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PERIODIC SOLUTIONS
OF THE PERTURBED SYMMETRIC EULER TOP

Adriana Buică — Isaac A. Garćia

Abstract. We study the problem of persistence of T -periodic solutions of
the celebrated symmetric Euler top when subjected to a small T -periodic

stimulus. All solutions of the unperturbed system are periodic (of different

periods, including continua of equilibria). In the case that the perturbation
depends also on the three components of the angular momentum (the un-

knowns of the system) we provide bifurcation functions whose simple zeros

correspond to T -periodic solutions of the perturbed system.

1. Introduction

The aim of this paper is to determine if the oscillations of the celebrated
symmetric Euler top

(1.1) ẋ = −yz, ẏ = xz, ż = 0

persists when subjected to a small external periodic stimulus. More exactly, we
provide results on the existence of T -periodic solutions (T > 0) for differential
systems of the form

(1.2)

ẋ = −yz + εp(t, x, y, z),

ẏ = xz + εq(t, x, y, z),

ż = εs(t, x, y, z),
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where ε > 0 is small and the functions p, q, s: R×R3 → R are continuous and T -
periodic in their first variable, and sufficiently smooth in the last three variables.

The symmetric Euler top is a particular case of the Euler top

ẋ = αyz, ẏ = βxz, ż = γxy,

with real parameters

α =
µ2 − µ3

µ2µ3
, β =

µ3 − µ1

µ1µ3
, γ =

µ1 − µ2

µ1µ2
.

Note that α + β + γ = 0. System (1.3) describes the rotation of a rigid body
with a fixed point and no torques acting on it. This classical system still plays
an important role in Mechanics, see for instance [1]. Here, (x, y, z) ∈ R3 denotes
the three components of the angular momentum, and the constants µi are the
moments of inertia about the coordinate axes of the rigid body. The Euler
top is a system with a large symmetry group, SO(3) × S1, and quasi-periodic
dynamics on invariant tori of (generically) dimension two, see for instance [2].
Thus, the energy (kinetic energy in this case) H(x, y, z) is conserved for this
system. Another conserved quantity during the system rotation is the square
of the Euclidean norm of the angular momentum D(x, y, z), which is in fact one
independent Casimir invariant of the Poisson formulation of system (1.3). In
summary, the Euler top (1.3) is an integrable system having the first integrals

H(x, y, z) =
1
2

(
x2

µ1
+
y2

µ2
+
z2

µ3

)
, D(x, y, z) = x2 + y2 + z2.

Analytical perturbations of (non necessarily symmetric) the Euler top (1.3) are
considered in [8] under the restriction that Casimir invariants of the system re-
main invariant for the perturbed flow. By means of the Poincaré–Pontryagin
theory, the existence of limit cycles on the Casimir invariants surfaces are inves-
tigated in [8].

We consider the symmetric Euler top, which is the case when two of the
three moments of inertia are equal. Therefore, we will assume µ1 = µ2, or
equivalently the condition α + β = γ = 0. When µ1 = µ2 < µ3 the body is
oblate whereas when µ1 = µ2 > µ3 the body is prolate. Hence, after rescaling
of time, the symmetric Euler top has the form (1.1). In this symmetric case, two
first integrals are

H1(x, y, z) = (x2 + y2)/2, H2(x, y, z) = z,

and, moreover, the flow can be expressed in terms of elementary functions.
The phase portrait in R3 of (1.1) has the following features: the plane z =

0 and the z-axis are fulfilled of equilibria; each plane z = η, with η 6= 0, is
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invariant and foliated of periodic solutions of minimal period 2π/|η|. Using the
terminology of [11], we say that, for any k ∈ Z,

Zv
k = {(0, 0, η) : η ∈ (2kπ/T, 2(k + 1)π/T )},

Zh
k = {(x0, y0, 2kπ/T ) : (x0, y0) ∈ R2 \ {(0, 0)}},

are T -period manifolds of (1.1), that is, the vertical Zv
k and horizontal Zh

k man-
ifolds are foliated of T -periodic orbits of (1.1). Note that in our case T is not
always the minimal period, and that, in fact, Zv

k and Zh
0 contain only equilibria.

In Section 4 we treat system (1.2). The results obtained relays strongly on
the fact that the perturbation depends on (x, y, z). The problem of existence
of T -periodic solutions of (1.2) for ε > 0 small is reduced to finding simple zeros
of two so-called bifurcation functions (one for each T -period manifold). This is
a classical idea and many of the general methods encountered in the literature
relay on it [5], [11], [3], [10]. We found that:

(1) the bifurcation function corresponding to the 1-dimensional T -period
manifold Zv

k (for any k ∈ Z) is

η 7→
∫ T

0

s(t, 0, 0, η) dt;

(2) the bifurcation function corresponding to the 2-dimensional T -period
manifold Zh

k (for any k ∈ Z) is

(
x0

y0

)
7→


∫ T

0

ϕkp(t, ϕk, ψk, ηk) + ψkq(t, ϕk, ψk, ηk) dt∫ T

0

s(t, ϕk, ψk, ηk) dt


where ηk = 2kπ/T and we must replace(

ϕk

ψk

)
=

(
cos(ηkt) − sin(ηkt)
sin(ηkt) cos(ηkt)

) (
x0

y0

)
.

The aim of Section 2 is to give the background of the general methods existed
in the literature, mainly the ones presented in [11] and [10] (see also [3]) to study
the persistence problem of periodic solutions of (1.2). Section 3 is devoted to
the analysis of the symmetric Euler top and its weak perturbation (1.2), that
is, the case when the perturbation field (p(t), q(t), s(t)) only depends on t. In
Section 4 we present the main results of the paper which are the bifurcation
functions corresponding to the problem of persistence of T -periodic solutions
of (1.2). Finally, we conclude with several remarks and possible further work.
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2. Some general considerations

In order to fix the notations, we consider in this section the differential equa-
tion

(2.1) u̇ = f(u) + εg(t, u, ε)

where ε ≥ 0 is small, f : Rn → Rn and g: R × Rn × R → Rn are sufficiently
smooth and g is T -periodic in its first variable. We assume that the unperturbed
system

(2.2) u̇ = f(u)

has a T -period manifold Z ⊂ Rn, that is, Z is a manifold consisting entirely of
T -periodic orbits.

The problem of the persistence of the periodic orbits of Z have been treated
by several authors, for example [9]–[12], [5], [3], [7]. As mentioned in [11] their
results are obtained under the assumption that Z is normally nondegenerate
(in fact in [11] the novelty consists in allowing the manifold to be normally
degenerate).

A k-dimensional period manifold Z of some system (2.2) is called normally
nondegenerate if for each u0 ∈ Z the Floquet multiplier +1 of the first variational
system

ẇ = Df(u(t, u0))w

has geometric multiplicity equal to k (here u(t, u0) denotes the solution of (2.2)
with u(0, u0) = u0).

We present now the recipe (as in [10], [3]) to obtain the so-called Malkin bifur-
cation function for system (2.1) with the normally nondegenerate k-dimensional
T -period manifold Z. These hypotheses assure the existence, for each u0 ∈ Z,
of k linearly independent T -periodic solutions of the adjoint system

ẇ = − [Df(u(t, u0))]
∗
w,

denoted wi(t, u0), i = 1, k. Then the Malkin bifurcation function M :Z → Rk is
defined componentwise by

u0 7→
∫ T

0

〈wi(t, u0), g(t, u(t, u0), 0)〉 dt, i = 1, k.

Here [ · ]∗ denotes the transpose of some matrix, while 〈 · , · 〉 denotes the scalar
product in Rn. We remark that there are other bifurcation functions encountered
in the literature, that can eventually differ by a change of variable and/or a factor
without zeros.

In the hypotheses and notations of this section we have that ([10], [11], [3]):
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If there exists u∗0 ∈ Z a simple zero of the Malkin bifurcation function M then
from the T -periodic solution of (2.2) with initial value u∗0 emanates a branch of
T -periodic solutions u(t, ε) of (2.1).

3. The analysis of the symmetric Euler top
and its weak perturbation

In this section we will write explicitly the solutions of (1.1):

ẋ = −yz, ẏ = xz, ż = 0.

The next proposition is easy to be checked by straightforward calculation.

Proposition 3.1. The solution (x(t), y(t), z(t)) of (1.1) satisfying the initial
condition (x(0), y(0), z(0)) = (x0, y0, η) ∈ R3 is

x(t, x0, y0, η) = x0 cos ηt− y0 sin ηt,

y(t, x0, y0, η) = x0 sin ηt+ y0 cos ηt,

z(t, x0, y0, η) = η.

Consequently, we have:

(a) The equilibria of (1.1) are (0, 0, η) for each η ∈ R and (x0, y0, 0) for
each (x0, y0) ∈ R2.

(b) Each plane z = η, with η 6= 0, is invariant and foliated of periodic
solutions of minimal period 2π/|η|.

(c) The nontrivial T -periodic solutions of (1.1) have the initial values (x0,

y0, 2kπ/T ) for each (x0, y0) ∈ R2 \ {(0, 0)} and k ∈ Z \ {0}.

We proceed now to the analysis of the weak perturbation of the symmetric
Euler top of the form

(3.1) ẋ = −yz + p(t), ẏ = xz + q(t), ż = s(t).

Integrating with respect to t the last equation of (3.1) we obtain

(3.2) z(t) = η + S(t), for all t ∈ R,

with η ∈ R an arbitrary constant and S(t) =
∫ t

0
s(σ) dσ.

In the case that S(T ) 6= 0 the function z given by (3.2) is not periodic, hence
(3.1) does not have any periodic solution. If not otherwise stated, from now on
we assume that ∫ T

0

s(σ) dσ = 0.

Introducing (3.2) into (3.1) we obtain

ẋ = −y(η + S(t)) + p(t), ẏ = x(η + S(t)) + q(t),
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that is a linear differential system with T -periodic coefficients, written equiva-
lently using the complex variable W = x+ iy as

(3.3) Ẇ = i(η + S(t))W + p(t) + iq(t).

Denote τ(t, η) =
∫ t

0
(η + S(σ)) dσ. The linear homogeneous differential equation

(3.4) Ẇ = i(η + S(t))W

has the general solution W (t) = Ceiτ(t,η), with C ∈ C. We have that (3.4)
has only the trivial T -periodic solution if and only if eiτ(T,η) 6= 1 that further is
equivalent to η ∈ R\{2kπ/T−S : k ∈ Z}. Here we denoted S = (1/T )

∫ T

0
S(t) dt

the average of S(t). Otherwise all its solutions are T -periodic. Using linear sys-
tems theory one can decide with respect to the existence of T -periodic solutions
of (3.3) and finally obtain the following result.

Theorem 3.2. Let p, q, s: R → R be continuous and T -periodic functions.

(a) If
∫ T

0
s(σ) dσ 6= 0 system (3.1) has no T -periodic solutions.

From now on assume that
∫ T

0
s(σ) dσ = 0.

(b) System (3.1) has a unique T -periodic solution that initiates in the plane
z = η ∈ R \ {2kπ/T − S : k ∈ Z}.

(c) If for some k ∈ Z,
∫ T

0
e−iτ(t,2kπ/T−S)(p(t) + iq(t)) dt 6= 0, then there is

no T -periodic solution of (3.1) that initiates in the plane z = 2kπ/T−S .
Otherwise all the points of the plane z = 2kπ/T − S are initial values
for the T -periodic solutions of (3.1).

4. Analysis of the perturbed symmetric Euler top

The main result of this section follows and, mainly, gives the bifurcation
functions corresponding to the problem of persistence of T -periodic solutions
of (1.2):

ẋ = −yz + εp(t, x, y, z), ẏ = xz + εq(t, x, y, z), ż = εs(t, x, y, z)

from the T -period manifolds Zv
k and Zh

k of the unperturbed system (1.1).

Theorem 4.1. Let p, q, s: R × R3 → R be C2 and T -periodic in their first
variable.

(a) Assume that there exists η∗ ∈ R \ {2kπ/T : k ∈ Z} a simple zero of

η 7→
∫ T

0

s(t, 0, 0, η) dt.

Then from the equilibrium point (0, 0, η∗) ∈ Zv
k (for any k ∈ Z) of (1.1)

emanates a branch of T -periodic solutions of (1.2).
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(b) Assume that, for some k ∈ Z, there exists (x∗, y∗) ∈ R2 \{(0, 0)} a sim-
ple zero of

(4.1)
(
x0

y0

)
7→


∫ T

0

ϕkp(t, ϕk, ψk, ηk) + ψkq(t, ϕk, ψk, ηk) dt∫ T

0

s(t, ϕk, ψk, ηk) dt


where ηk = 2kπ/T and we must replace(

ϕk

ψk

)
=

(
cos(ηkt) − sin(ηkt)
sin(ηkt) cos(ηkt)

) (
x0

y0

)
.

Then from the T -periodic solution of (1.1) with initial value (x∗, y∗, ηk)
in Zh

k emanates a branch of T -periodic solutions of (1.2).

Proof. Applying the general result from [10], [11] (see also [3]) presented
in Section 2, we see that it is sufficient to prove that the T -periodic manifolds
Zv

k and Zh
k are normally nondegenerate and, after, to construct the Malkin

bifurcation function in each situation.
(a) We will prove now that the T -periodic manifold Zv

k of (1.1) is normally
nondegenerate for any k ∈ Z.

For f(x, y, z) = (−yz, xz, 0) we have

Df(x, y, z) =

 0 −z −y
z 0 x

0 0 0

 .

The first variational system of (1.1) around the equilibrium (0, 0, η) ∈ Zv
k is

(4.2) u̇ = −ηv, v̇ = ηu, ẇ = 0,

and, moreover, this has the principal fundamental matrix solution

Φv
k(t, η) =

 cos ηt − sin ηt 0
sin ηt cos ηt 0

0 0 1

 .

It is easy to check that, since η ∈ (2kπ/T, 2(k + 1)π/T ) = (ηk, ηk+1), the eigen-
value +1 of Φv

k(T, η) has geometric multiplicity 1. Hence, the 1-dimensional
period manifold Zv

k of (1.1) is normally nondegenerate. Note that Φv
k(T, 2kπ/T )

is the identity matrix, thus the eigenvalue +1 of this matrix has geometric mul-
tiplicity 3.

In order to construct the Malkin bifurcation function for (1.2) with respect to
the 1-dimensional period manifold Zv

k of (1.1), we need one non-null T -periodic
solution for the adjoint system of (4.2), that, in fact, coincide to (4.2) and has
the form

u̇ = −ηv, v̇ = ηu, ẇ = 0.
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Since η ∈ (2kπ/T, 2(k+1)π/T ), the only non-null T -periodic solution is (0, 0, 1).
Then the Malkin bifurcation function is

M(η) =
∫ T

0

〈(0, 0, 1), (p, q, s)〉 dt =
∫ T

0

s(t, 0, 0, η) dt.

(b) We will prove now that the T -periodic manifold Zv
k of (1.1) is normally

nondegenerate for any k ∈ Z.
The first variational system of (1.1) around the T -periodic solution (ϕk, ψk, ηk),
see Proposition 3.1, with initial value (x0, y0, ηk) ∈ Zh

k is

(4.3)

 u̇

v̇

ẇ

 =

 0 −ηk −ψk

ηk 0 ϕk

0 0 0

  u

v

w

 ,

and this has the principal fundamental matrix solution

Φh
k(t, x0, y0) =

 cos(ηkt) − sin(ηkt) −ψkt

sin(ηkt) cos(ηkt) ϕkt

0 0 1

 .

We have

Φh
k(T, x0, y0) =

 1 0 −y0T
0 1 x0T

0 0 1

 .

It is easy to check that, since (x0, y0) ∈ R2 \ {(0, 0)}, the eigenvalue +1 of
Φh

k(T, x0, y0) has geometric multiplicity 2. Hence, the 2-dimensional period ma-
nifold Zh

k of (1.1) is normally nondegenerate. Note that Φh
k(T, 0, 0) is the identity

matrix, thus the eigenvalue +1 of this matrix has geometric multiplicity 3.
In order to construct the Malkin bifurcation function for (1.2) with respect to

the 2-dimensional period manifold Zh
k of (1.1), we need two linearly independent

T -periodic solutions for the adjoint system of (4.3), that has the form u̇

v̇

ẇ

 =

 0 −ηk 0
ηk 0 0
ψk −ϕk 0

  u

v

w

 .

These solutions are (ϕk, ψk, 0) and (0, 0, 1). Then the Malkin bifurcation function
is given by

M(x0, y0) =


∫ T

0

〈(ϕk, ψk, 0), (p, q, s)〉 dt∫ T

0

〈(0, 0, 1), (p, q, s)〉 dt


with (p, q, s) evaluated at (t, ϕk, ψk, ηk). Thus M(x0, y0) is just (4.1). �



The Perturbed Symmetric Euler Top 99

5. Further problems

We propose new problems related to systems of the form (1.2). Consider the
case that s does not depend on z, that is, consider the system

ẋ = −yz + εp(t, x, y, z), ẏ = xz + εq(t, x, y, z), ż = εs(t, x, y),

and note that Theorem 4.1(a) fails for it because the bifurcation function is
constant, thus can not have simple zeros. Also, in the case of the system

ẋ = −yz + εp(t, x, y, z), ẏ = xz + εq(t, x, y, z), ż = εs(t, z),

Theorem 4.1(b) fails. Hence the problem of persistence of Zv
k and, respectively,

of Zh
k has to be reconsidered in these cases.
Here we considered sufficiently smooth perturbations. But recently there is

an increasing interest for nonsmooth systems (see for example [3], [4] and the
references therein). Using the results in [3], [4] we consider that the conclusions
of Theorem 4.1 remain valid in weaker hypothesis related to the smoothness
of perturbations. Moreover, the problem of stability of the periodic solutions
can also be treated in these weaker assumptions.
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