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RETRACTING BALL ONTO SPHERE IN BC((R)

LUKASZ PIASECKI

ABSTRACT. In infinite dimensional Banach spaces the unit sphere is a lip-
schitzian retract of the unit ball. We use the space of continuous functions
vanishing at a point to provide an example of such retraction having rela-
tively small Lipschitz constant.

1. Introduction

Let (X, ||||) be an infinite dimensional Banach space with the unit ball B and
the unit sphere S. Since the works of Nowak [8] and Benyamini and Sternfeld
[2] it is known that S is a lipschitzian retract of B. It means that there exists
a mapping (a retraction) R: B — S satisfying, with a certain constant k > 0,
the Lipschitz condition

(1.1) Rz — Ryl| < kljz — y]

for all z,y € B and such that Rz = x for all z € S. Obviously, the above is not
true for spaces of finite dimension due to the Brouwer’s Non Retraction Theorem.
There is an interesting question. What is the infimum of all £ admitting existence
of a retraction R: B — S satisfying the Lipschitz condition (1.1) with constant k?
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More precisely, the investigation is going on to find or evaluate the optimal
retraction constant ko(X) defined by:

ko(X) = inf{k : there exists a retraction R: B — S satisfying (1.1)}.

At present the exact value of ko(X) is not known for any single Banach space.
Various evaluations can be found in books of Goebel and Kirk [4] and Goe-
bel [3] and papers cited there. Obviously, constant ko(X) can not be to small.
The universal known bound from below is ko(X) > 3 but probably it is not
sharp. For some spaces there are better estimates e.g. ko(X) > 3 for uniformly
convex spaces, ko(l1) > 4 and ko(H) > 4.5 for Hilbert space. There were several
approaches to give a reasonable universal estimate from above. All of them
are based on individual constructions and tricks. It is a general feeling that
spaces can differ by the value of ko(X) depending on the regularity of the norm
geometry.

For several years the best known estimate from above was for L;(0,1) (see
[3]). Together with a general estimation from below, we have

3 < ko(L1(0,1)) <9.43...

Very recently M. Annoni and E. Casini [1] obtained better evaluation for [;.
Together with known bound from below, we have

4 <ko(ly) <8.

Immediately, the same estimate has been extended for L1(0,1) and few other
spaces [6].

An interesting situation is observed for spaces with uniform norm. The best
known estimate for the space of continuous functions is (see [3])

3< ko(C[0,1]) < 4(1+v2)> =23.31...

Added in the proof: Author get a better estimation: ko(C0,1]) < 14.93 in his
master’s degree thesis. But for subspace Cy[0, 1] consisting of all the functions
vanishing at zero the best published estimate is (see [5])

3 < ko(Col0,1]) < 12.
This was improved by the very recent result [7] stating that
3 < ko(Ch[0,1])) < 7.

The aim of this note is to present a construction for the space BCy(R) of all
bounded continuous functions vanishing at zero which improves the estimates
presented above. Then we extend this construction to a much wider class of
spaces.



RETRACTING BALL ONTO SPHERE IN BCp(R) 309

2. The case of BCy(R)

Let us start with the space BCp(R) of all bounded continuous functions
on R vanishing at zero and furnished with the standard uniform norm ||f|| =
sup{|f(t)| : t € R}. For our construction we shall need two simple special
functions. First function is a: R — [—1,1],

1 fort< —1,
alt)y=< t for —1<t<1,
1 for t > 1.

Function « generates the truncation retraction @ of the whole space BCy(R)
onto its unit ball B,

Q[ (t) = a(f(t)) = max{—1,min{1, f(¢)}}.

Obviously @ satisfies the Lipschitz condition (1.1) with the constant k = 1

(2.1) 1Qf = Qgll < II.f = gll
and for each f such that ||f|| > 1 we have
(2.2) sl =1.

Also for any r > 0 it generates the truncation @, on the ball B(r) with center

at zero and radius 7,

Qrf =

rQ((1/r)f) ifr >0,
0 if r =0.

Moreover, for any r; > 0,72 > 0, we have

(2:3) 1Qr, f = @rygll < max{|ry —raf, [l — gl}-
The second simple function to be used in the construction is A: [0, c0) — [0, 1]
3t for 0 <t <1/3,
At)=4 2-3t for1/3<t<2/3,
0 for t > 2/3.

It is clear that A satisfies for all s,t € [0, 00) the Lipschitz condition
(2.4) [A(s) — A(t)] < 3]s — .

The function A can be used to define a mapping T: BCy(R) — B by putting for
each f € BCy(R)

(2.5) TH(t) = A(If(t)l e 'j't').
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In view of (2.4), for all f,g € BCy(R) we have

(2.6) ITf—"Tgll <3[f— gl

Moreover, for each f € BCy(R) there exists a point ¢; such that

|t1] 1
¢ — = and Tf(t) =1
|f(1)|+1+|t1| 3 an f(1>
Hence
1 [t1] 2 [t1] 2
2.7 —Tfl| >|Tft)|—|ft)|=1—| = — = -+ > —.
In the next step let us define a mapping F: B((2 + v/2)/3) — BCy(R)

f-rf it £l <2/3,
Ff=q f=Qsa—nTf if2/3<(f <1,
(4=3IlfI)f if 1< [Ifl < (2+v2)/3.
The radius (2 + v/2)/3 has been selected via certain process of optimization.
We skip the detailes.
Observe that if ||f|| = 2/3 both formulas give the same result. The same
holds if || f|| = 1.

Let us prove that mapping F' satisfies the Lipschitz condition with con-
stant 4.

e In view of (2.6) for all f, g with ||f]| <2/3 and ||g|| < 2/3 we have

|Ff—=Fgll =1(f =Tf) = (9Tl < IIf =gl +ITf - Tyl
<\f =gl +3lf =gl =4l f — gll;

e In view of (2.3) and (2.6) for all f, g with 2/3 < ||f|| < 1 and 2/3
llg]l <1 we have

|1Ff = Fgll =I(f — Qaa—ysnTf) — (9 — Qz—gnT9)ll
<[f =gl + 1Qs—ysnTf — Qsi—pgnT'9ll
<If = gll + max{|3(1 — [|f[]) = 3(L = [lgD[, IT'f — T'g|I}
<|f = gll +max{3[[[ Il = llglll, 31l.f — gll} = 4l[f — gll;
e Without loss of generality, we can assume that 1 < ||g|| < |[|f]]
(2+v2)/3,
IFf = Fgll = (4= 31£1)f — (4 3llggl
<[4 =3l =gl + 14 =3I1fIDg — (4 =3llglDgll
<@=3[fIDILf = gll + 3llgllLA = llgl)
<@ =3lIf[II+3lglDILf — gl < 4llf = gll-

IN

IN
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Finally, the standard reasoning shows that for all f,g € B((2+1/2)/3) we
have

(2.8) IEf = Fgl < 4]f =gl
Let us prove now that for each f € B((2+ /2)/3) we have
2
(2.9) P22

In view of (2.7), [|Ff]l = |f — Tf|| > 2/3 for all f with ||f|] < 2/3. The same
holds for all f with 2/3 < ||f|| < 1. Indeed, if f attains its norm at a point ¢,
Ifll = |f(@)| > 2/3, then using the fact that A(|f(Z)] +|¢]/(1 + |£])) = 0, we have

IFfIl =11 = Qs TfIl = [f#) = Qaa—ysnTf@)]

> 1101 - |QuacA (O + 1102 )| = 171> 2.

1+ []

Since functions attaining their norm form the dense set in B we conclude that
2
IEf] > 3 for each f € B.
If 1< |f]l < (2++/2)/3 then

IESI =114 =3IlF DA = (4 = 317D =

)

[N )

and inequality (2.9) is proved.
Observe also that for each f with || f|| = 2%5 we have

(2.10) Ff=02-V2)f
Let us define now a mapping F:B — BC, (R) by putting for each f € B

~. 3 2+2
Ff_2+\/§F< 3 f)

In view of (2.8)—(2.10)
e for all f,g € B we have

(2.11) IEf = Fgl <4 f - gl

e for each f € B we have

~ 2
(212) 17512 5=

e for each f € S we have

2

(2.13) Ff= ST/

f.
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Putting together (2.1), (2.2), (2.11)—(2.13) we can now define the retraction
R:B — S as

R — Q<2+\f >

and observe that for all f, g € B we have

oy fo(253%57) (2575
2+\f 2+42

\Ef - F||<4< )nf gl =22+ VDIf — gl

What we have shown can be formulated as

ko(BCo(R)) < 2(2 + v/2) < 6.83.

3. Possibility of generalization

Presented construction can be repeated with minor changes and applied to
a much wider class of spaces. Suppose (M, d) is a connected metric space con-
sisting of more than one point and let z € M be a selected point. Consider the
space BC,(M) of all bounded continuous functions f: M — R vanishing at z,
f(z) =0, with the standard uniform norm || f|| = sup{|f(z)|: z € M}.

If M is an unbounded then the following modification of the formula (2.5),

71w = A(If @]+ )

allows to carry on the proof with only technical changes.

For bounded space M, the same holds. It is enough to put
m = sup{d(z,z):x € M}
and modify (2.5) by
7(0) = A (1) + 1220,
All the above allows us to conclude with the theorem,

THEOREM 3.1. If (M, d) is a connected metric space consisting of more than
one point and z € M is a given point, then

ko(BC.(M)) < 2(2+V2) < 6.83.

The above proof combined tricks known from [5] and [7].
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