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THE ROLE OF EQUIVALENT METRICS
IN FIXED POINT THEORY

Adrian Petruşel — Ioan A. Rus — Marcel-Adrian Şerban

Abstract. Metrical fixed point theory is accomplished by a wide class of
terms:

• operators (bounded, Lipschitz, contraction, contractive, nonex-
pansive, noncontractive, expansive, dilatation, isometry, simila-

rity, Picard, weakly Picard, Bessaga, Janos, Caristi, pseudocon-

tractive, accretive, etc.),
• convexity (strict, uniform, hyper, etc.),

• deffect of some properties (measure of noncompactness, measure

of nonconvexity, minimal displacement, etc.),
• data dependence (stability, Ulam stability, well-posedness, shad-

owing property, etc.),
• attractor,
• basin of attraction . . .

The purpose of this paper is to study several properties of these concepts
with respect to equivalent metrics.

1. Introduction

Metrical structures play an important role in topology ([5], [9], [16], [17],
[26], [32], [35], [55], [24], [66], [67], [82], [86], [101], [102], etc.), functional analysis
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and operator theory ([1], [3], [7], [10], [26], [30], [31], [33], [39], [42], [47], [53],
[60], [72], [99], [115], etc.), as well as some other topics of pure and applied
mathematics ([2], [6], [8], [11], [18], [53], [93], [111], [116], etc.).

In fixed point theory, the role of the metric is fruitful and complex and it is
strongly defined by several terms, such as:

• convexity (strict, uniform, hyper, etc.),
• deffect of some properties (measure of noncompactness, measure of non-

convexity, minimal displacement, etc.),
• data dependence (stability, Ulam stability, well-posedness, shadowing

property, etc.),
• attractor,
• basin of attraction . . .

The purpose of this paper is to study several properties of above mentioned
terms with respect to equivalent metrics.

Throughout this paper, the standard notations and terminologies in nonlinear
analysis are used. For the convenience of the reader we recall some of them.

Let X be a nonempty set and d, ρ be two metrics on X. Then, by definition,
d, ρ are called:

(a) topologically equivalent if d and ρ define the same topology on X, i.e.

U ⊂ X is d-open ⇔ U ⊂ X is ρ-open.

(b) strongly (or Lipschitz or uniformly or metric) equivalent if there exists
c1, c2 > 0 such that

c1ρ(x, y) ≤ d(x, y) ≤ c2ρ(x, y), for all x, y ∈ X.

Notice that, if X is a nonempty set and d and ρ are two metrics on X such that
d and ρ are strongly equivalent, then d and ρ are topologically equivalent too.

Let X be a nonempty set and f :X → X an operator. Then f0 := 1X ,
f1 := f , fn+1 := f ◦ fn, n ∈ N denote the iterate operators of the operator f .
By Ff := {x ∈ X | f(x) = x} we will denote the fixed point set of the operator f .

Definition 1.1. Let (X, d) be a metric space. An operator f :X → X is
Picard operator (briefly PO) if:

(a) Ff = {x∗};
(b) (fn(x))n∈N → x∗ as n→∞, for all x ∈ X.

Definition 1.2. Let (X, d) be a metric space. An operator f :X → X is
weakly Picard operator (briefly WPO) if the sequence (fn(x))n∈N converges for
all x ∈ X and the limit (which may depend on x) is a fixed point of f .



The Role of Equivalent Metrics in Fixed Point Theory 87

If f :X → X is a WPO, then we may define the operator f∞:X → X by
f∞(x) := lim

n→∞
fn(x). Obviously f∞(X) = Ff . Moreover, if f is a PO and we

denote by x∗ its unique fixed point, then f∞(x) = x∗, for each x ∈ X.

Definition 1.3. Let (X, d) be a metric space and f :X → X be a WPO.
Then, f is called a ψ-weakly Picard operator (briefly ψ-WPO) if and only if
ψ: R+ → R+ is an increasing and continuous in 0 function with ψ(0) = 0 and

d(x, f∞(x)) ≤ ψ(d(x, f(x))), for all x ∈ X.

In particular, if there exists c > 0 such that ψ(t) = ct, for all t ∈ R+, then f is
said to be a c-WPO.

For the theory of POs and WPOs see [88]. See also [90], [94], [96], [98]
and [99]. For the convergence of the iterates see [8], [10], [63], [94], [107], [4].

Let (X, d) be a metric space. We will also use the following symbols:
P (X) = {Y ⊂ X | Y is nonempty}, Pb(X) := {Y ∈ P (X) | Y is bounded},
Pcl(X) := {Y ∈ P (X) Y is closed}, Pb,cl(X) := Pb(X) ∩ Pcl(X),
Pcp(X) := {Y ∈ P (X) | Y is compact}.
If T :X → P (X) is a multivalued operator then the graph of the multifunction

T is denoted by Graph(T ) := {(x, y) ∈ X × X | y ∈ T (x)}. Also throughout
the paper FT := {x ∈ X | x ∈ T (x)} (respectively, (SF)T := {x ∈ X | {x} =
T (x)}) denotes the fixed point set, (respectively, the strict fixed point set) of the
multivalued operator T .

The following (generalized) functionals are used in the main section of the
paper.

• The gap functional :

Dd:P (X)× P (X) → R+ ∪ {+∞}, Dd(A,B) := inf{d(a, b) | a ∈ A, b ∈ B}.

• The δ generalized functional :

δd:P (X)× P (X) → R+ ∪ {+∞}, δd(A,B) := sup{d(a, b) | a ∈ A, b ∈ B}.

• The excess generalized functional :

ρd:P (X)× P (X) → R+ ∪ {+∞}, ρd(A,B) := sup{Dd(a,B)| a ∈ A}.

• The Hausdorff–Pompeiu generalized functional :

Hd:P (X)× P (X) → R+ ∪ {+∞}, Hd(A,B) := max{ρd(A,B), ρd(B,A)}.

Some important concepts are recalled now.
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Definition 1.4. Let (X, d) be a metric space, and T :X → Pcl(X) be a mul-
tivalued operator. By definition, T is a multivalued weakly Picard (briefly MWP)
operator if for each x ∈ X and each y ∈ T (x) there exists a sequence (xn)n∈N

such that:

(a) x0 = x, x1 = y;
(b) xn+1 ∈ T (xn), for each n ∈ N;
(c) the sequence (xn)n∈N is convergent and its limit is a fixed point of T .

Remark 1.5. A sequence (xn)n∈N satisfying the conditions (a) and (b) in
the Definition 1.4 is called a sequence of successive approximations of T starting
from (x, y) ∈ Graph(T ).

If T :X → P (X) is a MWP operator, then we define T∞: Graph(T ) → P (FT )
by the formula T∞(x, y) := {z ∈ FT | there exists a sequence of successive
approximations of T starting from (x, y) that converges to z}.

Definition 1.6. Let (X, d) be a metric space and T :X → P (X) be a MWP
operator. Then, T is called a ψ-multivalued weakly Picard operator (briefly ψ-
MWP operator) if and only if ψ: R+ → R+ is an increasing and continuous in 0
function with ψ(0) = 0 and there exists a selection t∞ of T∞ such that

d(x, t∞(x, y)) ≤ ψ(d(x, y)), for all (x, y) ∈ Graph(T ).

In particular, if there exists c > 0 such that ψ(t) = ct, for all t ∈ R+, then T is
said do be a c-MWP operator.

Let (X, d), (Y, ρ) be metric spaces and T :X → Pcl(Y ) be a multivalued oper-
ator. Then T is said to be an a-contraction if a ∈ ]0, 1[ and Hρ(F (x1), F (x2)) ≤
ad(x1, x2), for all x1, x2 ∈ X. Notice that, if T is a self multivalued contraction
on X, then T is a 1

1−a -MWP operator.
For the theory of multivalued weakly Picard operators see [76]. See also [78]

and [99], [21], [43], [57], [72], [81], [84], [106].
For the metrical fixed point theory see [60], [78], [1], [10], [42], [47], [56], [62],

[93], [94], [19], [20], [57], [59], [61], [74], [75], [91], [105], [109].

2. Constructing metrics with a given property

We start this section by presenting the following problem.

Problem 2.1. Let (X, d) be a metric space and θ: R+ → R+ a function. In
which conditions on θ we have:

(a) θ ◦ d is a metric on X?
(b) d and θ ◦ d are topologically (respectively, strongly) equivalent metrics?
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Let (X, d) be a metric space and θ: R+ → R+ a function. It is easy to see
that θ ◦ d satisfies the first axiom of the metric if and only if θ−1(0) = {0} and
the second axiom of the metric is always satisfied. The major problem remains
to ensure the third axiom of the metric, namely the triangle inequality. We will
need some notions and results.

Definition 2.2. A function θ: R+ → R+ is called a metric preserving func-
tion if and only if for every nonempty set X and every metric d on X, the
mapping θ ◦ d is a metric on X. Moreover, if for every nonempty set X and
every metric d on X, the mapping θ ◦ d is topologically equivalent with d, then
the mapping θ: R+ → R+ is called a strongly metric preserving function.

The notion of the metric preserving function seems to be introduced for the
first time by W.A. Wilson in [114], while the first detailed study of such functions
was made by T.K. Sreenivasan in [104]. Since then many papers have been
written concerning the properties and the characterization of these functions
(see [14], [15], [22], [27]–[29], [108], [110]; see also [16], [17], [32], [35], [36]).

Recall also that θ: R+ → R+ is called an amenable function if and only if
θ−1(0) = {0}. Throughout the paper we will denote by

A = {θ: R+ → R+ | θ−1(0) = {0}}

the set of amenable functions.

Definition 2.3 (F. Terpe [108], P. Corazza [22]). A triple (a, b, c) of non-
negative real numbers is called a triangle triplet if and only if

a ≤ b+ c, b ≤ a+ c, c ≤ a+ b

or equivalently

|a− b| ≤ c ≤ a+ b.

We have the following characterization of metric preserving functions.

Theorem 2.4 (J. Borśık, J. Doboš [14], J. Doboš [27], P. Corazza [22]). Let
θ ∈ A. Then the following statements are equivalent :

(a) θ is metric preserving function;
(b) if (a, b, c) is a triangle triplet then so is (θ(a), θ(b), θ(c));
(c) if (a, b, c) is a triangle triplet then θ(a) ≤ θ(b) + θ(c);
(d) for every a, b ∈ R+ we have max{θ(c) : |a−b| ≤ c ≤ a+b} ≤ θ(a)+θ(b).

We have the following characterization of strongly metric preserving func-
tions.
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Theorem 2.5 (J. Borśık, J. Doboš [14], J. Doboš [27], P. Corazza [22]). Let
θ be a metric preserving function. Then the following statements are equivalent:

(a) θ is strongly metric preserving function;
(b) θ is continuous in 0;
(c) θ is continuous on R+;
(d) for each ε > 0 there exists an a > 0 with θ(a) < ε.

Let us consider now the second problem of this section.

Problem 2.6. Let (X, d) be a metric space and f :X → X an operator. In
which condition on f there exists an equivalent (topologically, strongly) metric
ρ on X with respect to which f is a contraction?

For this problem we can present the following well known relevant examples.

Example 2.7 (Bielecki (1956)). Let K ∈ C([a; b] × [a; b] × R) satisfies the
Lipschitz condition (LK > 0)

|K(t, s, u)−K(t, s, u)| ≤ Lk · |u− v|,

for all t, s ∈ [a; b] and u, v ∈ R. We consider on C[a; b] the following metrics

d(x, y) = max
a≤t≤b

|x(t)− y(t)|

and, for τ > 0,

dτ (x, y) = max
a≤t≤b

(|x(t)− y(t)| · e−τ(t−a)).

The metrics d and dτ are strongly equivalent. Let us consider on C[a; b] the
operator A:C[a; b] → C[a; b] defined by

A(x)(t) =
∫ t

a

K(t, s, x(s)) ds, t ∈ [a; b].

A lipschitz constant of the operator A with respect to the metric d is Lk(b− a)
and with respect to the metric dτ is LK/τ . So, for suitable τ , the operator A is
contraction with respect to the metric dτ .

For the Bielecki method see [23], [6], [45], [64], [31] and [85].

Example 2.8 (W. Walter (1976), E. Bohl (1970), J.K. Hale and O. Lo-
pes (1972)). Let (X, d) be a metric space and f :X → X an operator. We
suppose that:

(a) f is Lf -Lipschitz;
(b) there exists n0 ∈ N∗ such that fn0 is n0

√
α-contraction.
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Then the functional ρ:X ×X → R+ defined by

ρ(x, y) = d(x, y) + n0
√
α−1d(f(x), f(y)) + . . .+ n0

√
α1−n0d(fn0−1(x), fn0−1(y))

is a strongly equivalent metric with d and the operator f is α-contraction with
respect to the metric ρ.

Example 2.9 (L. Janos (1967)). Let (X, d) be a compact metric space and
f :X → X an operator. We suppose that:

(a) f is continuous;
(b)

⋂
n∈N

fn(X) = {x∗}.

Then the functional ρ:X ×X → R+ defined by

ρ(x, y) = sup{d(fn(x), fn(y)) | n ∈ N}

is a topologically equivalent metric with d and the operator f is nonexpansive
operator with respect to the metric ρ.

An abstract example was given by Meyers as follows.

Theorem 2.10 (P.R. Meyers [70]). Let (X, d) be a metric space and f :X →
X be a continuous operator such that:

(a) Ff = {x∗};
(b) fn(x) → x∗ as n→ +∞;
(c) there exists an open neighbourhood U of x∗ with the property that for

any open set V containing x∗ there exists n0 ∈ N such that fn(U) ⊂ V

for all n ≥ n0.

Then for each λ ∈ (0; 1) there exists a topologically equivalent metric dλ on X

such that f is λ-contraction.

First of all, we remark that the condition (c) from Theorem 2.10 is equivalent
with

(c’) there exists r > 0 with the property that, for any ε > 0, there exists
nε ∈ N such that fn(B(x∗, r)) ⊂ B(x∗, ε) for all n ≥ nε.

The above result of Meyers lead us to our next problem.

Problem 2.11. Let (X, d) be a metric space and f : X → X be a PO
operator. Under which assumptions on f the condition (c) from Theorem 2.10
is satisfied?

Theorem 2.12. Let (X, d) be a complete metric space and f :X → X be
a ϕ-contraction, i.e. ϕ: R+ → R+ is a comparison function and

d(f(x), f(y)) ≤ ϕ(d(x, y)), for all x, y ∈ X.
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Then for each λ ∈ (0; 1) there exists a topologically equivalent metric dλ on X

such that f is λ-contraction.

Proof. If f :X → X is a ϕ-contraction then f is PO, i.e. Ff = {x∗} and
fn(x) → x∗ as n → +∞, for all x ∈ X, (see [99]). Let r > 0. Then, for
x ∈ B(x∗, r) we have

d(fn(x), x∗) ≤ ϕn(d(x, x∗)) ≤ ϕn(r) → 0 as n→ +∞.

Thus, given an ε > 0 there exists nε ∈ N such that ϕn(r) < ε, for all n ≥ nε. This
implies that fn(B(x∗, r)) ⊂ B(x∗, ε), for all n ≥ nε. Hence, by Theorem 2.10,
we get the conclusion. �

We can prove a similar result for the case of Ćirić–Reich–Rus operators.

Theorem 2.13. Let (X, d) be a complete metric space and f :X → X be
a continuous operator for which there exist a, b ∈ R+ with a+ 2b < 1 such that

d(f(x), f(y)) ≤ ad(x, y) + b[d(x, f(x)) + d(y, f(y))],

for all x, y ∈ X. Then for each λ ∈ (0; 1) there exists a topologically equivalent
metric dλ on X such that f is λ-contraction.

Proof. If f :X → X is a Ćirić–Reich–Rus operator then f is PO, (see [99]).
We denote by x∗ the unique fixed point of f . First of all, we remark that

d(f(x), x∗) ≤ a+ b

1− b
· d(x, x∗), for all x ∈ X.

We have that α = (a+ b)/(1− b) < 1 and, now, we can apply the same technique
as in the previous theorem. Let r > 0, we have for x ∈ B(x∗, r)

d(fn(x), x∗) ≤ αnd(x, x∗) ≤ αn · r → 0 as n→ +∞,

So, given an ε > 0 there exists nε ∈ N such that fn(B(x∗, r)) ⊂ B(x∗, ε), for all
n ≥ nε. The conclusion follows now by Theorem 2.10. �

We can formulate a more general result for Ćirić type operators.

Theorem 2.14. Let (X, d) be a complete metric space and f :X → X be
a continuous operator.

(a) Suppose there exists a ∈ [0, 1[ such that, for all x, y ∈ X, we have:

d(f(x), f(y)) ≤ amax{d(x, y), d(y, f(y)), d(x, f(y)), d(y, f(x))}.

Then, for each λ ∈ (0; 1) there exists a topologically equivalent metric dλ on X

such that f is λ-contraction.
(b) Suppose there exists a ∈ [0, 1/2[ such that, for all x, y ∈ X, we have:

d(f(x), f(y)) ≤ amax{d(x, y), d(x, f(x)), d(y, f(y)), d(x, f(y)), d(y, f(x))}.
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Then, for each λ ∈ (0; 1) there exists a topologically equivalent metric dλ on X

such that f is λ-contraction.

Based on the above ideas, we will prove now an abstract result.

Theorem 2.15. Let (X, d) be a metric space and f : X → X be a continuous
PO for which there exist a comparison function ψ: R+ → R+ such that

d(f(x), x∗) ≤ ψ(d(x, x∗)), for all x ∈ X.

Then for each λ ∈ (0; 1) there exists a topologically equivalent metric dλ on X

such that f is λ-contraction.

Proof. Let r > 0. Then, for x ∈ B(x∗, r) we have

d(fn(x), x∗) ≤ ψn(d(x, x∗)) ≤ ψn(r) → 0 as n→ +∞.

Thus, for ε > 0 there exists nε ∈ N such that ψn(r) < ε, for all n ≥ nε. Thus,
fn(B(x∗, r)) ⊂ B(x∗, ε), for all n ≥ nε. Hence, by Theorem 2.10, we get the
conclusion. �

For other results of this type see [47], [49]–[54], [72], [116], [65], [12], [18],
[71] and [87].

3. Well-posedness for fixed point problems

The notion of well-posed fixed point problem for a singlevalued operator was
defined by F.S. De Blasi, J. Myjak [25] and S. Reich, A.J. Zaslavski [83] and
also studied by I.A. Rus in [89]. The case of multivalued operators is considered
in A. Petruşel, I.A. Rus [77] and A. Petruşel, I.A. Rus, J.-C. Yao [79] (see also
[92] and [117]).

We will define and then study the well-posedness of the fixed point problem
for singlevalued and multivalued operators with respect to equivalent metrics.

We give first two definitions for a well-posed fixed point problem.

Definition 3.1. Let (X, d) be a metric space, Y ∈ P (X) and f :Y → X be
an operator. The fixed point problem is well-posed for f with respect to d if and
only if:

(a1) Ff = {x∗}.
(b1) If xn ∈ Y , n ∈ N and d(xn, f(xn)) → 0, as n → +∞, then xn → x∗ as

n→ +∞.

Definition 3.2. Let (X, d) be a metric space, Y ∈ P (X) and T :Y →
Pcl(X) be a multivalued operator. The fixed point problem is well-posed for T
with respect to Dd if and only if:

(a1) FT = {x∗}.
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(b1) If xn ∈ Y , n ∈ N and Dd(xn, T (xn)) → 0, as n → +∞ then xn → x∗,
as n→ +∞.

Definition 3.3. Let (X, d) be a metric space, Y ∈ P (X) and T :Y →
Pcl(X) be a multivalued operator. The fixed point problem is well-posed for T
with respect to Hd if and only if:

(a2) (SF)T = {x∗}.
(b2) If xn ∈ Y , n ∈ N and Hd(xn, T (xn)) → 0, as n → +∞ then xn → x∗,

as n→ +∞.

Some abstract results are given now.

Theorem 3.4. Let X be a nonempty set and d, ρ two metrics on X. Suppose
that d, ρ are strongly equivalent. Let T :Y ⊆ X → P (X) be a multivalued
operator. Then:

(a) The fixed point problem for T is well-posed with respect to Dd if and
only if it is well-posed with respect to Dρ.

(b) The fixed point problem for T is well-posed with respect to Hd if and
only if it is well-posed with respect to Hρ.

Proof. (a) Let c1, c2 > 0 such that d ≤ c1ρ and ρ ≤ c2d. Then Dd ≤ c1Dρ

and Dρ ≤ c2Dd.
Let x∗ ∈ Y be the unique fixed point of T . Let xn ∈ Y , n ∈ N be such that

Dρ(xn, T (xn)) → 0, as n→ +∞. Then

Dd(xn, T (xn)) ≤ c1Dρ(xn, T (xn)) → 0, as n→ +∞.

Since the fixed point problem is well-posed for Dd we get that xn
d−→ x∗, as

n→ +∞. As consequence we have ρ(xn, x
∗) ≤ c2d(xn, x

∗) → 0, as n→ +∞. In
a similar way, interchanging the roles of d and ρ we get the conclusion.

(b) The second conclusion can be established in a similar way, by taking into
account that if d ≤ c1ρ and ρ ≤ c2d then δd ≤ c1δρ and δρ ≤ c2δd. �

Remark 3.5. In particular, if f :Y ⊆ X → X is a singlevalued operator, we
obtain similar results with respect to d and ρ.

In a similar way, we have the following result.

Theorem 3.6. Let X be a nonempty set and d, ρ two metrics on X. Suppose
that d, ρ are topologically equivalent and there exists c > 0 such that d ≤ cρ. Let
T :Y ⊆ X → P (X) be a multivalued operator. Then:

(a) If the fixed point problem for T is well-posed with respect to Dd then it
is well-posed with respect to Dρ.

(b) If the fixed point problem for T is well-posed with respect to Hd then it
is well-posed with respect to Hρ.
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Remark 3.7. In particular, if f :Y ⊆ X → X is a singlevalued operator, we
obtain similar results with respect to d and ρ.

Remark 3.8. Let (X, d) be a complete metric space and f :X → X be an
a-contraction. Then the fixed point problem is well posed for the operator f .

Example 3.9. Let X be a nonempty set and f :X → X be a Bessaga
operator, i.e.

Ffn = {x∗}, for each n ∈ N∗.

Then there exists a metric d on X such that the fixed point problem is well posed
for the operator f with respect to the metric d.

Indeed, from Bessaga’s theorem, if a ∈ [0, 1[, then there exists a complete
metric d on X such that f : (X, d) → (X, d) is an a-contraction. Now, for the
conclusion we apply the above remark.

4. Shadowing property

We will define first the limit shadowing property for singlevalued and multi-
valued operators (see [80], [38], [92]).

Definition 4.1. Let (X, d) be a metric space and f :X → X be an operator.
Then:

(a) f has the shadowing property with respect to d if for each ε > 0 there
exists δ(ε) > 0 such that the following implication holds:

(xk)k∈N ⊂ X, d(xk+1, f(xk)) ≤ δ(ε), ∀k ∈ N

⇒ ∃x ∈ X with d(fk(x), xk) ≤ ε, ∀k ∈ N.

(b) f has the Lipschitz shadowing property with respect to d if there exists
L > 0 such that for each ε > 0 the following implication holds:

(xk)k∈N ⊂ X, d(xk+1, f(xk)) ≤ ε, ∀k ∈ N

⇒ ∃x ∈ X with d(fk(x), xk) ≤ Lε, ∀k ∈ N.

(c) f has the limit shadowing property with respect to d if for each sequence
(xk)k∈N ⊂ X such that

d(xk+1, f(xk)) → 0 as k →∞,

there exists x ∈ X such that d(fk(x), xk) → 0 as k →∞.
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Definition 4.2. Let (X, d) be a metric space and T :X → P (X) be a mul-
tivalued operator. By definition

(a) T has the shadowing property with respect to d if for each ε > 0 there
exists δ(ε) > 0 such that for each sequence (yn)n∈N ⊂ X with

Dd(yn+1, T (yn)) ≤ δ(ε), for all n ∈ N.

there exists a sequence (xn)n∈N ⊂ X of successive approximations for
T starting from arbitrary x0 ∈ X (i.e. for each n ∈ N one have xn+1 ∈
T (xn)), such that

d(xn, yn) ≤ ε, for all n ∈ N.

(b) T has the Lipschitz shadowing property with respect to d if there exists
L > 0 such that for each ε > 0 and for each sequence (yn)n∈N ⊂ X such
that

Dd(yn+1, T (yn)) ≤ ε, for all n ∈ N.

There exists a sequence (xn)n∈N ⊂ X of successive approximations for
T starting from arbitrary x0 ∈ X, such that

d(xn, yn) ≤ Lε, for all n ∈ N.

(b) T has the limit shadowing property with respect to d if for each sequence
(yn)n∈N ⊂ X such that

Dd(yn+1, T (yn)) → 0 as n→∞.

There exists a sequence (xn)n∈N ⊂ X of successive approximations for
T starting from arbitrary x0 ∈ X (i.e. for each n ∈ N one have xn+1 ∈
T (xn)), such that d(xn, yn) → 0 as n→∞.

Some abstract results are given now.

Theorem 4.3. Let X be a nonempty set and d, ρ two metrics on X. Suppose
that d, ρ are strongly equivalent. Let f :X → X be an operator. Then:

(a) f has the shadowing property with respect to d if and only if f has the
shadowing property with respect to ρ.

(b) f has the Lipschitz shadowing property with respect to d if and only if
f has the Lipschitz shadowing property with respect to ρ.

(c) f has the limit shadowing property with respect to d if and only if f has
the limit shadowing property with respect to ρ.

Proof. Let c1, c2 > 0 such that

c1ρ(x, y) ≤ d(x, y) ≤ c2ρ(x, y), for each x, y ∈ X.
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(a) Suppose that f has the shadowing property with respect to d. We will
show that f has the shadowing property with respect to ρ. Indeed, let ε > 0.
We know that for each ε′ := c1ε > 0 there exists δ(ε′) > 0 such that:

(xk)k∈N ⊂ X, d(xk+1, f(xk)) ≤ δ(ε′),∀k ∈ N

⇒ ∃x ∈ X with d(fk(x), xk) ≤ ε′, ∀k ∈ N.

Define δ1(ε) := δ(ε′)/c2 > 0. Suppose (xk)k∈N ⊂ X with ρ(xk+1, f(xk)) ≤
δ1(ε), for all k ∈ N. Then

d(xk+1, f(xk)) ≤ c2ρ(xk+1, f(xk)) ≤ c2δ1(ε) ≤ δ(ε′), for all k ∈ N.

By hypothesis, there exists x ∈ X such that d(fk(x), xk) ≤ ε′, for all k ∈ N.
Then

ρ(fk(x), xk) ≤ 1
c1
d(fk(x), xk) ≤ ε′

c1
= ε.

(b) and (c) can be obtained in a similar way. �

For the case of multivalued operators we have the following result.

Theorem 4.4. Let X be a nonempty set and d, ρ two metrics on X. Suppose
that d, ρ are strongly equivalent. Let T :X → P (X) be a multivalued operator.
Then:

(a) T has the shadowing property with respect to d if and only if T has the
shadowing property with respect to ρ.

(b) T has the Lipschitz shadowing property with respect to d if and only if
T has the Lipschitz shadowing property with respect to ρ.

(c) T has the limit shadowing property with respect to d if and only if T has
the limit shadowing property with respect to ρ.

Proof. Let c1, c2 > 0 such that d ≤ c1ρ and ρ ≤ c2d. Then we have
Dd ≤ c1Dρ and Dρ ≤ c2Dd. The conclusions follow by a similar approach
to Theorem 4.3. �

We will need, for the proof of the next theorems, the following auxiliary
result, known as Cauchy’s Lemma (see [100]).

Lemma 4.5. Let (an)n∈N and (bn)n∈N be two sequences of non-negative real

numbers, such that
+∞∑
k=0

ak < +∞ and lim
n→+∞

bn = 0. Then

lim
n→+∞

( n∑
k=0

an−kbk

)
= 0.

Now, some concrete results concerning the shadowing property are the fol-
lowing
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Theorem 4.6. Let (X, d) be a complete metric space and f :X → X be
an a-contraction. Then f has the limit shadowing property with respect to d.

Proof. Since f is a Picard operator, we have that Ff ={x∗} and fk(x)→x∗

as k → +∞, for each x ∈ X. Then

d(xk, x
∗) ≤ d(xk, f(xk−1)) + d(f(xk−1), x∗)

= d(xk, f(xk−1)) + d(f(xk−1), f(x∗))

≤ d(xk, f(xk−1)) + ad(xk−1, x
∗) ≤ . . .

≤ d(xk, f(xk−1)) + ad(xk−1, f(xk−2)) + . . .+ akd(x0, x
∗).

Then, from Cauchy’s Lemma we get that d(xk, x
∗) → 0 as k → +∞. Hence

d(xk, f
k(x)) ≤ d(xk, x

∗) + d(x∗, fk(x)) → 0 as k → +∞, for all x ∈ X. �

For the multivalued case we have the following theorem.

Theorem 4.7. Let (X, d) be a complete metric space and T :X → Pcl(X) be
a multivalued α-contraction with (SF)T 6= ∅. Then, the multivalued operator T
has the limit shadowing property with respect to d.

Proof. Notice first that FT = (SF)T = {x∗}. Let (yn)n∈N be a sequence
in X such that D(yn+1, T (yn)) → 0 as n→∞.

We shall prove first that d(yn, x
∗) → 0 as n→ +∞. We successively have:

d(x∗, yn+1) ≤H(x∗, T (yn)) +D(yn+1, T (yn))

≤αd(x∗, yn) +D(yn+1, T (yn))

≤α[αd(x∗, yn−1) +D(yn, T (yn−1))] +D(yn+1, T (yn)) ≤ . . .

≤αn+1d(x∗, y0) + αnD(y1, T (y0)) + . . .+D(yn+1, T (yn)).

By Cauchy’s Lemma, the right hand side tends to 0 as n → +∞. Thus,
d(x∗, yn+1) → 0 as n→ +∞.

On the other hand, since T is a multivalued weakly Picard operator, we know
that there exists a sequence (xn)n∈N of successive approximations for T starting
from arbitrary (x0, x1) ∈ Graph(T ) which converge to a fixed point x∗ ∈ X of
the operator T . Since, the fixed point is unique, we get that d(xn, x

∗) → 0 as
n→ +∞. Hence, for such a sequence (xn)n∈N, we have

d(yn, xn) ≤ d(yn, x
∗) + d(x∗, xn) → 0 as n→ +∞. �

For other considerations on shadowing property see [33], [38], [73], [80], [92].
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5. Equations with ψ-weakly Picard operators

The notion of WPO is a topological one, while the concept of ψ-WPO is
a metric one. Thus, in the forthcoming part of the paper we will focus on the
notion of ψ-WPO.

Let X be a nonempty set and, d and ρ two metrics on X. We have the
following abstract results.

Lemma 5.1. Let f :X → X be an operator. We suppose that:

(a) f is ψ-WPO with respect to the metric d;
(b) there exist α1, α2 > 0 such that d ≤ α1ρ and ρ ≤ α2d.

Then the operator f is ψ1-WPO with respect to the metric ρ, where

ψ1(t) := α2ψ(α1t), t ∈ R+.

Proof. First we remark f is WPO with respect to the metric ρ. From (a)
and (b) we have:

ρ(x, f∞(x)) ≤ α2d(x, f∞(x)) ≤ α2ψ(d(x, f(x))) ≤ α2ψ(α1ρ(x, f(x))),

for all x ∈ X. Notice that ψ1 is an increasing function which is continuous in 0
and ψ1(0) = 0. So, f is ψ1-WPO with respect to the metric ρ. �

Lemma 5.2. Let f, g:X → X be two operators. We suppose that:

(i) f is ψ-WPO with respect to the metric d;
(ii) there exists η > 0 such that d(f(x), g(x)) ≤ η, for all x ∈ X;
(iii) Fg 6= ∅;
(iv) there exist α1, α2 > 0 such that d ≤ α1ρ and ρ ≤ α2d.

Then:

(a) d(x∗f , x
∗
g) ≤ ψ(η), where x∗f is the unique fixed point of f and x∗g is

a fixed point of g;
(b) ρ(x∗f , x

∗
g) ≤ ψ1(α2η) := α2ψ(α1α2η).

Proof. For (a) see [20] or [94]. From (a) and Lemma 5.1, the statement of
(b) follows. �

Example 5.3. Let X := C[a; b],

d(x, y) := max
a≤t≤b

|x(t)− y(t)| =: ‖x− y‖∞

and for τ > 0,

ρτ (x, y) := max
a≤t≤b

(|x(t)− y(t)| e−τ(t−a)) =: ‖x− y‖τ .

In the above setting, we have now the following result.
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Theorem 5.4. Let X := C[a; b] and f :X → X be an operator. Suppose
there exists l > 0 such that

(5.1) |f(x)(t)− f(y)(t)| ≤ l

∫ t

a

|x(s)− y(s)| ds, t ∈ [a; b].

Then:

(a) Ff = {x∗f};
(b) f is PO on

(
C[a; b], unif−→

)
;

(c) f is (1− l/τ)−1-PO with respect to ‖ · ‖τ for l < τ ;
(d) f is eτ(b−a)(1− l/τ)−1-PO with respect to ‖ · ‖∞ for l < τ ;
(e) If g:X → X is such that

|f(x)(t)− g(x)(t)| ≤ η, for all t ∈ [a; b], for all x ∈ X,

and x∗g ∈ Fg, then

‖x∗f − x∗g‖∞ ≤ eτ(b−a)

(
1− l

τ

)−1

η.

Proof. First we remark that

‖ · ‖∞ ≤ eτ(b−a)‖ · ‖τ and ‖ · ‖τ ≤ ‖ · ‖∞, for all τ > 0.

Now, the proof follows from Lemma 5.2. �

Remark 5.5. Let us consider the functional-integral equation

x(t) =
∫ t

0

K(t, s, x(s)) ds+ h(t), t ∈ [0; 1],

where K ∈ C([0; 1]× [0; 1]× R), h ∈ C[0; 1] and

|K(t, s, u)−K(t, s, v)| ≤ l|u− v|, for all u, v ∈ R.

Then the operator f :C[0; 1] → C[0; 1] defined by

f(x)(t) :=
∫ t

0

K(t, s, x(s)) ds+ h(t)

satisfies the condition (5.1).

In a similar way, in the case of multivalued ψ-WPO we have some corre-
sponding properties. For example, we have the following abstract result.

Lemma 5.6. Let F :X → P (X) be a multivalued operator. We suppose that:

(a) F is ψ-MWPO with respect to the metric d;
(b) there exist α1, α2 > 0 such that d ≤ α1ρ and ρ ≤ α2d.

Then the operator F is ψ1-MWPO with respect to the metric ρ, where

ψ1(t) := α2ψ(α1t), t ∈ R+.
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6. Ulam stability of the fixed point equations

Following [95], we present now some notions and results with respect to Ulam
stability theory. The role of strongly equivalent metrics is also investigated.

Definition 6.1. Let (X, d) be a metric space and f :X → X be an operator.
By definition, the fixed point equation

(6.1) x = f(x)

is Ulam–Hyers stable if there exists a real number c > 0 such that: for each ε > 0
and each solution y∗ of the inequation

(6.2) d(y, f(y)) ≤ ε

there exists a solution x∗ of the equation (5.1) such that

d(y∗, x∗) ≤ cε.

Definition 6.2. If the equation (6.1) is Ulam–Hyers stable and c is as in
Definition 6.1, then, by definition, the equation (6.1) is c-Ulam–Hyers stable.

Definition 6.3. The equation (6.1) is generalized Ulam–Hyers stable if
there exists ψ: R+ → R+ increasing and continuous in 0 with ψ(0) = 0 such
that: for each ε > 0 each solution y∗ of (6.2) there exists a solution x∗ of the
equation (6.1) such that

d(y∗, x∗) ≤ ψ(ε).

Definition 6.4. If the equation (6.1) is generalized Ulam–Hyers stable and
ψ is as in Definition 6.3, then, by definition, the equation (6.1) is ψ-generalized
Ulam–Hyers stable.

We have the following general result.

Theorem 6.5. Let X be a nonempty set, f :X → X an operator, d and ρ

be two metrics on X. We suppose that:

(i) f is c-WPO with respect to the metric d;
(ii) there exist α1, α2 > 0 such that d ≤ α1ρ and ρ ≤ α2d.

Then:

(a) the equation (6.1) is c-Ulam–Hyers stable with respect to the metric d;
(b) the equation (6.1) is α1α2c-Ulam–Hyers stable with respect to the met-

ric ρ.

Proof. The statement (a) is the Remark 2.1 in [94]. From Lemma 5.1 the
operator f is α1α2c-WPO with respect to the metric ρ. So, from (i), the equation
(6.1) is α1α2c-Ulam–Hyers stable with respect to the metric ρ. �

By a similar approach we get the following theorem.
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Theorem 6.6. Let X be a nonempty set, f :X → X be an operator, d and
ρ be two metrics on X. We suppose that:

(i) f is ψ-WPO with respect to the metric d;
(ii) there exist α1, α2 > 0 such that d ≤ α1ρ and ρ ≤ α2d.

Then:

(a) the equation (6.1) is ψ-generalized Ulam–Hyers stable with respect to d;
(b) the equation (6.1) is α2ψ(α1( · ))-generalized Ulam–Hyers stable with re-

spect to ρ.

We can get some similar results in the case of multivalued operators. For
example, we present the following

Definition 6.7. Let (X, d) be a metric space and F :X → P (X) a multi-
valued operator. By definition, the fixed point equation

(6.3) x ∈ F (x)

is generalized Ulam–Hyers stable if there exists an increasing function ψ: R+ →
R+ continuous in 0 with ψ(0) = 0 such that: for each ε > 0 and each solution u∗

of the inequation

(6.4) Dd(u, F (u)) ≤ ε

there exists a solution x∗ of the equation (6.3) such that

d(y∗, x∗) ≤ ψ(ε).

Definition 6.8. If the equation (6.4) is generalized Ulam–Hyers stable and
ψ is as in Definition 6.7, then, by definition, the equation (6.3) is ψ-generalized
Ulam–Hyers stable.

We can prove now the following general result.

Theorem 6.9. Let X be a nonempty set, F :X → P (X) a multivalued op-
erator, d and ρ be two metrics on X. We suppose that:

(i) there exist α1, α2 > 0 such that d ≤ α1ρ and ρ ≤ α2d;
(ii) F (x) ∈ Pcp(X, d), for all x ∈ X;
(iii) F is ψ-MWPO with respect to the metric d.

Then:

(a) the equation (6.3) is ψ-generalized Ulam–Hyers stable with respect to d;
(b) the equation (6.3) is α2ψ(α1( · ))-generalized Ulam–Hyers stable with re-

spect to ρ.

Remark 6.10. For more considerations on Ulam stability see [92], [95] and
the references therein.
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7. Invariant partition of a set with respect to an operator

Definition 7.1. Let X be a set and f :X → X an operator. A partition,
X =

⋃
i∈I

Xi is an invariant partition of X with respect to f if f(Xi) ⊂ Xi, for

all i ∈ I.

Example 7.2 (see [8], [46], [107]). Let X be a nonempty set and f :X → X

an operator. Let us define on X the following equivalence relation by x ≈ y if
and only if there exist n and m in N such that

fn(x) = fm(y).

We denote the equivalence class containing an element x by [x]f and we call [x]f
great orbit of x with respect to the operator f . The partition of X defined by
this equivalence relation is, by definition, the orbital partition of X with respect
to the operator f . Notice that the orbital partition of X is an invariant partition
of X with respect to the operator f .

The aim of this section is to study a special class of invariant partition related
to the fixed point of f . First, we present some considerations on the invariant
subset under an operator (see [8], [46], . . . ).

Let X be a nonempty set and f :X → X an operator. By definition a subset
Y ⊂ X is:

(a) invariant under f if and only if f(Y ) ⊂ Y ;
(b) forward invariant under f if and only if f(Y ) = Y ;
(c) backward invariant under if and only if f−1(Y ) = Y ;
(d) completely invariant under f if and only if f(Y ) = Y = f−1(Y ).

Now we introduce a new class of invariant subset.

Definition 7.3. By definition, a subset Y ⊂ X is orbital invariant under f
if for all y ∈ Y the great orbit of y with respect to the operator f , [y]f ⊂ Y .

Example 7.4. Let X := [0; 1] and f(x) := x/2. In this case, for Y := [0; 1]
we have:

(a) [0; 1] is an invariant subset, but it isn’t a forward invariant and, thus, it
is not completely invariant;

(b) [0; 1] is orbital invariant;

For Y := {0} we have:

(a) {0} is completely invariant;
(b) {0} is orbital invariant.

We have the following remarks.
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Remark 7.5. The notion of orbital invariant set is less restrictive than that
of completely invariant set.

Remark 7.6. In general, the orbit of x ∈ X with respect to f : X → X,
Of (x) := {fn(x) | n ∈ N} is not orbital invariant, but the great orbit, [x]f , is
orbital invariant.

Remark 7.7. If X =
⋃
i∈I

Xi is an invariant partition of X with respect to f

the each Xi is an orbital invariant subset under f .

Remark 7.8. The intersection of a family of orbital invariant subset is also
orbital invariant subset.

On the other hand, the following result is given in [98] (see also [49] and [50]).

Theorem 7.9 (Theorem of equivalent statements). Let X be a nonempty
set and f :X → X an operator. The following statements are equivalent:

(a) Ff = Ffn 6= ∅, for all n ∈ N∗;
(b) there exists a complete metric d on X with respect to which the operator

f is WPO;
(c) there exists α ∈ ]0; 1[, a complete metric d on X and a partition X,

X =
⋃
i∈I

Xi, such that:

(c1) f(Xi) ⊂ Xi, for all i ∈ I;
(c2) Xi ∩ Ff = {x∗i }, for all i ∈ I;
(c3) f |Xi

:Xi → Xi is α-contraction with respect to the metric d.

The above result suggests the following problem.

Problem 7.10. Let X be a nonempty set and f : X → X an operator such
that

Ff = Ffn 6= ∅, for all n ∈ N∗.

Does exist two metrics d and ρ on X with the following properties:

(a) d is not topological equivalent with ρ;
(b) the operator f is WPO with respect to d and with respect to ρ?

For this problem we have the following result.

Theorem 7.11. Let X be a nonempty set, f :X → X an operator and X =⋃
λ∈Λ

Xλ the orbital partition of X with respect to f . We suppose that:

(a) Ff = Ffn 6= ∅, for all n ∈ N∗;
(b) card Λ > cardFf ≥ 2.

Then there exist two metrics d and ρ with the properties (a) and (b) from Prob-
lem 7.10.
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Proof. Let x∗ ∈ Ff . For x ∈ Ff , x 6= x∗, let Xx := [x]f and Xx∗ :=
[x∗]f ∪ (X \Xx). From (a) and (b) we have that:

• X =
⋃

z∈Ff

Xz is an invariant partition of X with respect to the opera-

tor f ;
• Ff ∩Xz = Ffn ∩Xz = {z}, for all z ∈ Ff , for all n ∈ N.

From the theorem of Bessaga there exists a metric dz such that (Xz, dz)
is a complete metric space and the restriction of f to Xz, f |Xz

:Xz → Xz is
a contraction.

Let d:X ×X → R+ be defined by

d(u, v) :=

{
dz(u, v) if u, v ∈ Xz,

dz(u, z) + dy(v, y) if u ∈ Xz, v ∈ Xy, z 6= y.

Notice that d is a complete metric on X and f is WPO with respect to d.
Moreover,

(AD)f (z) = [z]f for z ∈ Ff , z 6= x∗

and

(AD)f (x∗) = [x∗]f ∪

( ⋃
z∈Ff

z 6=x∗

(X \Xz)

)
,

where (AD)f (x∗) := {x ∈ X | fn(x) → x∗ as n→ +∞}.
Now, let x∗1, x

∗
2 ∈ Ff , x∗1 6= x∗2. Let d be the metric corresponding to x∗1 as

above and ρ be the metric corresponding to x∗2. Since (AD)f (x∗1) with respect
to the metric d is different from (AD)f (x∗1) with respect to the metric ρ, hence
the metric d is not topological equivalent with the metric ρ. So, the metrics d
and ρ are as in the Problem 7.10. �

Remark 7.12. The multivalued version of the above problem (see Prob-
lem 7.10) seems to be a very difficult one.

For the theory of invariant subsets see [97], [3], [8], [46], [113], [30], [43], [60],
[93] and [99].

8. Defect of some properties via equivalent metrics

Let X be a nonempty set, f :X → X an operator and d, ρ two metrics
on X such that d ≤ α1ρ and ρ ≤ α2d for some α1, α2 > 0. In this case
Pb(X) := Pb(X, d) = Pb(X, ρ).

8.1. Defect of fixed point: minimal displacement. (See K. Goebel [39]
and [40]; see also [42], [7], [37].)
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Following K. Goebel, the minimal displacement of f with respect to the
metric d is defined by

(md)(f ; d) := inf{d(x, f(x)) | x ∈ X}.

Notice that

(md)(f ; d) ≤ α1(md)(f ; ρ) and (md)(f ; ρ) ≤ α2(md)(f ; d).

Hence, the minimal displacement of f with respect to the metric d is 0 if and
only if the minimal displacement of f with respect to the metric ρ is 0.

8.2. Defect of compactness: Kuratowski’s measure of noncompact-
ness. (K. Kuratowski (1930), see [11], [97], [42]; see also [2], [30], [99], [3].)

The diameter functional on X with respect to d is

δd:Pb(X) → R+, δd(Y ) := sup{d(x, y) | x, y ∈ Y }.

Notice that δd ≤ α1δρ and δρ ≤ α2δd.
The Kuratowski measure of noncompactness on X with respect to the met-

ric d is αK,d:Pb(X) → R+ defined by

αK,d(Y ) := inf
{
ε > 0

∣∣∣∣ Y =
n⋃

i=1

Yi, δd(Y ) ≤ ε, i = 1, n, n ∈ N
}
.

From this definition we have αK,d ≤ α1αK,ρ and αK,ρ ≤ α2αK,d. Indeed, let

Y =
n⋃

i=1

Yi such that δd(Y ) ≤ ε, i = 1, n. This implies that δρ(Y ) ≤ α2ε. Hence

α2

{
ε > 0

∣∣∣∣ Y =
n⋃

i=1

Yi, δd(Y ) ≤ ε, n ∈ N
}

⊂
{
ε > 0

∣∣∣∣ Y =
n⋃

i=1

Yi, δρ(Y ) ≤ ε, n ∈ N
}
.

So, αK,ρ(Y ) ≤ α2αK,d(Y ), for all Y ∈ Pb(X).

8.3. The defect of convexity: Eisenfeld–Lakshmikantham measure
of nonconvexity. (Eisenfeld–Lakshmikantham (1975); see [7], [97], [99].)

Let (X,+,R) be a linear space and co:P (X) → P (X) the convexity closure
operator onX corresponding to the linear structure ofX. Let d and ρ two metrics
on X such that d ≤ α1ρ and ρ ≤ α2d with some α1, α2 > 0. By definition the
Eisenfeld-Lakshmikantham’s measure on nonconvexity with respect to the metric
d is the following functional

βEL,d:Pb(X, d) → R+, βEL,d(Y ) := Hd(Y, coY ).

Notice that Pb(X, d) = Pb(X, ρ) and βEL,d ≤ α1βEL,ρ and βEL,ρ ≤ α2βEL,d.
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Remark 8.1. If on (X, d) we consider a convexity structure given in terms
of d (see [9] and [103]), then the convexity closure operator, co, depends of d and
we denote it by cod. In this case the following problems arise:

Let X be a nonempty set, d and ρ two metrics on X and, cod and coρ the
corresponding convexity closure operators.

Problem 8.2. In which conditions cod = coρ?

Problem 8.3. If d and ρ are strongly equivalent the problem is to compare
βEL,d with βEL,ρ on Pb(X, d) ∩ Pb(X, ρ).

We have considered here only a few examples of defect properties via equiv-
alent metrics. For some other possible open problems see [7].
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