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TRAVELING FRONT SOLUTIONS
IN NONLINEAR DIFFUSION DEGENERATE
FISHER-KPP AND NAGUMO EQUATIONS

VIA THE CONLEY INDEX

Fatiha El Adnani — Hamad Talibi Alaoui

Abstract. Existence of one dimensional traveling wave solutions u(x, t)

:= φ(x − ct) at the stationary equilibria, for the nonlinear degenerate
reaction-diffusion equation ut = [K(u)ux]x + F (u) is studied, where K

is the density coefficient and F is the reactive part. We use the Conley

index theory to show that there is a traveling front solutions connecting
the critical points of the reaction-diffusion equations. We consider the non-

linear degenerate generalized Fisher-KPP and Nagumo equations.

1. Introduction

In this paper, we discuss the problem of existence of traveling front for the
following diffusion reaction scalar equation:

(1.1)
∂u

∂t
=

∂

∂x

(
K(u)

∂u

∂x

)
+ F (u), x ∈ R, t ≥ 0,

with u(x, 0) = u0(x), 0 ≤ u0(x) ≤ 1, for all x ∈ R, in the following two situations:
Case 1. Degenerate generalized Fisher-KPP equation: the diffusion function

K and the reaction function F are defined on the interval [0, 1] and satisfy the
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conditions:

(I)


(1) F (0) = F (1) = 0, F > 0 in (0, 1),

(2) K, F ∈ C1[0, 1], F ′(0) > 0 and F ′(1) < 0,

(3) K(x) = 0 for x = 0, 1 and K > 0 in (0, 1).

Case 2. Degenerate generalized Nagumo equation: for a given real number
α ∈ (0, 1), the diffusion function K and the reaction function F are defined on
the interval [0, 1] and satisfy the conditions:

(II)


(1) F (0) = F (α) = F (1) = 0, F < 0 in (0, α), F > 0 in (α, 1),

(2) K, F ∈ C1[0, 1], F ′(0) < 0, F ′(α) > 0 and F ′(1) < 0,

(3) K(x) = 0 for x = 0, α, 1 and K > 0 in (0, α) ∪ (α, 1).

The degeneracy condition on the diffusion coefficient term K imply that
equation (1.1) is of parabolic type for all nonzero u of F and degenerates into
an ODE at the zeros of F. Degenerate diffusion appears in models for biological
invasion to take into account population density pressure. Equation (1.1) can
be seen as a generalization of those arising as models for different biological,
physical or chemical systems (see for example: [4], [22], [28], [29], [25], [23] and
the references cited therein).

Although very detailed analysis of traveling wave solutions (t.w.s.) to the
constant diffusion equation with nonlinear kinetic term already exists in the lit-
erature (see [21], [12], [11], [16]), this is not the case for generalized degenerate
nonlinear Fisher-KPP or Nagumo reaction-diffusion equations. Since the pio-
neering work of R. A. Fisher [8] and A. Kolmogorov et al. [16] on t.w.s. for
a constant diffusion equation with quadratic-like kinetic part, much research has
been developed to try to extend this analysis to more general reaction-diffusion
equations. Particular cases of a density dependent diffusion coefficient vanishing
at one point (u = 0), with reactive part having the quadratic properties listed
above, have been studied (see for example D. G. Aronson (1980) [2], J. D. Muray
(1989) [23], De Pablo et al. (1991) [7], P. Grindrod et al. (1987) [10], Y. Hosono
(1985) [14]). F. Sanchez-Garduno and P. K. Maini (1995 and 1997) ([28], [29])
considered the same equation (1.1) with a degeneracy at zero: K(0) = 0. Their
results focus essentially on the existence of a critical value c∗ > 0 of c for which
the above equation has a t.w.s. of sharp type.

In this paper we study the existence of t.w.s. for equation (1.1) under the set
of conditions (I) and (II). Using the Conley index, we give in the first a complete
description of the t.w.s. for equation (1.1), connecting the critical points, in
the cases of Fisher-KPP and Nagumo equations without degeneracy. When
the diffusion term degenerate, by using the technique of D. Terman [32], we
obtain the existence of traveling front solutions of equation (1.1), with their
corresponding speeds, connecting the critical points zeros of F , in Fisher-KPP
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and Nagumo situations. The techniques we use are based on careful choices of
isolating neighbourhood and application of the Conley index. Other application
of the Conley index to systems of reaction-diffusion equations can be found for
example in ([6], [9], [19], [20]).

We should mention that the equation studied in this paper is more general
than in ([28], [29]). For example, equation (1.1), with K(u) = um(1−u)n(u−α)2s

for an arbitrary positive constants m and n and an integer s is not covered by
equations in [28] and [29]. Our method is topological and can be exploited to
consider systems in R2 (see for example Gardner [9], [19], [20]). The advantage
of topological methods is that knowledge on the boundary of isolating neigh-
bourhoods can be used to get information about the structure of the differential
equation in the interior.

A traveling front connecting two critical points v0 to v1 of (1.1) is a solution
of (1.1) of the form

(1.2) u(x, t) := φ(x− ct)

satisfying the following properties:

(i) φ ∈ C2(R), limζ→−∞ φ(ζ) = v0, limζ→∞ φ(ζ) = v1,
(ii) φ′ < 0, v1 ≤ φ(ζ) ≤ v0, ζ ∈ R,

where c ∈ R is the speed or velocity of the front.
A traveling wave connecting two critical points v0 to v1 of (1.1) is a solution

of (1.1) in the form (1.2) satisfying only (i). By postulating a solution u(x, t) =
φ(x − ct) of equation (1.1), where φ: R → R, ξ → φ(ξ) is some function, one
obtains the following ordinary differential equation:

(1.3) K(φ)φ′′ + cφ′ + K ′(φ)(φ′)2 + F (φ) = 0

By setting v = φ′, equation (1.3) can be written as the singular ODE system

(1.4)

{
φ′ = v,

K(φ)v′ = −cv −K ′(φ)v2 − F (φ)

The singularity can be removed by introducing the parameter τ = τ(ξ) into
(1.4) such that

dτ

dξ
=

1
K(φ(τ(ξ)))

(see: [1], [30])
If we define φ(ξ) = ϕ(τ(ξ)) and v(ξ) = w(τ(ξ)) and denote by dot the

derivative with respect to τ , system (1.4) can be re-written as the following non
singular system {

ϕ̇ = K(ϕ)w,

ẇ = −cw −K ′(ϕ)w2 − F (ϕ),
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or

(1.5) X ′ = f(X)

with X = (x, y) and f(x, y) = (K(x)y,−cy −K ′(x)y2 − F (x)).
The paper is organized as follows. At the first, we consider equation (1.1)

in the cases of Fisher-KPP and Nagumo equations, without degeneracy. To
apply the Conley index theory, we construct an isolating neighbourhood for
an interval of c values. Using the summation property of Conley index and
invariance of the triangle Ω = {(x, y) ∈ R2, 0 < x < 1, mx < y < 0}, m

is a chosen negative constant, we show that there exist a number c0 > 0 (the
minimal speed of the fronts) such that, for every c > c0, we have one traveling
front solution of Fisher-KPP equation connecting the critical points u1 = (1, 0)
to u0 = (0, 0). In the case of Nagumo equation, by using a theorem of Conley
and Salamon (Propositions 5.4 and 5.5 in the Appendix), we show that there is
a single speed c1 for which a front connecting the two critical points having same
Conley index, exists and we give a complete description of the set of wave like
bounded solutions. Section 3 deals with equation (1.1) in the cases of degenerate
generalized Fisher-KPP and Nagumo equations. We consider the equation

(1.1)µ
∂u

∂t
=

∂

∂x

(
(K(u) + µ)

∂u

∂x

)
+ F (u), x ∈ R, t ≥ 0,

If, for each µ > 0, exist a traveling front solutions for (1.1)µ, connecting
a critical points v1 to v0, corresponding to a specific value c1(µ) > 0 of the speed
c, we must then prove that as µ → 0, some subsequence of the solutions converges
to a traveling front solution for the degenerate equation. We exploit the above
property to extend some results on t.w.s. from nondegeneracy to degeneracy
cases. Section 4 is a Conclusion and Section 5 is an Appendix.

In the Appendix, a brief review of some of the relevant portions of the Conley
index theory and gradient like-systems is provided.

2. Basic facts about the equations

Let’s show that the Fisher-KPP and Nagumo equations, without degeneracy
are gradient like-equations and they have an isolating neighbourhood. Consider
system (1.5) under the set of conditions (1) and (2) in (I) or (II), but instead of
(3), suppose that K > 0 in [0, 1].

2.1. A Lyapunov function. A property is said to be satisfied fast of a given
point u if it is satisfied out side a neighbourhood of u. Let q, M , L, r a positive
constants such that:

(iii) supx |K ′| ≤ M , infx K ≥ q, 1 + supx(F/K)′ ≤ L, infx |F/K| > r, fast
of the critical points of (1.5).
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One has

Proposition 2.1. If c 6= 0, then

V (x, y) := L

∫ x

0

K(t)F (t) dt + c2

∫ x

0

F (t)
K(t)

dt + cyF (x) +
L

2
K2(x)y2

is a Lyapunov function for the system (1.5).

Proof. On solutions of (1.5) one has

d

dt
V (x, y) = −cK2(x)

{
y2

(
L−

(
F (x)
K(x)

)′)
+

(
F (x)
K(x)

)2}
.

So, in view of (iii), dV (x, y)/dt < 0 if c > 0 and dV (x, y)/dt > 0 if c < 0.
It follows that if c 6= 0, the only bounded solutions are critical points and

orbits connecting the critical points. In contrast, when c = 0, we have a Hamil-
tonian system. �

2.2. An isolating neighbourhood. In order to apply the Conley index
theory to our problem, we need a compact invariant set. We want the set of
bounded solutions Sc to be compact. The following results guarantee this (see
Proposition 5.2 in the Appendix).

Proposition 2.2. For every c0 > 0 and δ0 > 0 there exists ε > 0 such that,

d

dt
V (x, y) ≤ −ε‖f(x, y)‖

for c ≥ c0 and ‖(x, y) − (a, b)‖ ≥ δ0, with (a, b) is an arbitrary critical point
of (1.5).

Proof. Denotes by ‖(x, y)‖ =: sup(|x|, |y|) and let δ0 > 0 and (x, y) ∈ R2

such that ‖(x, y)− (a, b)‖ ≥ δ0, for all critical points (a, b) of (1.5). One has

d

dt
V (x, y) = −cK2(x)

{
y2

(
L−

(
F (x)
K(x)

)′
) +

(
F (x)
K(x)

)2}
.

So, in view of (iii),

d

dt
V (x, y) + ε|yK| ≤ −cK2y2 − cF 2 + ε|y|K := P1(x, y)

and
d

dt
V (x, y) + ε|cy + K ′y2 + F |

≤ y2(−cK2 + εM) + εc|y| − cF 2 + ε|F | := P2(x, y).

We want ε such that P1(x, y) ≤ 0 and P2(x, y) ≤ 0.
Case 1. If |y| > δ0,

P1(x, y) = −cK2

{
y2 +

(
F

K

)2}
+ ε|y|K ≤ (−cqy2 + ε|y|)K.
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So, P1(x, y) < 0 if ε < c0qδ0.

P2(x, y) = y2(−ck2 + εM) + εc|y| − cF 2 + ε|F |.

The discriminant of the polynomial in |F | is

∆ = ε2 + {−4c2y2K2 + ε(4Mcy2 + 4c2|y|)}.

So ∆ < 0 for ε sufficiently small and it follows that P2(x, y) < 0 for c ≥ c0 and
|y| ≥ δ0.

Case 2. If |y| < δ0, then |x| > δ0 and |x− α| > δ0 and |x− 1| > δ0.
The discriminant of the polynomial P1(x, y) in |y| is

∆1 = (ε2 − 4(cF )2)K2 ≤ (ε2 − 4(crq)2)K2.

So, ∆1 < 0 for ε sufficiently small and it follows that P1(x, y) < 0.
Now, as F 2 − ε|F | ≥ (rq)2 − εrq it follows that

P2(x, y) ≤ −cy2K2 − c(rq)2 + ε(y2M + c|y|+ rq),

thus P2(x, y) < 0 for ε sufficiently small. We conclude the desired result. �

Proposition 2.3. There exist an isolating neighbourhood N for the flow
generated by (1.5) without degeneracy, for every c in an arbitrary fixed compact
[c1, c2].

Proof. If 0 < c1 ≤ c2, denote by Bi,δ the closed ball of center the critical
point ui and of radius δ and by H =

⋃
i Bi,δ and define constants

β0(c) = inf
H

V, β1(c) = sup
H

V and α(c) =
β1(c)− β0(c)

ε
.

with ε is defined in Proposition 2.2. In Conley [5, p. 30], it is shown that for
every fixed c > 0, all bounded solutions are contained in the closed α(c)-neigh-
bourhood of H. If α = supc∈[c1,c2] α(c) and N1 is the closed α-neighbourhood
of H, one easily checks that N1 is an isolating neighbourhood of Sc for every
c ∈ [c1, c2].

Now, observe that if c ∈ [−c2,−c1], with 0 < c1 ≤ c2, by the following
variables change, u(t) = x(−t), v(t) = −y(−t), system (1.5) becomes,{

u′ = K(u)v,

v′ = −(−c)v −K ′(u)v2 − F (u),

with (−c) ∈ [c1, c2]. So, by arguing as above, we get an isolating neighbourhood
N2 for Sc, for every c ∈ [−c2,−c1].

If c1 < 0 < c2, then for c = 0, V0(x, y) := L{
∫ x

0
K(t)F (t) dt + 1

2K2(x)y2}
is a first integral of (1.5) and by an appropriate variables change, the system is
Hamiltonian. The set S0 of bounded solutions consists of the three critical points
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and the teadrop filled with periodic solutions. So, every compact neighbourhood
of S0 is an isolating neighbourhood of S0.

Now an isolating neighbourhood N3 of S0 for c = 0 is also an isolating
neighbourhood of Sc for |c| sufficiently small.

Let 0 < η � 1 be sufficiently small such that Sc has an isolating neighbour-
hood N3, for every |c| ≤ η and denote by N1 (resp. N2) an isolating neighbour-
hood of Sc for c ∈ [c1,−η] (resp. c ∈ [η, c2]).

It is clear that the rectangle N := [−r, r] × [−R,R] becomes an isolating
neighbourhood for Sc for every c ∈ [c1, c2] by choosing the constants r and R

sufficiently large to insure, Ni ⊂ N , for i = 1, 2, 3. �

2.3. Existence of traveling fronts without degeneracy.

2.3.1. Fisher-KPP case. Consider equation (1.1) under the set of conditions
(1) and (2) in (I), but instead of (3), we suppose that K > 0 in [0, 1] and the
goal is to look for traveling fronts connecting the critical points u0 = (0, 0) and
u1 = (1, 0). At the first, let’s calculate the Conley index h(u0) and h(u1) of u0

and u1. (For the definition of h, see the Appendix).

Proposition 2.4.

h(u1) = Σ1 and h(u0) =

{
Σ0 for c > 0,

Σ2 for c < 0.

Proof. In view of Proposition 5.1 in the Appendix, the result follows easily
from the form of the characteristic polynomials of the linearized equation of (1.5)
around u0 and u1, respectively. �

Theorem 2.5. For every c > 0, there is a traveling wave from u1 to u0.

Proof. If not, we must have Sc = {u0, u1} and therefore it’s Conley index,
h(Sc) = Σ0 ∨ Σ1. As h(S−c)is either Σ2 ∨ Σ1 or 0 (see [17]), h(Sc) 6= h(S−c)
which leads a contradiction with the continuation property. �

In the following, let’s show that from a specific value of the speed, the trav-
eling wave of Theorem 2.1 is a front.

Theorem 2.6. If c0 = 2
√

L1L2, with L1 = supx∈[0,1] F (x)/x and L2 =
supx∈[0,1]((xK(x))′), then for all c ≥ c0, the Fisher-KPP equation (1.1), without
degeneracy has a traveling front from u1 to u0.

Proof. We will show that every t.w.s. corresponding to c ≥ c0 is in the
domain

Ωm = {(x, y) ∈ R2, 0 < x < 1 and mx < y < 0},
where m is an arbitrary scalar satisfying,

(2.1) m < 0 and L2m
2 + cm + L1 < 0.
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Denote by u(ξ) = (x(ξ), y(ξ)) a t.w.s. connecting u1 to u0. The solution
u cannot intersect the line x = 1, because if it does, there exists ξ0 such that
u(ξ0) = (1, y0). Since the Lyapunov function V is decreasing on nonconstant
solutions,

V (u(ξ0)) < V (u1).

But

V (u(ξ0)) = V (u1) +
L

2
(K(1)y0)2

and leads a contradiction. Thus in a neighbourhood of u1, u(ξ) is in Ωm.
Now let’s show that u(ξ) can’t leave Ωm. If it does, let ξ1 denote the first

value of ξ such that u(ξ) ∈ ∂Ωm and let (x1, y1) = u(ξ1).
If 0 < x1 < 1 and y1 = 0, then for ξ < ξ1,

y(ξ) < 0, and
y(ξ)− y1

ξ − ξ1
> 0,

so y′1 ≥ 0 and leads a contradiction with the fact that y′1 = −F (x1) < 0 because
y(ξ1) = y1 = 0 and F is positive on ]0, 1[.

If 0 < x1 < 1 and y1 = mx1, then for ξ < ξ1,

y(ξ) > mx(ξ)

(because (x(ξ), y(ξ)) ∈ Ωm), and

y(ξ)− y1

ξ − ξ1
< m

x(ξ)− x1

ξ − ξ1
,

so y′1 ≤ mx′1. But {
x′1 = K(x1)y1 = mx1K(x1),

y′1 = −cmx1 −K ′(x1)(mx1)2 − F (x1),

therefore

mx′1 − y′1 = m2x1K(x1) + cmx1 + K ′(x1)(mx1)2 + F (x1)

= x1

(
m2(x1K

′(x1) + K(x1)) + cm +
F (x1)

x1

)
≥ 0.

Thus L2m
2 + cm + L1 ≥ 0 and leads a contradiction with the choice of m. �

Remark 2.7. (a) Condition (2.1) is equivalent to m1 < m < m2, with m1 =
(−c−

√
c2 − 4L1L2)/(2L2), m2 = (−c +

√
c2 − 4L1L2)/(2L2), m1 is decreasing

with respect to L2 and Ωm ⊂ Ωm1 .
(b) Let c∗ = 2

√
F ′(0)K(0). If 0 < c < c∗, the eigenvalues λ1 and λ2 of

f ′(u0) are

λ1 =
1
2
{−c + i

√
4F ′(0)K(0)− c2} and λ2 =

1
2
{−c− i

√
4F ′(0)K(0)− c2}.
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Hence u0 is a (stable) focus and there is no traveling front u(ξ) going to u0 as
ξ →∞.

Corollary 2.8. If the functions F and K satisfy the conditions

F (x) ≤ xF ′(0) and (xK(x))′ ≤ K(0), 0 ≤ x ≤ 1,

then the minimal speed c0∗ is given by c0∗ = 2
√

F ′(0)K(0).

Proof. The hypotheses of Corollary 2.8 imply that c0 ≤ c0∗, Remark 2.7(b)
and Theorem 2.6 imply c0 = c0∗. �

2.3.2. Nagumo case. Consider equation (1.1) under the set of conditions (1)
and (2) in (II), but instead of (3), we suppose that K > 0 in [0, 1]. The goal
now is to look for traveling fronts connecting the critical points u0 = (0, 0),
uα = (α, 0) and u1 = (1, 0).

Lemma 2.9.

h(u0) = h(u1) = Σ1 and h(uα) =

{
Σ0 for c > 0,

Σ2 for c < 0.

Proof. As in Proposition 2.4 the result follows easily from the form of the
characteristic polynomials of the linearized equations of (1.5) around u0, uα and
u1, respectively. �

Proposition 2.10. There exists c00 > 0 (the minimal speed) such that for
all c ≥ c00 there is a traveling front connecting u1 to uα.

Proof. For initial data in [α, 1] we have a same situation as for Fisher-KPP
case without degeneracy, so the result follows from the above Subsection. �

The previous Propositions 2.10 and 5.5 in the Appendix are used to show

Theorem 2.11. Suppose
∫ 1

0
F (x) dx>0. There exists a unique c1∈ ]c00, c00[

for which a t.w.s. of Nagumo equation without degeneracy occurs from u1 to u0,
where c00 is an arbitrary sufficiently small value of the speed c.

Proof. Existence: Let’s show that the hypotheses of Proposition 5.5 hold.
As uα is an attractor, the set N0 := N \ Bε(uα) is an isolating neighbourhood
of Nagumo equation without degeneracy, for every c ∈ [c00, c00], where N is the
isolating neighbourhood defined in Proposition 2.3 and Bε(uα) denotes the open
ball with center uα and radius a sufficiently small ε > 0. The reason for this
choice is that we do not want to have the previous connecting orbits from u1 or
u0 to uα. As we have a gradient-like system, for every c ∈ [c00, c00], ({u0}, {u1})
forms an attractor-repeller for the maximal invariant set Sc of N0 and

Sc00 = Sc00 = {u0} ∪ {u1}.

We conclude the proof of existence by the following,
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Lemma 2.12. Suppose
∫ 1

0
F (x) dx > 0. The connected simple systems (CSS)

of (1.5) corresponding to c00 and c00 are different.

Uniqueness: Denote by γc1 the connecting orbit corresponding to the value
of c1 and let c 6= c1. If c < c1 (for example), the eigenvector

(
1

λ+
c /K(1)

)
(
resp.

(
1

λ−c /K(0)

))
corresponding to the positive eigenvalue λ+

c of f ′(1) (resp.

negative eigenvalue λ−c of f ′(0)) are such that λ+
c > λ+

c1
and λ−c < λ−

c1
. So,

locally, the unstable manifold of u1 corresponding to the value of c lies below γc1

whereas the stable manifold of u0 lies above it. If there exist another connecting
orbits γc for the value c, let t1 be the first time for which γc intersect γc1 at
a point (x1, y1). One has,{

x′1 = K(x1)y1,

y′1 = −cy1 −K ′(x1)y2
1 − F (x1).

So, for t sufficiently close to t1 with t < t1, yc1(t) > yc(t) and

yc(t)− y1

t− t1
>

yc1(t)− y1

t− t1
.

When t → t1, we obtain ẏc1(t1) ≤ ẏc(t1). By substitution in (1.5), we found,
c1 ≤ c which leads a contradiction. �

Proof of Lemma 2.12. From Remark 5.6 in the Appendix, we only have
to show that for c = c00, the unstable manifold Wu

c00
(u1) of u1 lies above the

stable manifold W s
c00

(u0) of u0 and for c = c00, Wu
c00

(u1) lies below W s
c00

(u0)
(see the proof in [15, p. 952]).

In fact, from Proposition 2.10, Wu
c00

(u1) coincides with the connecting front
γ1α from u1 to uα and because of γ1α and uniqueness of the solutions, W s

c00
(u0)

can’t intersect the segment (α, 1]. Also W s
c00

(u0) can’t intersect the segment
(0, α]. In fact, W s

c00
(u0) can’t start from the attractor uα at −∞ and if W s

c00
(u0)

intersect the segment (0, α) at a point (β, 0), the Lyapunov function satisfy
V (0, 0) < V (β, 0), a contradiction with the fact that V (0, 0) = 0 and V (β, 0) < 0.
Consequently, W s

c00
(u0) intersect the axis x = 1 for a finite time t1 at a point

(0, y1), with y1 < 0.
We conclude that Wu

c00
(u1) lies above W s

c00
(u0). To show that Wu

c00
(u1) lies

below W s
c00

(u0), remarks at the first that for c = 0 and
∫ 1

0
F (x) dx > 0, we have

the following properties:

(a) As we a Hamiltonian system, the unstable manifold Wu
0 (u0) coincide

with the stable one W s
0 (u0) to form a homoclinic orbit around uα and

based in u0.
(b) The unstable manifold Wu

0 (u1) can’t intersect the segment (α, 1) (see
the proof of Theorem 2.6) and, from uniqueness of the solution, can’t
intersect the previous homoclinic orbit.
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Consequently, Wu
0 (u1) intersects the axis x = 0 for finite time t0 at a point

(0, y0), with y0 < 0.
By continuity with respect to c, we deduce that, for a sufficiently small value

c00 of c, Wu
c00

(u1) intersects the axis x = 0 for finite time t0 at a point (0, y0),
with y0 < 0.

With this, we deduce that Wu
c00

(u1) lies below W s
c00

(u0). �

Corollary 2.13. If
∫ 1

0
F (t) dt > 0 then:

(a) for 0 ≤ c ≤ c1 there is no connection between u1 and uα,
(b) for c > c1 there exists a connecting orbit C1α from u1 to uα, with

C1α is a front for c ≥ c00 and an oscillation for c1 < c < c∗, with
c∗ = 2

√
F ′(α)K(α),

(c) for all c > 0, there exist a connecting orbit C0α from u0 to uα.

Proof. (a) If there exists a connection γ between u1 and uα, by an argument
as in proof of the uniqueness in the previous theorem, γ must intersect the
connection γc1 between u1 and u0 and leads a contradiction.

(b) Suppose the unstable manifold of u1, Wu
c (u1) corresponding to the value

of c is bounded for t →∞. So its ω-limit set is a critical point.
In fact by a similar argument as in proof of the uniqueness of c1, Wu

c (u1)
can’t intersect γc1 . Also, by an argument as in the proof of Theorem 2.6, it can’t
intersect the lines x = 1 and x = 0.

Now, if Wu
c (u1) is not bounded, there exist (tn)n ⊂ R+ going to ∞ such that

y(tn) →∞ and V (x(tn), y(tn)) →∞.
As tn ≥ 0, V (x(tn), y(tn)) < V (u1), a contradiction.
So the ω-limit set of Wu

c (u1) is uα. The nature of C1α for c ≥ c00 and for
c < c∗ derive from Proposition 2.10 and Remark 2.7(b), respectively.

(c) Suppose Wu
c (u0) is bounded for t → ∞. So, it’s ω-limit set is a critical

point. As V is decreasing on orbits of equation (1.5) and V (uα) < V (u0) <

V (u1), the ω-limit set of Wu
c (u0) is uα.

In fact for the boundedness of Wu
c (u0), an argument as in the proof of The-

orem 2.6 shows that Wu
c (u0) can’t intersect the lines x = 1 and x = 0. Now, if

Wu
c (u0) is not bounded, there exist (tn)n ⊂ R+ going to ∞ such that y(tn) →

±∞ and V (x(tn), y(tn)) → ∞. As tn ≥ 0, V (x(tn), y(tn)) < V (x(0), y(0)),
a contradiction. �

Collecting the previous results we have

Theorem 2.14. Suppose
∫ 1

0
F (t) dt > 0 and let Sc denote the set of bounded

solutions of equation (1.5) in Nagumo case without degeneracy. Then there exist
0 < c1 < c00 such that:

(a) for c ≥ c00, Sc = {γ0α, γ1α}, with γij is a front connecting ui to uj,
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(b) for c1 < c < c00, Sc = {C0α, C1α}, C1α is a connecting orbit from u1 to
uα which is an oscillation for c < c∗ and neither oscillation nor front
for c ≥ c∗,

(c) for c = c1, Sc1 = {C0α, γ10}, c1 is unique,
(d) for 0 < c < c1, Sc = {C0α, u1},
(e) for c = 0, S0 consists of a variety of periodic orbits an orbit homoclinic

to u0 and u1.

Proof. The assertions (a)–(d) follows from Proposition 2.10, Theorem 2.11
and Corollary 2.13. For (e), at c = 0 we have a Hamiltonian system. For the set
of bounded solutions, see for example [13, Chapter 14]. �

Remark 2.15. If
∫ 1

0
F (t) dt < 0, analogous reasoning lead to a similar re-

sults as in Theorem 2.14 for c < 0.

3. Existence of traveling fronts with degeneracy

3.1. Fisher-KPP case. Consider system (1.1) under the set of condi-
tions (I). Theorem 2.6 now implies that, for any given µ ∈ (0, 1] and for all c >

2
√

L1L2, with L1 = supx∈[0,1] F (x)/x and L2 = L2µ = supx∈[0,1](µ + (xK(x))′),
the Fisher-KPP equation (1.1)µ:

∂u

∂t
=

∂

∂x

(
(K(u) + µ)

∂u

∂x

)
+ F (u), x ∈ R, t ≥ 0,

has a traveling front γ10(c, µ) from u1 to u0. Furthermore, γ10(c, µ) is in the do-
main Ωm, where m is an arbitrary scalar satisfying (2.1). In view of Remark 2.7,
Ωm is bounded with respect to µ ∈ [0, 1] and we can found a constant m1 < 0,
(for example the one given in Remark 2.7 corresponding to L2 for µ = 0) such
that γ10(c, µ) ⊂ [0, 1]× [m1, 0], for any µ ∈ [0, 1].

Let µn be a sequence of positive numbers tending to 0. For each n, we get
a connecting orbit γn = γn(c) from u1 to u0 in the flow generated by (1)µn

.
The closure cl(γn) = {u1} ∪ γn ∪ {u0} is a compact subset of [0, 1] × [m1, 0],
so it has a convergent subsequence also labelled by cl(γn) on the Hausdorff
metric on the compact subsets of [0, 1] × [m1, 0]. The limit γ∗0 (c) is nonempty,
compact, connected and invariant for the flow generated by equation (2.1) (see
Reineck [24, Lemma 3.8]). It is clear that the corresponding solution {un(t)}
converges uniformly with respect to t on any compact set of R to a functional
u∗(t) connecting u1 to u0 which is invariant in the µ = 0 flow of equation (1.5).
Then we deduce that u∗(t) is a solution.

We conclude,

Theorem 3.1. If c0 = 2
√

L1L2, with L1 = supx∈[0,1] F (x)/x and L2 =
supx∈[0,1](x(1+K(x)))′, then for all c ≥ c0, the Fisher-KPP equation (1.1), with
degeneracy has a traveling front from u1 to u0.



Traveling Front Solutions 55

3.2. Nagumo case. For Nagumo equation, analogous methodology as in
Fisher-KPP case can be applied. Consider system (1.1) under the set of condi-
tions (II). Theorem 2.11 now implies that for any given µ ∈ (0, 1], there exist
a positive constants c00 = c00(µ) and c00 = c00(µ) and a unique c1(µ) ∈ ]c00, c00[,
uniformly bounded with respect to µ in (0, 1] for which a traveling wave from
u1 to u0 occurs for the Nagumo equation (1.1)µ. Furthermore c1(µ) > 0 if and
only if

∫ 1

0
F (t) dt > 0.

Let (µn) be a sequence of positive numbers tending to 0. For each n, we get
a connecting orbit γn from u1 to u0 in the flow generated by (1.1)µn .

In view of Remark 2.7(a), the closure cl(γn) = {u1} ∪ γn ∪ {u0} is a com-
pact subset of [0, 1]× [m1,−m1] for a sufficiently negative constant m1. So the
sequence cl(γn) has a convergent subsequence also labelled by cl(γn) on the Haus-
dorff metric on compact subsets of [0, 1]× [m1,−m1]. The limit γ∗0 is nonempty,
compact, connected and invariant for the flow generated by equation (1.5) (see
Reineck [24, Lemma 3.8]). It is clear that the corresponding solution {un(t)}
converge uniformly on any compact set of R to a functional u∗(t) connecting u1

to u0 which is invariant in the µ = 0 flow. It follows that u∗(t) is a solution of
equation (1.5).

Uniqueness of the connection γ∗0 and the corresponding single value c∗1 of the
speed c can be obtained using a similar arguments as in the proof of Theorem 2.5.

About the sign of c∗1 and the type of γ∗0 , following a similar methodology
to that given in [30], we can precise the nature of γ∗0 and verify that c∗1 6= 0.
Arguing as in Corollary 2.13, and collecting the above results, we obtain

Theorem 3.2. Suppose
∫ 1

0
F (t) dt > 0. Then there exist a unique value

c∗1 > 0 of the speed c such that the degenerate generalized Nagumo equation has:

(a) for c > c∗1, a t.w.s. γ1α connecting u1 to uα,
(b) for c = c∗1, a unique t.w.s. γ10, connecting u1 to u0,
(c) for 0 < c < c∗1 no connection between u1 and uα.

4. Conclusion

By Conley index theory, we give an alternative proof of a complete description
of the set of bounded solutions for the nondegenerate Fisher-KPP and Nagumo
equations. In the degenerate case, we showed that the technique of David Terman
(see Reineck [24]) is applicable. We have shown the passage of existence of t.w.s.
connecting the critical points of the system from the nondegenerate case to the
cases of double degenerate Fisher-KPP equation and triple degenerate Nagumo
equation. Here we generalize some results obtained by F. Sanchez-Garduno and
P. K. Maini [28] in 1997.

Essentially our results for the degenerate equations are a perturbation of
nondegenerate situation. Some natural extensions to our work are the analysis of
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existence of t.w.s. for a coupled nonlinear degenerate reaction-diffusion equation.
We leave these for future consideration.

5. Appendix

In this section, a brief survey of some of the relevant portions of the Conley
index theory and gradient like-system are provided. Basic references for this
material are ([5], [3], [26], [27], [31]).

5.1. Conley index. Let ϕ:X × R → X be a flow on a locally compact
topological space. A compact set N ⊂ X is an isolating neighbourhood if its
maximal invariant set is contained strictly in its interior, i.e.

Inv(N,ϕ) := {x ∈ N | ϕ(x,R) ⊂ N} ⊂ Int(N).

If S = Inv(N,ϕ) for some isolating neighbourhood N , then S is called an isolated
invariant set (i.i.s.).

The Conley index studies i.i.s. S; the essential tool for this study being an
index pair for S: a compact pair (N,L) satisfying the following axioms:

(a) N \Lis a neighbourhood of S and cl(N \L) is an isolating neighbourhood
for S.

(b) L is positively invariant in N : if x ∈ L, ϕ(x, [0, t]) ⊆ N , then ϕ(x, t) ∈ L.
(c) L is an exit set for N : if x ∈ N , ϕ(x, (0,∞)) 6⊆ N , then there exists

a t > 0 such that ϕ(x, [0, t]) ⊆ N , ϕ(x, t) ∈ L.

Given S an i.i.s. with index pair (N,L), the Conley index of S denoted by
h(S) is the homotopy type of the pointed topological space (N/L,L),

h(S) = [N/L,L].

A subset A of a compact invariant set S in X is called an attractor (relative
to S) if there is a neighbourhood U of A in S such that ω(U) = A.

The dual repeller R of A in S is defined by R := {x ∈ S | ω(x) ∩ A = ∅}.
The couple (A,R) is called attractor-repeller pair.

In the case of isolated critical points, the following standard result will be
used to determine the appropriate Conley index.

Proposition 5.1. If x0 is a hyperbolic critical point with unstable manifold
Wu(x0) of dimension n, then {x0} is an isolated invariant set and

h(x0) = Σn, the pointed n-sphere.

The following result gives an isolated neighbourhood:
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Proposition 5.2 ([5]). Suppose

d

dt
x = f(x)

a differential equation on Rn and let V (x) be a smooth function on Rn. Suppose
there is a compact set K ⊂ Rn and a constant ε > 0 such that, for x ∈ Rn \K,

d

dt
V (x(t)) ≤ −ε‖f(x(t))‖.

Then the set of bounded solutions of the equation is compact (in particular it is
isolated, so has an index).

We state the continuation theorem for the Conley index.
Let ϕµ:X ×R → X, µ ∈ Λ, be a continuously parameterized family of flows,

where the parameter space Λ is a compact locally contractible, connected metric
space. The parameterized flow corresponding to the family ϕµ is the continuous
flow,

Φ: X × R× Λ → X × Λ, (x, t, µ) 7→ Φ(x, t, µ) := (ϕµ (x, t), µ).

An i.i.s. Sµ for ϕµ for µ ∈ [µ1, µ2] ⊂ Λ are said to be related by continuation
if we can find an isolated neighbourhood N in the product space X × Λ that is
isolating for Φ, for each µ ∈ [µ1, µ2], and

Inv(Nµ, ϕµ) = Sµ, where Nµ := N ∩ (X × {µ}).

Proposition 5.3 (Continuation property). Let Sµ0 and Sµ1 be i.i.s. that
are related by continuation. Then h(Sµ0) ≈ h(Sµ1).

The following statement is fundamental to many applications of the Conley
theory.

Proposition 5.4 (Summation property). Assume S = S0∪S1 is an isolated
invariant set where S0 and S1 are disjoint invariant sets. Then

h(S) = h(S0) ∨ h(S1).

For certain applications, especially in global bifurcation problems, the Con-
ley index is not enough. We need a more refined concept that will distinguish
between i.i.s. that have the same Conley index. The required concept is that of
a connected simple system.

5.2. Connected simple system. In what follows S denotes an i.i.s. and
N an isolating neighbourhood. Let (N,L) be an index pair for S, then the
homotopy type of the pointed space is usually referred to as the Conley index.
There exists however, a finer version of the index which will be used in the proof.
First a definition.
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A connected simple system consist of a collection I0 of pointed spaces along
with a collection Im of homotopy classes of maps between these such that:

(1) hom(X, X ′) = {[f ] ∈ [X, X ′]/[f ] ∈ Im} is nonempty and consists of
a single element for each ordered pair X, X ′ of spaces in I0,

(2) if X, X ′, X ′′ ∈ I0, [f ] ∈ hom(X, X ′) and [f ′] ∈ hom(X ′, X ′′), then
[f ′ ◦ f ] ∈ hom(X, X ′′),

(c) hom(X, X) = {[1X ]} for all X ∈ Im.

Recall ([5], [15] [20]) that the Conley index of S forms a connected simple
system, where I0 = {(N/L, [L])/(N,L) is an index pair for S} and Im consists
of maps defined by the flow between the elements of I0. The connected simple
system of the Conley index of S is denoted by I(S).

Proposition 5.5 (Conley [5], Salamon [27]). If (Aµ, A∗µ) is an attractor-
repeller pair for the i.i.s. Sµ, which continues for µ ∈ [µ1, µ2] ⊂ R and

Sµ1 = Aµ1 ∪A∗µ1
, Sµ2 = Aµ2 ∪A∗µ2

but I(Sµ1) is not the same as I(Sµ2), then for some µ ∈ ]µ1, µ2[, there exists
a connecting orbit from A∗µ to Aµ.

Remark 5.6. The standard example where the above proposition is applied
is as follows (see [15, p. 951]). Suppose that one works in the plane R2 and the
flow depends on a single parameter µ and the attractor-repeller pair consists
of two saddles (of index 1). Suppose one can find values of the parameter µ

such that for the first value, the unstable manifold of the one saddle lies above
the stable manifold of the other, while for the second value it lies below it. The
Proposition then gives the existence of a saddle connection for some intermediate
value of µ.

5.3. Gradient-like system. Let V :X → R be a continuous function on
a locally compact Banach space. The flow ϕ on X is called gradient-like with
respect to V if, for all t > 0, ϕ(x, t) 6= x imply V (ϕ(x, t)) < V (x) (or V (ϕ(x, t)) >

V (x)).
Thus V is strictly decreasing (or increasing) on nonconstant solutions; in

particular ϕ can’t have any periodic or homoclinic orbits.

Proposition 5.7. Let ϕ be gradient-like flow in Rn with respect to V , with
isolated critical points. If ϕ(x, R+) (resp. ϕ(x, R−)) is nonconstant and bounded
positive (resp. negative) orbit, then the omega limit set ω(x) (resp. alpha limit
set α(x)) is a single critical point.

Proof. We indicate the proof for positive orbits. For every x ∈ Rn, the map
t → V (ϕ(x, t)) is decreasing and ϕ(x, R+) is bounded. So, limt→∞ V (ϕ(x, t)) = l
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exist and thus for every y ∈ ω(x), with y = limn→∞ ϕ(x, tn),

V (y) = V
(

lim
n→∞

ϕ(x, tn)
)

= lim
n→∞

V (ϕ(x, tn)) = l.

Also, for all t > 0,

V (ϕ(y, t)) = lim
n→∞

V (ϕ(x, t + tn)) = l,

therefore ϕ(y, t) = y and y is a critical point.
As ω(x) is connect and the critical points are isolated, ω(x) is a single point.�

In a gradient like system, the only bounded solutions are critical points and
orbits connecting them.
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