , n,(4.5)

lim
j→−∞

P kj(u0) = S
∗

i0
, lim
j→∞
Pn+lj(u0) = S

∗

in
.(4.6)

This implies that the solution u of (4.1) satisfying u(0) = u0 is defined for t ∈ R.

From the definition of the Poincaré map and (4.5) it follows that there are real

numbers 0 = t0 < . . . < tn such that u(tj) = P
j(u0) ∈ |Nij | for j = 1, . . . , n.

Finally, from (4.6) and the continuity of the local dynamical system induced

by (4.1) we get that ω(u) = Sin and α(u) = Si0 . �

Denote by Fix(R) the set of fixed points for the symmetry, i.e.

Fix(R) = {(0, y, 0) ∈ R
3 | y ∈ R}.

Now we prove the existence of odd homoclinic solutions.

Theorem 4.8. Assume (i0, . . . , in) ∈ {1, . . . , 5}n+1 is an admissible se-
quence with respect to P such that i0 ∈ {1, 2, 4} and in ∈ {1, 2}. Then there
exists a solution u:R→ R

3 of (4.1) satisfying the following conditions:

(a) u(t) is defined for all t ∈ R,

(b) u(0) ∈ Fix(R),
(c) there are real numbers 0 = t0 < . . . < tn such that u(tj) ∈ |Nij | and
u(−tj) ∈ R(|Nij |) for j = 0, . . . , n,

(d) ω(u) = α(u) = Sin .

Proof. Define the horizontal disc in Ni0

bh:B1 ∋ y → xi0 + y · si0 + y · ui0 ∈ |Ni0 |,

where the required homotopy from the Definition 2.7 of vertical disc is given by

hh: [0, 1]×B1 ∋ (t, y)→ ((1 − t)y, y) ∈ (Ni0)c.

Observe that the unstable and stable vectors used to define h-sets N1, N2 and

N4 are symmetric, i.e. R(si) = ui for i = 1, 2, 4. Moreover, xi ∈ Fix(R) for
i = 1, 2, 4. Therefore bh(B1) ⊂ Fix(R).
From Lemma 4.2 we get

(4.7) Ni0
P
=⇒ Ni1

P
=⇒ · · · P=⇒ Nin

Pk⇐= Gin
Pk⇐= Hin

Pk⇐= Hin ,

where k = 2 if in = 1 and k = 4 if in = 2.
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Now, Corollary 2.9 applied to the sequence (4.7) and the horizontal disc bh

in Ni0 implies that there exists t ∈ B1 such that bh(t) ∈ |Ni0 | ∩ Fix(R) and

P j(bh(t)) ∈ |Nij |, for j = 1, . . . , n,
Pn+kj(bh(t)) ∈ |Nin |, for j = 1, 2, . . . .

From Lemma 4.2 we know that P k is hyperbolic on Nin , therefore Theorem 3.3

implies that

(4.8) lim
j→∞
Pn+jk(bh(t)) = S

∗

in
.

Let u be the solution of (4.1) with initial condition u(0) = bh(t). Clearly u(0) ∈
bh(B1) ⊂ Fix(R). From the definition of the Poincaré map there are real numbers
0 = t0 < . . . , < tn such that u(tj) = P

j(bh(t)) ∈ |Nij |. From (4.8) we get that
ω(u) = Sin .

Since u(0) ∈ Fix(R) the reversing symmetry property of (4.1) implies that
u(−tj) = R(u(tj)) ∈ R(|Nij |) for j = 1, . . . , n and α(u) = R(ω(u)) = Sin . �

Now we present the proof of the main theorems.

Proof of Theorems 1.1 and 1.2. All the assertions follow from Lem-

ma 4.1 Theorems 4.7 and 4.8. The existence of infinitely many heteroclinic

and homoclinic solutions is a consequence of Theorem 4.7 because we can find

infinitely many sequences satisfying the assumptions of Theorem 4.7 which give

geometrically different solutions. Take for example:

• (1, 4, 5, 2, 3, . . . , 4, 5, 2, 3
︸ ︷︷ ︸

n times

, 4, 1) ∈ {1, 2, 3, 4, 5}4n+3, n > 0 for homoclinic

solutions to S1,

• (2, 3, 4, 1 . . . , 4, 1
︸ ︷︷ ︸

n times

, 4, 5, 2) ∈ {1, 2, 3, 4, 5}2n+5, n > 0 for homoclinic solu-

tions to S2,

• (1, 4, 5, 2, 3, 4, 1, . . . , 4, 5, 2, 3, 4, 1
︸ ︷︷ ︸

n times

, 4, 5, 2) ∈ {1, 2, 3, 4, 5}6n+4, n > 0 for

heteroclinic orbit connecting S1 with S2,

• (2, 3, 4, 5, 2, 3, 4, 1, . . . , 4, 5, 2, 3, 4, 1
︸ ︷︷ ︸

n times

) ∈ {1, 2, 3, 4, 5}6n+2, n > 0 for hete-

roclinic orbit connecting S2 with S1.

Similarly we can find infinitely many sequences satisfying assumptions of

Theorem 4.8. Take for example:

• (4, 5, 2, 3, . . . , 4, 5, 2, 3
︸ ︷︷ ︸

n times

, 4, 1) ∈ {1, 2, 3, 4, 5}4n+2, n > 0 for odd homo-

clinic solutions to S1,
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• (4, 1, . . . , 4, 1
︸ ︷︷ ︸

n times

, 4, 5, 2) ∈ {1, 2, 3, 4, 5}2n+3, n > 0 for odd homoclinic so-

lutions to S2. �
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