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ABSTRACT. We define the concept of a Conley index and a homology index
braid class for ordinary differential equations of the form

where M is a CZ?-manifold and Fj is the principal part of a continuous
vector field on M. This allows us to extend our previously obtained results
from [5] on singularly perturbed systems of ordinary differential equations
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on Y x M, where Y is a finite dimensional Banach space and M is a C2-
manifold, to the case where the vector field in (E:) is continuous, but not
necessarily locally Lipschitzian.
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1. Introduction

Let M be a finite dimensional (boundaryless) second countable paracompact
differentiable manifold of class C2. Consider the ordinary differential equation

(1.1) i = Fy(z)

where F} is the principal part of a vector field F: M — T (M), i.e. for x € M,
F(z) = (z, Fi(z)) where Fi(x) € T,(M). If F is a locally Lipschitzian vector
field on M then (1.1) generates a local flow on M and the classical Conley index
theory applies.

However, in some applications the right hand side of (1.1) is merely contin-
uous. In such cases the Cauchy problem for equation (1.1) does not necessarily
have unique solutions, so (1.1) does not generate a flow and the classical Conley
index theory cannot be applied.

In this paper we present an extension of the Conley index theory to the case
of ordinary differential equations of the type (1.1) with a merely continuous right
hand side. For every isolating neighborhood N relative to F' we define an index
h(f, N) and show that all properties of the classical Conley index theory hold
in this more general setting. In addition, we show that the index depends only
on the isolated invariant set in question and not on the choice of its isolating
neighborhood. This generalizes some results from the paper [8] to the (technically
more involved) manifold case.

In addition, we also provide an extension of the (co)homology index braid
theory to this more general case.

As an application of this theory we show that all results of our previous
paper [5] continue to hold under some more general assumptions on the nonlin-
earities involved.

2. Graded module braids

In this section we recall some basic notions from the theory of graded module
braids. For more details, see [7].

Recall that a strict partial order on a set P is a relation < C P x P which
is irreflexive and transitive. As usual, we write x < y instead of (z,y) € <. The
symbol < will be reserved for the less-than-relation on R.

For the rest of this paper, unless specified otherwise, let P be a fixed finite
set and < be a fixed strict partial order on P.

A set I C P is called a <-interval if whenever i, j, k € P, i, k € I and
i < j <k, then j € I. By Z(<) we denote the set of all <-intervals in P.

An adjacent n-tuple of <-intervals is a sequence (I;)}_; of pairwise disjoint
<-intervals whose union is a <-interval and such that, whenever j < k, p € I;
and p’ € Iy, then p’ A p (i.e. p < p' or else p and p’ are not related by <). By



CONLEY INDEX 3

7,(<) we denote the set of all adjacent n-tuples of <-intervals. If I, J € Z(<)
are such that (I,.J), (J,I) € Za(=<), we say that I and J are noncomparable.

For the rest of t his paper we fix a (commutative) ring I'. We write I.J instead
of I UJ and similarly for more than two intervals.

DEFINITION 2.1. For each J € I(<) and ¢ € Z, let G4(J) be a I'-module
and for each (I,J) € Zy(<) and g € Z let
i1,0,4:Gg(I) = Gq(IJ),  pryqGq(IJ) = Go(J), 01,541 Ge(J) = Gg-1(1)

be given maps. The family G(<) of all these modules G,(I) and all these maps
1,09, PI,7,q and 05 4 is called a graded homology I'-module braid over < if the
following conditions are satisfied:

(a) the sequence

i1,7,q I,7,q 91,7,q
Go(I) 2224 G (1) 2225 Gy () 2% Gy (I) ——

is exact;
(b) whenever I, J € Z(<) are noncomparable, then p; s 40ir 54 = Id|g,1);
(¢) whenever (I, J, K) € Z3(<), the following diagram

IJK) PI,JK,q ”K/ Gq( )
/ \
ol s IR Ty, |
v 2 A
G,(K) g q > Gyr(D)
/ \
8]Kq{ Gqfl( J) )il JK,q—1
Pr1,J,q—1 11J,K,q—1 J

comimutes.

Let G(<) be a graded homology I'-module braid over < and k € Ny. The
collection Gy (<) of the I'-modules

Q

k() q€Z,JeI(=<),

and the maps i; jg—k, P1,J9—k and 0y jq—x, for (I,J) € I3(<) and ¢ € Z, is a
graded homology T'-module braid over < called the shift to the left by k of G(<).
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Let G = G(<) and g~ = QN(—<) be graded homology I'-module braids over <.
Suppose 0 := (0,(J))qez,se1(<) is a family 0,4(J): G4(J) — G4(J) of I'-module
homomorphisms such that, for all (I, J) € Zo(<), the diagram

iI,0,q PI,J,q 01,4,q

Gq(I) Go(17) Gq(J)
J{un) J{eq(l‘]) 6q(J) leq—l(I)

Gq_1(1)4)

éq(I) ~ Gq(1J)~ >éq(‘]) 5 éq—l(I)%

i1,J,q P1,J,q

commutes. Then we say that 6 is a morphism from G to G and we write 8:G — G.
If each 6,(J) is an isomorphism, then we say that 6 is an isomorphism and that
G and G are isomorphic graded homology I'-module braids over <.

DEFINITION 2.2. For each J € I(<) and ¢q € Z, let G(J) be a I'-module
and for each (I, J) € Zo(<) and g € Z let
iI’],q:Gq(I) —>Gq(IJ)7 p[’],q:Gq(IJ) —>Gq(J), (Q)[’J’qIGq(J) —>Gq+1(I)

be given maps. The family G(<) of all these modules G%(I) and all these maps
i1,7,q5 P1,J,¢ and Or_j 4 is called a graded cohomology I'-module braid over < if the
following conditions are satisfied:

(a) the sequence

iI,J,q PI,Jq 01,7,

Ga(1g) 22 qa(gy 2L qati(y) ——

Ga(I)

is exact;
(b) whenever I, J € Z(<) are noncomparable, then ps s 40is,74 = Id |ge(1);
(c) whenever (I, J, K) € Z3(<), the following diagram

iIJ K Gq(IJ) pr.J :}a,],K,q—l
/ 25 q ¢
GUIJK) \ Ga(J)
pI.I,K,q{/ PrK.g Gq(JK) Or. 7K. \, 01,79
G T G0
( \ 1 / -
91.K.q PI,J,q+1 Gt (I‘]) 11J,K,q+1 : YL TR gt
o . Vv
Gq+1(J) Gq+1(IJK)

T
L )

comimutes.
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Let G(=<) be a graded cohomology I'-module braid over < and k € Ny. The
collection G¥(<) of the T-modules

Gk, qeZ, JeI(=),

and the maps U1, J,q—ky» PI,J,q—Fk and 8]7J,q_k, for (I, J) S Zg(%) and q € Z, is
a graded cohomology I'-module braid over < called the shift to the left by k of
Gg(=).

Let G = G(<) and g~ = 5 (<) be graded cohomology I'-module braids over
<. Suppose 0 := (04(J))qez,se1(<) is a family 0,(J): G(J) — G(J) of T-module
homomorphisms such that, for all (I, J) € Zo(<), the diagram

PI,Jq 01,1,

G121 qa(1.7) GTH () ——

J{gq(l) l%(“) leq(‘]) lqurl(I)

GI(I)=——G4(1J) Gi(J)=—— G (1) ——

i1,7,q PI,J.q 0r1,7,q

commutes. Then we say that 6 is a morphism from G to 5 and we write 0: G — 5
If each 6,(J) is an isomorphism, then we say that 6 is an isomorphism and that
G and G are isomorphic graded cohomology I'-module braids over <.

We define a category B whose objects are all the graded homology (resp. co-
homology) T'-modules braids over <. Given objects G and G in B let Morz(G, G)
be the set of all morphisms from G to G.

Given objects G and EJ in B we say G is related to g~7 and write G ~ 5, if and
only if G and G are isomorphic graded (co)homology I'-module braids over <. It
is obvious that ~ is a equivalence relation in B. Given G in B let [G] denote the
equivalence class of G.

Note that if G and G are isomorphic graded homology (resp. cohomology)
braids then so are Gy, and Gy (resp. G* and ék) for all £ € Ny. Thus the shift
operation

(2.1) [G]k = [G],
resp.
(2.2) [G)F = [G"]

is well defined on isomorphism classes of graded homology (resp. cohomology)
braids.
3. Approximation of continuous vector field on manifolds

Throughout this paper let M be a (boundaryless) second countable para-
compact differentiable manifold of class C? modeled on some finite-dimensional
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Banach space E. Let T (M) denote the tangent bundle of M. Whitney Imbed-
ding Theorem implies that there is a finite dimensional normed space E and an
imbedding e: M — E of class C2. We define the metric d, on M such that e
is an isometry.

Using the notation from [5] let T' = T™:T(M) — E be the map given by
[(x,u) = DMe(z)(u), (z,u) € T(M). [5, Subsections 3.1, 3.3 and Section 4]
imply that I is continuous.

We now state the following basic approximation result.

PROPOSITION 3.1. Let F: M — T(M) be a continuous vector field. Then
for every € €10, 00[ there is a C-vector field G: M — T(M) such that

sup |[D(G(z)) —T'(F(z))|g < e.
TeEM

PrOOF. For every chart a:U — V C E of M the map
U— L(BE,E), x+ D(eoa ') (a(z))

is continuous, therefore locally bounded. It follows that there exists an atlas
(a;:U; — V;)ier of M such

(3.1) C; = s;lllj) |D(eoa; ") (ei(2)|cmr) < oo, i€l
Moreover, we may assume that the covering (U;);er is locally finite and that
there is a C?-partition of unity (¢;: M — R);c; subordinated to the covering
(Uiier-

Let i € I be arbitrary and set F* = F|y,. The set T(M)|v, = U,ep, {7} x
T, (M) is open in T(M) and the map X, given by

Xait [ {z} x To(M)) — ai(Ui) x B, (2,u) = (ai(2), u(a))

zeU;

is a homeomorphism from T'(M)|y, to Vi x E. Actually x,, is a C'-diffeomor-

phism in the sense that xo, is a C'-map from T(M)|y, to V; x E and ! is
a Cl-map from V; x E to T(M). Analogous remarks apply to a;:U; — V.
In particular, the map Fi= T3 0 Xa; © FPo ai_ls V; — FE is continuous, where
mo: V; X E — FE is the projection on the second component. It follows that there
is a C'-map G*:V; — E such that

sup |G (y) — F'(y)|s < ¢/(2C5).

yeV;
For every x € U; let G%(x) be the uniquely defined element u of T, (M) such
that u(a;) = G*(a;(z)). This defines a map G%: U; — T(M) such that G (z) €
T, (M) for each z € Uj.
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For each x € M define

z) =Y ¢i(2)Gi(x)

il

This is actually a finite sum in T,,(M) and so G1(z) is a well-defined element
of T,(M). Now define the map G: M — T(M) by G(z) = (z,G1(z)), x € M.
It follows that G is a vector field on M. We will prove that G is of class C'.
Let zg € M be arbitrary. Then there is an open neighbourhood W of xg in M,
a chart v: W — W and a finite subset .J of I such that ¢i(x) =0foralli e I\J
and all z € W. It is enough to prove that H, := x, o G|w o ’y*l:’W —~WxE
is of class C'. However, for y € W,

= (1 T a6 D0 e el )G it )
ie
and this expression clearly shows that H., is of class C*.
Note that, for every z € M, F(z) = (z, Fy(z)) where Fy(z) € T,(M). For
every i € I the definition of F* implies that, for every z € Uj,

Fi(z)(ew) = F'(ai(x)).
It follows that

I'(F(x)) = DMe(x).Fl (x) =D(eo ai_l)(ai(x)).Fl (x) ()
= D(eoa;)(a(x)).F(i())

S0

[(F(z)) = D(eoa; ")(ai(z)).F(ai(x)).
Analogously,

[(G(x)) = D(eoa; ") (ai(@)).G' (ai(w)).

It follows that, for every x € M,

T(G(z)) - Z;sz (e 0 a; ) (i(®)).(G' (@) — Fi(as()))|m
< icﬁz )ID(e 0 a; ) (ai(@))-(G(i(x)) — F*(ei(2)))|m
<§;¢1 Oy e/(20;) = ¢/2.

Thus :

sup [T(G(z)) —T(F(x))|g <e.
reM

The proposition is proved. |
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LEMMA 3.2. Let N be a compact subset of M and F and F*, k € N, be
continuous vector fields on M. Assume that sup,cy [I'(F*(x)) —T'(F(z))|lg — 0
as kK — 0o. Let J C R be an arbitrary interval. For every k € N, let x,;: J — N
satisfy the equation

() = @' (t) = Ff' (zx(t), te€J.

Then a subsequence of (x)xen converges in M, uniformly on compact subsets
of J, to a function x: J — N satisfying the equation

B(t) = Fi(z(t)), teJ.

PRrROOF. For k € N let y, = e o z,,. It follows that
Ye(t) =T(F(24(1)), te€J

An application of the Arzela—Ascoli theorem shows that a subsequence of (Y ) wan,
again denoted by (y.)xen, converges in E, uniformly on compact subsets of J,
to a continuous function y: J — e(N). Since e is a homeomorphism of M onto
e(M) there is a unique map z:J — N with y = e oz, x is continuous into M
and (zy)ken converges to  in M, uniformly on compact subsets of J.

For k € N and ¢, tg € J we have

Yi(t) = yx(to) + / T(F"(xx(s))) ds.

to

Letting k — oo we conclude that

y(t) = yl(to) + / I(F(x(s))) ds.

to
Proceeding as in the proof of [5, Proposition 4.6] we obtain that z is differentiable
into M and
z(t) = Fi(x(t)), teJd.
This completes the proof. O

An ordinary differential equation
T = F1 (l‘)

generates a local (semi)flow on M, provided the vector field F: M — TM
is locally Lipschitzian. However, even merely continuous vector fields can still
define local (semi)flows. This is e.g. the case for a continuous vector field obtained
from an originally locally Lipschitzian vector field by a transformation via a C'-
diffeomorphism.

Therefore the following definition is natural:
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DEFINITION 3.3. Let F' be a continuous vector field on M and 7 be a local
semiflow on M. We say that 7 is generated by F if for every intervall J C R and
every function x: J — M, z is a solution of 7 if and only if x is differentiable on
J and

#(t) = Fi(x(t), tel.

Given z € M and «a € ]0, 00[ we denote by By (x) the set of all y € M with
dm(y,x) < a. Since (M, du) is locally compact, B, (z) is compact for « small
enough (depending on x).

LEMMA 3.4. Leta € M be arbitrary and 6 € )0, 00][ be such that N := Bas(a)
is compact. Let m be a local semiflow on M generated by the continuous vector
field F' on M. Let C €0, 00[ be arbitrary with C' > sup ¢y [I'(F(x))|g. Define
T=20/C. Let T € M be arbitrary with dy(Z,a) < §. Then TrT is defined and
Tr[0,7] C N.

PROOF. Since N is compact, m does not explode in N. Thus if the assertion
of the lemma does not hold, then there exists a smallest r € [0, 7] such that Zmr
is defined and daq(Trr, @) = 26. It follows that Zrw [0,7] C N and 0 < r < 7. Let
y(t) = e(@nt) for t € [0,7]. It follows that

,
dp (@rr, ) = |y(r) — y(0)|g = ‘/ I'(F(zrs))ds| <Cr<Cr=9§
0 E
and so
20 = dm(Trr,a) < dp(Tar, T) + dym (T, @) < 0 4 6 = 24.
This contradiction concludes the proof. O

‘We now obtain the basic

THEOREM 3.5. Let F*, k € Ny, be continuous vector fields on M and m,
k € Ny, be local semiflows on M. Suppose that w, is generated by F* for k € Ny.
In addition, assume that, for every compact subset N of M,

sup |T(F*(x)) = T'(F°(z))|[g = 0 as k — oo.
TeEN

Under these hypotheses, m, — Ty as k — Q.
We need the following lemmas:

LEMMA 3.6. Assume the hypotheses of Theorem 3.5. Let kg € N be arbitrary
and (Gx ) k>r, be a sequence in M and ag € M witha,, — Gg in M ask — oo. Let
N be compact in M and T € |0, 00[ be such that @, 7 is defined and @,y [0, 7] C
N for all k > kg. Then agmoT is defined and supco 1 dm (@pTxt, aomot) — 0 as

K — OO.
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PROOF. Define z,(t) = a,m.t for K > kg and ¢t € [0,7]. By Lemma 3.2
a subsequence of (zy)x>x, converges in M, uniformly on [0,7], to a function
x:[0,7] — N satisfying the equation

#(t) = FO(a(t), ted.

It follows from our assumption that x is a solution of my. Since x(0) = @y we see
that @gmot is defined and Gomot = x(t) for all t € [0, 7].

This argument also proves that every subsequence of (2, )x>x, converges to
z in M, uniformly on [0, 7]. Therefore the full sequence (zx)x>x, converges to
x in M, uniformly on [0, 7]. This proves the lemma. |

LEMMA 3.7. Assume the hypotheses of Theorem 3.5. For everya € M there
are 0, T € 0,00 such that for every ag € M with dy(Go,a) < 6 and every
sequence (@), converging to @y in M there is a kg € N such that both GomoT
and @ msT, K > Ko, are defined and sup,e(o - dm (@xmrt, aomot) — 0 as k — oo.

PRrROOF. Let @ € M be arbitrary and § € ]0,00[ be such N := Bys(a) is

compact. By our assumption there is a C € ]0, oo[ such that
C > sup sup [I'(F"(2))|g.
kENg €N

Let 7 = §/C. For every gy € M with da(Gp,a) < 0 and every sequence
(@y)x converging to Gy in M there is a kg € N with dap(as,a) < 6 for k >
ko. Lemma 3.4 implies that both agmo7T and @77, K > Ko, are defined and
aomo [0,7] € N and a,m,[0,7] C N for k > Kp. Lemma 3.6 implies that
SUPe(o,7] AMm (@xit, domot) — 0 as Kk — oo. O

We can now give a

PrROOF OF THEOREM 3.5. We must prove that whenever T, — Ty in M,
t, — to in [0,00[ as kK — oo and Tomotg is defined, then T, 7 t, is defined for
large enough and ZT,7tx, — Tomoto in M as k — 0.

Now, as Tomoto is defined, there is a b > g, b € ]0, 00|, such that ZTomer is
defined for all r € [0, b[. Define

I:={re]0,b]| there exists an ko € N such that T,m,r is defined for k > kg

and sup da(Txmys,Tomps) — 0, as kK — 00 }.
s€[0,r]

It is clear that O € I. Furthermore if 0 <7’ <7 and r € I, then v’ € I. Let
7 :=supl.

It follows that 7 < b and [0,7] C I. An application of Lemma 3.7 with @ := T
shows that 7 > 0. We claim that ¥ = b. Suppose, on the contrary, that 7 < b.
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It follows that ZTomo7 is defined. Let 6 > 0 and 7 > 0 be as in Lemma 3.7 with
a = TomoT.

Choose r € R with 0 < r <7 < r+ 7 and dum(Tomor, TomoT) < d. We have
that r» € I so there exists an kg € N such that Z.m.r is defined for all x > kg
and
(3.2) sup dam(Txmes,Tomps) — 0, as k — o0.

s€(0,r]

Set ag = Tomor, Gk = Gg for kK < kg and G, := T,k for kK > Kg. Applying
Lemma 3.7 and choosing k¢ larger if necessary we see that both agmy7 and @, 7w, T,
K > Ko, are defined and

(3.3) sup da(aemet,apmot) — 0 as kK — oo.
te(0,7]

Formulas (3.2) and (3.3) imply that ZTomo(r + 7) and Tym.(r + 7), & > Ko, are
defined and

sup  dm(TyTes, Tomgs) — 0, as k — oo.
s€[0,r+7]

Thus r 4+ 7 € I, but r + 7 > 7, a contradiction, which proves that 7 = b.

Since to € [0, Y], it follows that there is an r € [0,b] with to < r and ¢, < r
for all k large enough. In particular Tomgt, and T,m.t. are defined for k large
enough and

Apm(Temiti, Tomots) — 0 as kK — oo.
Since

dp(Tomots, Tomoty) — 0 as kK — oo,
we have that

Apm(Temiti, Tomotp) — 0 as kK — oo.

The proposition is proved. O

Given a continuous vector field F on M and N C M let Sol(F, N) be the
set of all functions x: R — N satisfying the equation

#M(t) = Fy(z(t)), teR.
Lemma 3.2 immediately implies the following result.

PRrOPOSITION 3.8. Let N be a compact subset of M and F and F*, k € N,
be continuous vector fields on M such that

sup [T(F®(z)) —T(F(z))|lg — 0, ask — oco.
zEN

Set T,, == Sol(F*,N), k € N, and T := Sol(F,N). Then T, — T (in C(R, M))
as Kk — oo (in the sense of [1]).

We conclude this section with the following result.
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COROLLARY 3.9. Let F' be a continuous vector field on M and N be a com-
pact subset of M such that Invy(N) C Intpm(N), where T = Sol(F, N). Then
there is an € € ]0,00[ such that whenever F is a continuous vector field on
M with sup ey [T(F(z)) — [(F(z))|g < € then Invz(N) C Inta(N), where

T = Sol(F,N). Let e(F,N) be the supremum of all such numbers .

PRrROOF. This follows from Proposition 3.8 and [1, Proposition 2.14]. O

4. Conley index in the absence of uniqueness

We assume that the reader is familiar with the classical Conley index theory,
as expounded in the monographs [6], [9] or [10].

In this section we give an extension of Conley index theory to the case of
ordinary differential equations on M with a merely continuous right hand side.
This extends some results from [8] to the manifold case.

DEFINITION 4.1. Given a continuous vector field F' on M and a compact
subset N of M with Invz(N) C Intp(N), where 7 = Sol(F, N), we define the
Conley index h(F,N) of N relative to F by

h(F,N) := h(ng,Inv,,(N))

where G is any C'-vector field on M with sup,cy [T'(G(z)) — T'(F(z))|g <
e(F, N) and 7 is the local (semi)flow on M generated by G.

A vector field G satisfying the above assumptions exists in view of Proposi-
tion 3.1. In view of Corollary 3.9, Inv,,(N) C Intp((N), so h(rg, Invy,(N)) is
defined.

The following result shows that the above definition is independent of the
choice of G:

PROPOSITION 4.2. Let N be a compact subset of M. If G and G’ are C'-
vector fields on M with
sup |[[(G(z)) — T(F(z))e < (F, N) and sup [T'(G'(z)) —T(F(z))|e < e(F,N),
zEN zeEN
then
h(rg,Inv,,(N)) = h(rg, Inv,_, (N)).

PrOOF. For 0 € [0,1] set GY := (1 — )Gy + 0GY. Tt follows that G%: M —
T(M), © — (z,G{(x)) is a Cl-vector field on M and sup,.y [T(G?(x)) —
I'(F(z))|g < e(F,N) for all 6 € [0,1].

For § € [0,1] let 7y be the local (semi)flow on M generated by G? and let
(05)n be an arbitrary sequence in [0, 1] converging to some 6 € [0,1]. We claim
that mp, — 7 as n — oo. Since the map M x R — T(M), (x,0) — G%(z) is
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continuous (even of class C), it follows that the map M x R — E, (z,0) —
I'(GY(x)) is continuous. In particular, for every compact subset M of M

sup [T(G% (z)) = T(G%(z))|[g — 0 asn — oc.
reM

Hence Theorem 3.5 proves our claim. Now compactness of N and Conley index
continuation principle, see, e.g. [10, Theorem 1.12.2], imply that the Conley
index h(mg, Invy_, (IV)) is defined and independent of ¢ € [0,1]. This proves the
proposition. O

The number ¢(F, N) also depends on the Banach space E and the embedding
e: M — E and we should write ¢(F, N,E, e) instead of ¢(F, N) to stress this
dependence. However, we claim that the Conley index h(F, N) is independent
of E or e. This follows from the following

PROPOSITION 4.3. Let E and E be Banach spaces and e:M — E and
e:M — E be C%-embeddings. Let N be compact in M. Then there is a C =
C(N) €10, 00[ such that for all z € N and all v € T,(M)

|DMe(z).v]z < C|DMe(z).1|k.
Let F" and N be as in Definition 4.1 and define
¢ := min{e(F,N,E,e),C 'e(F,N,E,&)}.
By Proposition 3.1 there is a C''-vector field G on M such that
sg}p\)] |DMe(z).G1(z) — DMe(z).Fi(2)|g < € < e(F,N,E,e).
Proposition 4.3 implies that
sup |DM&(x).G1 (x) — DME(2).Fi(z)| < e(F, N, E,8)

so that, according to Definition 4.1, h(F,N) is equal to h(G,Inv,,(N)) both
relative to the pair (E,e) and to the pair (E, €). This shows our claim.

PROOF OF PROPOSITION 4.3. Since e~ ! is a C?-map from the submanifold

e(M) to M it follows that h:e(M) — E, h = € oe~! is of class C2. Thus, by
well known results there is an open set U in E containing e(M) and an extension
of h to a C?-map from U to E, denoted h again. Let
(4.1) C=C(N)= sup [Dh(y)lygp + 1

y€e(N)
Since e(N) is compact in E it follows that C' € ]0,00[. Now let z € N and
v € T,(M) be arbitrary. Let a:V — V C E be an arbitrary chart at . By
definition of DMe we have
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Here, y = a(x). In the same way

DM&(z).v = D(@oa ) (y).u(a).

Since €oa~! = ho (eoa™!) the chain rule shows that

Do aY)(y)-u(a) = Dh(e(x))(D(eoa")(y).u(a))

0
(4.2) DM&(x).v = Dh(e(x))(DMe(x).v).
Now (4.1) and (4.2) imply the assertion of the proposition. d

The index h(F, N) depends only on the isolated invariant set Invz(N).

PROPOSITION 4.4. Let F be a continuous vector field on M and let N', N"
be a compact subsets of M such that Invy(N') C Intp(N'), Invy+(N") C
Intp(N”) and Invy(N') = Invyn(N"), where T' = Sol(F,N') and T" =
Sol(F,N"). Then
h(F,N') = h(F,N").

PROOF. Suppose h(F,N') # h(F,N"). Choose a sequence (G*).en of C*-
vector fields on M such that sup,c |[T'(G"(2z)) — I'(F(z))|lg — 0 as K — oo.
Let 7, := mg«~. Definition 4.1 implies that

(7, Invy, (N')) # h(me, Inve, (N”)) for all k large enough.

Taking a subsequence and exchanging N’ with N”| if necessary, we may thus
assume that

Inv, (N)\ Inv, (N"”)#0 forall xk € N.
Therefore for every k € N there is an z,; € Sol(G*, N’) with z,(0) & Intp(N").
An application of Lemma 3.2 yields an « € Sol(F, N') with z(0) ¢ Inta(N").
Hence Invy(N') # Invy(N"), a contradiction. O

Recall that 0 is the homotopy type of any pointed one-point set. The index
just defined is nontrivial:

PROPOSITION 4.5. Let F' be a continuous vector field on M and N be a com-
pact subset of M such that Invy(N) C Int o (N), where T = Sol(F, N). Suppose
that h(F,N) # 0. Then Invy(N) # 0.

PrOOF. Choose a sequence (G*).en of Ct-vector fields on M such that

sup |[I(G"(z)) = T'(F(z))lg — 0 as k — oo.

zeEN
By Definition 4.1, h(mgr, Invy,. (V) # 0 for all k large enough, so by Conley
index theory Inv,.(N) # 0 for all such k. An application of Lemma 3.2 now
shows that Invy (V) # 0. O
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We also have the following property:

PROPOSITION 4.6. Let F and F’ be continuous vector fields on M and N
be a compact subset of M such that Invy (N) C Intp(N), where T = Sol(F, N).
Assume that sup,cy |T(F'(x)) —T'(F(z))|g < (F,N). Then

h(F,N) = h(F',N).

PrOOF. By Corollary 3.9, Invy/(N) C Inty(N), where 7’ = Sol(F’, N).
Thus €(F’, N) is defined (and positive). Choose a C'*-vector field G on M such
that

sup [D(G(z)) ~ T(F'(x) | < min(e(F", N), (F. N) ~ )

where € := sup, ¢y |I'(F(z)) — I'(F'(2))|g. Hence

sup |D(G(xz)) —=L(F'(z))[e < e(F',N) and sup [T(G(z)) —T(F(z))e < e(F,N),

zeEN zeEN
S0
h(F',N) = h(ng,Inv,.(N)) = h(F, N).
The proposition follows. O

As a corollary to Proposition 4.6 we obtain the following version of Conley
index continuation property:

COROLLARY 4.7. Let (A,d) be a metric space, N be a compact subset of M
and (F\)xea be a family of continuous vector fields on M such that the map

AXN—=E, (MANz)—T(F\(z))

is continuous. For each A € A assume that Invy, (N) C Intp(N), where Ty =
Sol(Fy, N). Then the map X — h(Fx, N) is locally constant. In particular, if A
is connected then the Conley index h(F\, N) is independent of A € A.

ProoOF. Let C(N,E) be the space of all continuous functions from N to
E endowed with the supremum norm. Since N is compact, our hypotheses
imply that the map ®:A — C(N,E), A — (I' o F)\)|n, is continuous. Thus,
for every Ao € A there exists an § € 0,00 such that d(A, Ag) < ¢ implies
supen [T(EFx(2)) =T (F), (2))|g < €(Fxy, N), i.e., by Proposition 4.6, h(Fy, N) =
h(Fy,, N). In other words, the map A — h(Fy, N) is locally constant. The proof
is complete. O

If a local semiflow m on M is generated by a continuous vector field F, then
we have two definitions of Conley index: the classical definition and the one we
have defined in this paper. We now show that these definitions coincide:
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PROPOSITION 4.8. Let w be a local semiflow on M and F be a continuous
vector field on M. Suppose that w is generated by F. A compact set N C M is
an isolating neighborhood relative to w if and only if Invy (N) C Intpq(N), where
T = Sol(F,N). In this case,

h(m,Inv.(N)) = h(F,N).

PROOF. The first assertion of the proposition is clear. To prove the second
assertion note that, by Proposition 3.1 there is a sequence (F*), of C'-vector
fields on M such that sup,c o |T'(F*(z) —T'(F(x)))|g — 0 as kK — oo. Therefore,
by Proposition 4.6, h(F", N) = h(F,N) for k large enough. By Definition 4.1
and Proposition 4.2 we have that h(F*, N) = h(nps,Inv,,.. (N)) for all k € N.
Finally, by Theorem 3.5, compactness of N and Conley index continuation prin-
ciple, we have that h(wpx,Inv, .. (N)) = h(m,Inv,(N)) for all x large enough.
All this implies the second assertion of the proposition. O

We now show that the Conley index just defined is invariant with respect to
conjugation. More precisely, let M be a finite dimensional (boundaryless) second
countable paracompact differentiable manifold of class C2 modeled on a Banach
space E and ®: M — M be a C'-diffeomorphism with inverse ®~1: M — M.
Let F be a continuous vector field on M. Whenever x: I C R — M is a solu-
tion of
T = F1 (SL’),

then, by the chain rule, T = ®ox: I — M is a solution of
i=F (),

where F is the continuous vector field on M given by

F=TdoFod !

This implies that whenever N is a compact subset of M such that Invy(N) C
Int pq(N), where T = Sol(F, N), then N := ®(N) is a compact subset of M such

that Invz(N) C Int (), where 7 = Sol(F, N).
PROPOSITION 4.9. Under the above assumptions on ®, F' and N,

(4.3) h(F,N) = h(F, N).

PROOF. By [5, Subsection 3.1], whenever A is a C''-manifold, Y is a Banach
space and f: N — Y is a Cl-map, then for all # € N and all u € T, (N),

(4.4) T, f(w)(8) = DV f(z).u

where 0 = Idy is the identity chart on Y.
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Define € := min(e(F, N,Ee),e(ﬁ,ﬁ,E,E)), where & M — E is given by
e:=eod ! Let G be a C'-vector field on M with

sup [[(G(z)) = T'(F(2))|e <€
reEN

and let g be the local (semi)flow on M generated by G. Since € < ¢(F, N), it
follows that

(4.5) W(F,N) = h(rg,Inv., (N)).

Define

It = ®((d1(T))mat),
where 7 € M and ¢ € [0, 00[ are such that (®~1(Z))mgt is defined. It follows
that 7 is the local (semi)flow generated on M by the equation

T =G1(7)
where G is the (in general, merely) continuous vector field on M given by
G=TdoGod .
Since Conley index is invariant under (semi)flow conjugation, we have
(4.6) WG, Inv, (N)) = h(7T,Invz(N)).
Proposition 4.8 implies that
(4.7) h(7,Invz(N)) = h(G, N).
Note that Téo F = Teo T(® 1) o T® o F o ®~! so
(4.8) TéoF =TeoFod !,
In the same way
(4.9) TéoG=TeoGod .

Defining I: T(M) — E by I'F, &) = DM&(7)(@) for (7,7) € T(M) we thus
obtain from (4.4), (4.8) and (4.9) that

(4.10) FToF=ToFod® !
and
(4.11) FoG=ToGod .
Thus

sup IT(G(@) - T(F(@)|e = sup [N(G(@)) = T(F(@))le <€

and so Proposition 4.6 implies

(4.12) h(G,N) = h(F,N).
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Now (4.5)—(4.7) and (4.12) imply (4.3). O

5. (Co)homology index braids in the absence of uniqueness

In this section will assume that the reader is familiar with the papers [2], [3],
. [11].

We will now present an extension of the (co)homology index braid theory to
the case considered in Section 4.

PRrROPOSITION 5.1. Let F' be a continuous vector field on M and N be a com-
pact subset of M such that ITnvy(N) C Inta(N), where T := Sol(F,N). Let
F*, k € N, be continuous vector fields on M such that

sup |T'(F®(z)) = T'(F(z))Jge = 0 ask — o0
zEN

and set T, := Sol(F*,N), v € N. Suppose (Mp)pcp be a <-ordered T-Morse
decomposition. For each p € P, let V,, be a closed subset of N such that M, =
Invy(V,) C Intpq(V,). Moreover, for every I € I(<), let Vi be a closed subset
of N such that

MI) = |J CSz(M;, M) =Tnvr(Vr) C Intp (V7).
(3,5)EIXT

Then there exists a ko € N such that for all k > ko,
M, p =Invr, (V;;) C IntM(Vp)

and (M, p)pep is a <-ordered T,-Morse decomposition. Moreover, for every
IeZ(=),

Mo(I) = |J OSg(Myi, My ;) =Tnvy, (Vi) C Int (V7).
(3,5)€IXT

PrOOF. Since 7 and 7, k € N, are compact, translation and cut-and-glue
invariant, an application of Proposition 3.8 and [2, Theorem 3.3] completes the
proof. |

The last result clearly implies the following proposition.

PROPOSITION 5.2. Let F' be a continuous vector field on M and N be a com-
pact subset of M such that Invy(N) C Intp(N), where T := Sol(F,N). Sup-
pose (My)pep is a <-ordered T -Morse decomposition. For each p € P, let V, be
a closed subset of N such that M, = Invy(V,) C Intp(V,). Moreover, for every
I € (=), let Vi be a closed subset of N such that

M) = |J CSz(M;, M) =Tnvr(Vr) C Intpg (V7).
(i,5)€IXI
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Then there is an € € 0, 00[ such that whenever F is a continuous vector field on
M with sup,cy [T'(F(z)) — T'(F(x))|g < € then Invz(N) C Inta(N),

Mp = Invz(V,) C Intpg(V,)  for everyp € P
and (Mp)pep is a <-ordered T -Morse decomposition. For every I € T(<),

M(I):= |J ©Sz(M;, M) =Tnvz(Vr) C Inta(V7),
(i,5)eIxI

where T = Sol(F,N). By €(F, N, (Vu)pep) we denote the supremum of all such
numbers €.

PROPOSITION 5.3. Under the assumptions and notations of Proposition 5.2
let G and G’ be Ct-vector fields on M with

sup ID(G(2)) —T(F(2)|e < e(F,N, (Vo)per),

sup TG (2)) = T(F(2))le < €(F, N, (Vp)per)-

Let wg (resp. mgr) be the local (semi)flow on M generated by G (resp. G') and
Kg = Invy,(N) (resp. Kg@ = Invy, (N)). For each p € P, define M, g =
Invy, (V) (resp. My = Invy, (V). Then the homology index braids H(ng,
Ka, (Mp.c)pepr) and H(rg, Kar, (Mp.cr)pep) are isomorphic and the cohomolo-
gy indez braids CH(ra, Ka, (My.c)per) and CH(rer, Kar, (M6 )pep) are iso-
morphic.

PROOF. The proof is completely analogous to the proof of Proposition 4.2
except that, instead of Conley index continuation principle we use [3, Theo-
rem 3.7]. O

We introduce the following definition.

DEFINITION 5.4. Given a continuous vector field F' on M, a compact subset
N of M with Invy(N) C Intpq(N), where 7 = Sol(F, N), a <-ordered 7-Morse
decomposition (M,)pep and a family (V,),ep of closed subsets of N such that
My, =Invy(Vp) C Intpq(V), p € P, we define the homology index braid class of

(F,N, (Vp)pep) by
H(F, N, (Vo)per) = [H(7e, Ko, (Mp,c)pep)]
and the cohomology index braid class of (F, N, (Vp)pecp) by
CH(F,N, (Vp)pep) = [CH(7q, Ka, (Mp,c)pep)],
where G is any C'-vector field on M with

sup ID(G(2)) = T(F(2))|e < e(F, N, (Vp)pep),
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7 is the local (semi)flow on M generated by G, Kg = Inv,,(N) and M, ¢ =
Inv,.(Vp), p € P. A vector field G satisfying the above assumptions exists in
view of Proposition 3.1.

Let k € Ng. We define the homology (resp. cohomology) index braid class of
(F,N, (Vp)pep) shifted to left by k by

Hk(F7 N, (Vv)pe ) H(Fv N, (VP)PEP)kﬂ

pP) =
I'eSp. @k(F7 N7 (‘/ZJ)I)EP) = @( 7N7 (Vp)peP)ka

(ct. (2.1) and (2.2).)

REMARK. Proposition 5.3 shows that the concepts defined in Definition 5.4
are independent of the choice of the vector field G. An argument analogous to
that following the statement of Proposition 4.3 shows that H(F, N, (V,),cp) and
CH(F, N, (V,)pep) are independent of E and e.

Moreover, H(F, N, (V,)pep) and CH(F, N, (V,)pecp) depend only on the <-
ordered T-Morse decomposition (Mp)pep:

PROPOSITION 5.5. Let F' be a continuous vector field on M and let N', N”
be compact subsets of M and such that Tnvy, (N') C Intp(N'), Invr+ (N”) C
Intpm(N") and Invy (N') = Invgs(N"), where T' = Sol(F,N’) and T" =
Sol(F,N""). Let (Mp)pep be a <-ordered T-Morse decomposition and, for p € P
let V;; and V" be closed subsets of N and N" resp. such that M, = Invy/(V,)) C
Int (V) and My, = Tnvy (V') C Intaq(V)'). Then

ﬁ(Fv Nl? (‘/;)PEP) = ﬂ(Fa NN? (V;/)PEP),

CH(F7 Nl? (Vp/)peP) = CH(F7 NN’ (Vp”);DGP)'
PRrROOF. Analogous to the proof of Proposition 4.4. O

We also have the following

PROPOSITION 5.6. Let F' and F’ be continuous vector fields on M and N
be a compact subset of M such that Invy(N) C Intp(N), where T = Sol(F, N)
and let (My,)pep be a <-ordered T-Morse decomposition. For each p € P let
V, be a closed subset of N such that M, = Invy(V,) C Inta(V,). Assume that
sub,e x [D(F'(2)) = T(F(2))|& < e(F, N, (Vy)yer). Then

( 14V, (V;D)PEP) = H(Flv N, (VI))PEP)a

H(F,N
CH(F, N, (Vp)peP) = W(F/, N, (Vp)pep)-
PRrROOF. Analogous to the proof of Proposition 4.6. |

As a corollary we obtain the following version of the continuation property
for (co)homology index braids:
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COROLLARY 5.7. Let (A,d) be a metric space, N be a compact subset of M
and let (E\)xen be a family of continuous vector fields on M such that the map

AXN—=E, (\z)— T(F\(z))

is continuous. For each A € A assume that Invy, (N) C Intp(N) and the fam-
ily (Myp x)pep is a <-ordered T\-Morse decomposition, where Ty = Sol(Fy, N).
For each p € P let V, be a closed subset of N such that M, » = Invg, (V,) C
Intpg(V,).  Under these assumptions, the maps A — H(Fx,N,(V,)pep) and
A — CH(F\, N, (Vp)pep) are locally constant. In particular, if A is connected
then the homology index braid class H(Fx, N, (V,)pep) and the cohomology in-
dex braid class CH(Fx, N, (Vy)pep) are independent of X € A.

PROOF. Analogous to the proof of Corollary 4.7, but using Proposition 5.6
instead of Proposition 4.6. O

PROPOSITION 5.8. Let w be a local semiflow on M and F be a continuous
vector field on M. Suppose that 7 is generated by F'. Let N C M be a compact
set which is an isolating neighborhood relative to m and K = Inv.(N). Given
a <-ordered T-Morse decomposition (M,)pcp of K relative to m and a family
(Vp)pep of closed subsets of N such that M,, = Inv,(V,) C Intp(V},), p € P, we
have

(F,N, (VP)PEP) = [H(ﬂ—7 K, (Mp)pEP)L
(F\N, (Vp)per) = [CH(m, K, (Mp)pepr)].

aQ
3 3

PROOF. Analogous to the proof of Proposition 4.8. O

PROPOSITION 5.9. Let Mv, ®, I and N be as in Proposition 4.9. Let
(My)pep be a <-ordered T-Morse decomposition and for each p € P let V,, be
a closed subset of N such that at My, = Ian(V ) C Intaq(Vp), p € P. For each pe
P, define V}, = <I>(V) and Mp = IHVT(V ). Then Mp = Ian(V) C IntM(V)
forpe P and (M )pep is a <-ordered T -Morse decomposition. Moreover,

ﬁ(Fa Na (Vp) ) ﬁ( (‘7 )PGP)7
CH(F, N, (Vy)per) = CH(F, N, (V,)pep).

PRrROOF. Analogous to the proof of Proposition 4.9. |

6. A singular perturbation result in the absence of uniqueness

In this section we will apply the index theories developed in the preceding
sections to extend results from our previous paper [5].

Consider the following assumptions:
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HyPOTHESIS 6.1.

(a) Y is a finite dimensional normed linear space, € € 10,00 is arbitrary,
Zy is open in' Y x M and Wy := Zy x [0,Z].

(b) f:Wo =Y and h: Wy — T(M) are maps such that, for each ¢ € ]0,2],
f(-,e) and h(-,€) are continuous.

(©) For ((4,2),¢) € Wo, h((3,2),¢) = (&, 1 ((3,2),)) with y((y,2),) €
Tp(M).

(d) ¢: M — Y is a Ct-map such that for all x € M, (¢(z),x) € Zy and
f((¢(x),x),0) = 0.

(e) The map f(-,0) is of class C' and the map h(-,0) is continuous.

(f) For every (y,x) € Zy the map f is continuous at ((y,x),0) and for every
x € M, the map h is continuous at ((¢(z),x),0).

HyYPOTHESIS 6.2. ag, by € R are such that ag < 0 < 1 < bg and B: M x
lao, bo[ — L(Y,Y) is a continuous map such that B(x, X) is hyperbolic for every
(z,\) € Mx[0,1], B(z,0) = Df((¢(x),),0) and B(x,1) = B for everyx € M,
where B € L(Y,Y) has Morse-index k € Ny.

Here, for normed spaces Z; and Zs, £(Z1,Z3) is the normed space of all
bounded linear maps from Z; to Zs.

REMARK. Note that Hypothesis 6.1 relaxes [5, Hypothesis 4.1] and Hypo-
thesis 6.2 relaxes [5, Hypothesis 4.2].

For every ¢ € ]0,2], consider the ordinary differential equation

(6'1) €y:f((y,37),5), j::hl((y,x),s).

As in [5], for each € € ]0,g] equation (6.1) is interpreted as the ordinary differ-
ential equation
where F; is the unique vector field on the manifold Zy such that for every w =
(y,x) € Zy and every chart 8 of Zy at (y,z) of the form 8 = Idy xa, with U
open in Y, y € U and a € Chart, (M), the principal part Ff(y,z) of F.(y,x)
has the form
Fi(y,2)(8) = (1/2) £y, 2,), ha (3, 3, ) (@)).

By our assumptions, F; is a continuous vector field on Zj.

Consider the “limiting” ordinary differential equation

(6.2) T = hl((¢($),$),0)

and let Fy: M — T(M) be the unique vector field on the manifold M such that
for every © € M, Fy(z) = (z,h1((¢(x),2),0)). Note that Fp is a continuous
vector field on M.
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Given M C M and n € ]0, 00 define
(M = {(y,2) € Zo | & € M and |y — ¢()|y < n}.
We also define
T(M)=Sol(Fy,M) and 7T =T(M)=Sol(Fy, M).
We can now state the main result of this section.

THEOREM 6.3. Assume Hypotheses 6.1 and 6.2. Let N be a compact subset
of M with Invy(N) C Intp(N). Then there is an ng € ]0,00[ such that for
every n € 10,10, there exists an 9 = £9(n) € 10, 2| such that for every e € 10, e},
Invz, ([N]9) C Inty x m([N]$) and

h(F.,[N]?) = S A h(Fy, N),

where T, = T. Ny = Sol(F.,[N]%). In addition, let (M,),cp be a <-ordered
T (N)-Morse decomposition. For each p € P, let V), be a closed subset of N such
that M, = Invy(Vy,) = Invy(n)(Vp) C Intag(Vy). For every n € ]0,00], every

€ €]0,g] and every p € P, define

Mpe=Mypev,n:= IHVTE([VP];‘;)-

Then, for every n € |0,n9], there is an gy = go(n) € ]0,] such that for every
e €10,80], the family (M, ¢)pep is a <-ordered T.-Morse decomposition,

W(F@ [N]?;, ([VD]?;);DEP) = ﬁk(F()v N, (Vp)pGP)7

CH(F, [N12, ([Vy)?)per) = CH' (Fo, N, (Vy)per)-

Theorem 6.3 extends [5, Theorem 4.3] to the case of continuous vector fields.

We prove Theorem 6.3 by modifying the corresponding arguments of [5, proof
of Theorem 4.3] and using the index theory developed in the previous sections.

Actually, the arguments in [5] are somewhat flawed: they are only valid under
more stringent assumptions, e.g. that the map h: Wy — T(M), ((y,x),e) —
h((y,x),e) is locally Lipschitzian (in all variables). For this reason, we employ
here a homotopy different from the one used in [5, (4.8)], see equation (6.4)
below.

First of all, define the map 7: M — R by

7(x) =sup{p € [0,00[ | By(¢(x)) x {z} C Zo}, z € M.

Here B,(a) is the open ball in Y at a € Y with radius p. Since Z; is open in
Y x M and (¢(x),z) € Zy for every x € M, it follows that, for every x € M,
7(x) > 0. The definition of 7 also implies that

Zy:= | Brw)(¢(x)) x {z} C Zo.

zeEM
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Now the fact that Y is finite dimensional and so closed bounded subsets of Y are
compact easily implies that the map 7 is lower semicontinuous. As a consequence
we obtain that Z; is open in Y x M.

Thus, replacing Zy by Z; if necessary, we may assume without loss of gener-
ality that

HYPOTHESIS 6.4. Whenever (y,z) € Zy and p € [0,1], then

(@(x) + ply — o(x)), x) € Zo.

PROPOSITION 6.5. Let Zo be the set of all (u,z) € Y x M such that (u +
o(x),x) € Zy. Then Zo is open in' Y x M. The map ®:Zy — Zo defined by
O(y,z) = (u,z) == (y — (), ) is a C -diffeomorphism with inverse ®~*: Zy —
Zy given by @~ Y(u,z) = (y,z) = (u+ ¢(x),z). For e € ]0,g], consider the
differential equation:

(6.3) ci= f((u,z),e),  &=hi((u,z)e),

where, for ((u,z),€) € Wy := Zo x [0,2],

f(u,2),8) = f((u+ ¢(x),2),€) — eDM(x).h((u + $(x), 7). ),

hy((u,2),€) = ha((u+ $(x),2),e).
Let F. denote the unique vector field on the manifold Zo such that for every
(u,z) € Zo and every chart 3 of Zo at (u,z) of the form § = Idy xa, with U
open in Y, u € U and o € Chart,(M), the principal part Ff(u,z) of Fe(u,z)
has the form

Ff(u,2)(8) = ((1/e) f(u,2,€), b (u, 7€) ().

Then F = T® o Fo®!,

PRrROOF. This is a simple calculation using [5, Section 3]. O

REMARK 6.6. It follows from Propositions 4.9, 5.9 and 6.5 that we may and
will assume without loss of generality that ¢ = 0 in Hypothesis 6.1. We will also
write [M],, for [M]?, i.e.

[M],, :==A{(y,x) € Zy | v € M and |yly < n}.

For each € €]0,€] and X € [0, 1], consider the differential equation:

ey =1 =N(f((y,2),) = Df((0,2),0)y) + B(x, )y =: F(y,z,, ),
T = hl(((l - )\)%1‘)78).

In view of Hypothesis 6.4, for each € € ]0,€] and A € [0, 1] the right-hand side of
equation (6.4) is defined and there is a unique vector field F; » on Zj such that

(6.4)

for every (y,z) € Zy and every chart § of Zy at (y,z) of the form § = Idy x«,
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with U open in Y, y € U and « € Chart, (M), the principal part ﬁfx(y,x) of

~

F. (y,z) has the form

FoNy, 2)(8) = ((1/e)F(y, x,e,A), hi(((1 = Ny, z),e)(a)).

By our assumptions, ﬁ& A is a continuous vector field on Zj.
Furthermore, for € € [0,] there is a unique vector field F. on M such that
for every x € M the principal part Ff(z) of F.(z) has the form

ﬁf(m) - hl((O,x),e).

Again it follows that I*A} is a continuous vector field on M. Note that ﬁo = Fy.
Let the normed space E and the imbedding e: M — E be as in Section 3.
It follows that € Zy — Y x E, (y,x) — (y,e(z)) is a C?-embedding. Let
T = ['%0:T(Zy) — Y x E be the map defined as in Section 3, but with respect
to Zy and € rather than M and e. In other words, T is given by

~

F((y’x)aw) = DZO (/é)(ya x)'wa (yvx) € ZOa we T(y,:c)(ZO)'

Now the fact that the map r:[0,1] X Zo — Zo, (A, (y,z)) — (1 — Ny, z) is
defined and continuous implies that, for each ¢ € ]0,2], the map [0,1] x Zy —
T(Zy), (A (y,x)) — F:a(y, x) is continuous, so

(6.5) themap [0,1] x Zyp = Y x E, (A, (y,2)) — f(FE,)\(y,x)) is continuous.
We will need the following result proved in [5].
PROPOSITION 6.7 ([5, Proposition 4.6]). Let g: Wy — T(M) be a map such
that

(a) for each e €10,2], g(-,€) is continuous,
(b) g is continuous at ((0,z),0) for every x € M,
(¢) for each ((u,x),e) € Wy,

9((w, 2),e) = (x,91((v, @), €)) with g1((u,x),€) € Tu(M).

Let M be compact in M. Then there is an 1} € ]0,00[ and an &' € ]0,2] such
that [M],, C Zy and

sup{|DMe(aﬁ).gl((u,33),5))|E | luly <ni, x€ M, e€]0,&']} < oo.

For each n € N, let e, € 10,¢'], an, b, € [0,1], up:R - Y and z,;R — M
be such that €, — 0, sup, cnSUP;cr |Un(t)ly < ni and for every n € N, z,, is
differentiable into M and ((un(t), xn(t)),en) € Wo. Moreover, assume that one
of the following alternatives holds:
(i) limy—ooun(t) =0 for all t € R and 2,(t) = g1 ((anun(t), x4 (1)), bnen)
foralln e N and t € R;
(ii) @n(t) = eng1((anun(t), zn(t)), bpen) for alln € N and t € R.
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Then there is a subsequence of (), which converges in (M, dn), uniformly on
compact subsets of R, to a function x:R — M which is differentiable into M
and such that, in case (i),

I(t) :gl((O,x(t)),O), teR

and, in case (ii),

z(t) =0, teR
Define the maps T1: Wy — Y and Tb: Zy — Y by
Ti((y, x),¢) = f((y,2),e) — f((y,),0), ((y,x),e) € Wh,

) =
( ) L f(( ),0)—f((O,x),O)—Df((O,x),O)(y), (y,a:) EZO-
Since f((0,z),0) =0 for all x € M it follows that

f((y,2),2) = T1((y, 2),€) + Ta(y, ) + Df((0,2),0)(y), ((y,2),¢) € Wo.

The following result is the analogue of [5, Lemma 4.8] with the same proof.

LEMMA 6.8. Let M be compact in M. Then there is an nj € ]0,00[ such
that [M],, C Zo and whenever x € M, A € [0,1] and y:R — Y is a solution of
the equation

y=(1-NT(y,z) + Bz, Ny

lying in [M],;, then y = 0.

Let M C M be compact and 77 = (M) € |0, 00[ be such that [M]z C Z.
For ¢ € [0,] let Z.(M) be the set of functions o: R — Y x M such that o(t) =
(0,2(t)), t € R where & € Sol(F., M). Moreover, for ) € ]0,7], ¢ € ]0,2] and
A € [0,1], set

T(M UZEs )‘) - SOI( &,\) [M]n)

LEMMA 6.9. Fore € [0,2] the set T.(M) is compact in C(R — Y x M) and
translation and cut-and-glue invariant. Moreover, for n € 10,7], € € ]0,g] and
A € [0,1], the set T(M,n,e,\) is compact in C(R — Y x M) and translation
and cut-and-glue invariant.

PROOF. Since Sol(F., M), ¢ € [0,2], and Sol(F% x, [M],), n €10,7], ¢ € ]0,]
and A € [0, 1], are translation and cut-and-glue invariant sets, the result follows.[J

PROPOSITION 6.10. Let M be compact in M. Then there is ann’ =n'(M) €
10,75(M)] such that whenever n € 10,1'], (ex)w is a sequence in ]0,Z] converging
to 0 and (\.)n is an arbitrary sequence in [0,1] then T, — Ty = To(M), where

%:?(Mvnaslm)\ﬁ)a k€ N.

PROOF. Let ' = min(n},n5), where n} and &’ are as in Proposition 6.7 with
g = h and n} is as in Lemma 6.8. Let n € ]0,7’] be arbitrary. It is enough to prove
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that whenever (g,),, is a sequence in |0, '] converging to 0, (A,),, is a sequence in
[0, 1] converging to A € [0,1] and (o), is a sequence such that, for each n € N,
on € Sol(FL, z,, [M],) and 0, (t) =: (yn(t),zn(t)), t € R then (i) (yn), converges
toy =0 in Y, uniformly on R and (ii) (z,), has a subsequence converging in
(M, daq), uniformly on compact subsets of R, to an x € Sol(Fy, M).

Suppose (i) is not true. Then by Lemma 6.9 and passing to a subsequence if
necessary, we may assume that there is a § € |0, 0o[ such that |y, (0)|y > ¢ for
all n € N. Define functions v,,: R — Y and {,:R — M, n € N, by

Un(t) = yn(gnt)a gn(t) = xn(snt)a teR.

It follows that
§n(t) =enh1 (1 = A\p)on(t),&n(t),en), neN, teR.

An application of Proposition 6.7 (with g = h) shows that, by passing to subse-
quences if necessary, we may assume that (&), converges in (M, d ), uniformly
on compact subsets of R, to a constant £ € M. We also have that

(6.6)  on(t) = (1= An)T2((vn(t),€n(t)), €n)
+ (1 - )\n)TZ(vn(t)7£n(t)) + B(&n(t)v An)vn(t)a

for t € R. By our assumptions

(6.7) lim  sup |Ti((y,),€)ly =0.
e=0F (y,z)e[M],

Since, for each t € R, {v,(t) | n € N} lies in a compact subset of Y, it follows
from (6.7), (6.6) and Arzela—Ascoli Theorem, passing to subsequences if neces-

sary, that (v,), converges in Y, uniformly on compact subsets of R to a function
v:R — Y which is is differentiable into Y and

o(t) = (1= NTa(v(t),§) + B, \o(t), teR.

It follows from Lemma 6.8 that v = 0, a contradiction as |v(0)]y > 6. This
shows that (i) is satisfied.

Now (i) and an application of Proposition 6.7 with g = h shows that there
is a subsequence of (z,,), which converges in (M, dnq), uniformly on compact
subsets of R, to a function z: R — M which is differentiable into M and such
that

#(t) = hi((0,2(2)),0), teR.
Thus = € Sol(Fy, M). This proves (ii). O
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COROLLARY 6.11. Let N be as in Theorem 6.3. Let ' = n/(N) be as in
Proposition 6.10 with M = N. Then for everyn € |0,7'] there is an £1(n) € ]0,]
such that for every e € 10,e1(n)] and for every A € [0,1] the set [N], is such that

Inv’?(N,n,s,)\)([N]Tl) - IntYXM([N]W)'

PRrOOF. If the corollary is not true, then there is an n € )0, 1] and sequences
(ex)r and (As)x in ]0,2] and [0, 1] respectively such that (g,), converges to zero
and [N], is such that

Invr, ([N],) € Inty x pm([N]y,), for all kK € N,

where 7,, = ?(N,n,sm)\m). Set Ty = ’]AB(N).

It follows from Proposition 6.10 that 7, — 7o. Since Invy ([N],;) = {0} x
Invy(N) C Inty x pm([N],), it follows from [1, Proposition 2.4] that, for all K € N
large enough, Invy, ([N],;) C Intyxa([N]y), a contradiction which proves the
corollary. O

COROLLARY 6.12. Let N and (V,)pep be as in Theorem 6.3. Let ' =n'(N)
be as in Proposition 6.10 with M = N. For all n € ]0,00[, € € ]0,2], A € [0,1]
and every p € P, define

Mp,s,)\ = Inv'?(N,n,s,)x) ([‘/p]n)

Then for every n € ]0,1'] there is an e2(n) € |0,€] such that for all € € ]0,e2(n)]
and A € [0,1] the family (M, . \)pep is a <-ordered T (N,n,e, \)-Morse decom-
position and for every p € P, M, . x C Inty x am([Vp]y)-

PROOF. If the corollary is not true, then there is an n € ]0,7’] and sequences
(ex)r and (A.), in ]0,2] and [0, 1] respectively such that (e4), converges to
zero and, for every x € N, either the family (M., x,.)pep is not a <-ordered
’]A'(N, 1, €, Ak )-Morse decomposition or else, for some p € P, the set [V,], is such
that ]\4;,7{:3“)\,_i 4 IntyXM([Vp]n).

For € N set T,, = T(N, 1,25, A ). Moreover, set Ty = To(N).

Our hypotheses imply that ({0} x Mp),ecp is a <-ordered To-Morse decom-
position. Moreover, for every p € P,

vz, (V) = {03 x My Tty san([Vi,).

Now, by Proposition 6.10, 7, — 7. Therefore, it follows from [2, The-
orem 3.3] that, for all x € N large enough, the family (M, .. . )pep is & <-
ordered 7,-Morse decomposition and, for all p € P, the set [V,], is such that
M, .. a,. CIntyx a([Vp]y), a contradiction which proves the corollary. O
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LEMMA 6.13. Let N be as in Theorem 6.3. Let n/(N) be as in Proposi-
tion 6.10 with M = N. For everyn € |0,n'(N)], lete1(n) be as in Corollary 6.11.
Whenever n € 10,7/(N)] and € € ]0,e1(n)], then

(6.8) h(E-1,[N],) = ¥ A h(EL, N).

PROOF. By our assumptions, the map [0,2] x M — T(M), (g,2) — ﬁs(z),
is continuous at (0, z), for each € M. Moreover, Fy = Fy. It follows that there
an &) € ]0,g] such that, for all € € [0,21], sup,cn TM(F(z)) — TM(Fy(z))|e <
€(Fo,N). Let n € 10,7 (N)] and £ € ]0, min(e1(n),&1)] be arbitrary. Proposi-

~

tion 4.6 implies that h(F., N) is defined and
(6.9) h(F.,N) = h(F,, N).
Moreover, Corollary 6.11 implies that

Invz ey ([V]n) € Inty s p([N]y)-

Hence h(ﬁ&l, [N],,) is defined. Let G be a C'-vector field on the manifold M
such that

sup |DMe(z).Gy(z) — DMe(x).F5 (2)|g < min(e(F, N), e(F. 1, [N],)),

where ﬁf is the principal part of ﬁs. Thus
(6.10) h(E-, N) = h(rg, Ka),

where 7¢ is the local (semi)flow on M generated by G and K¢g = Inv,, (N).

Let G’ be the C*-vector field on the manifold Y x M given by G’(u,z) =
(e71Bu,G(x)), for (u,x) € Y x M and let 7g be the local (semi)flow on Y x M
generated by G’. Tt follows that

sup  [T(G'(2)) = T(Fea(@))lyxe < e(Fen, [N]y)
(u,m)G[N]T,

and so

(6.11) hF.1,[Nly) = hMra, Kar),

where Kg = Invy, ([N],). Notice that mg/ = 7. X7, where 7. is the (semi)flow
generated by the linear differential equation

£y = By.

Since B is hyperbolic with Morse-index k, it follows that {0} = Inv,_(D,), with
D, ={y €Y ||yly <n}, and h(r., {0}) = T*. Thus

(6.12) h(ng, Kar) = ¥ A h(rg, Ka).

Now, formulas (6.9), (6.10), (6.11) and (6.12) imply formula (6.8). O
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We can now give a

PROOF OF THEOREM 6.3. Let N be as in Theorem 6.3 and £; be as in the
proof of Lemma 6.13. Let /() and for every n € 10,7’ (N)] let n1(n) be as in
Corollary 6.11. Set ng = n'(N) and eo(n) = min(e1(n),&1) for n € ]0,m0]. Let
n €10,m0] and € € ]0,e9(n)] be arbitrary.

By Corollary 6.11

(6.13) Invz oo ([IN]y) © Inty s m([N]y),  for every A € [0,1].

Now (6.13), (6.5) and Corollary 4.7 imply

~ ~

h(Fe, [N]y) = h(Fe0, [N]y) = h(Fe,1, [N]y).
Lemma 6.13 implies that h(ﬁsﬁl, [N],,) = ¥ A h(Fy, N) so
h(F.,[N],) = % A h(Fy, N).

This proves the first part of Theorem 6.3.

Now let M, and V,, p € P be as in Theorem 6.3. There is an & € |0,g]
with €5 < & such that, for € € ]0,&3)], sup,en ITM(FL(z)) — TM(Fy(2))|g <
€(Fo, N, (V,)pep). For nn € ]0,19] let e2(n) be as in Corollary 6.12.

Set Eo(n) = min(eg(n),e2(n),2), n € ]0,7m0]. Let n €]0,10] and e € ]0,Z¢(n)]
be arbitrary.

Proposition 5.6 implies that H(FL, N, (Vp)pep) and CH(F., N, (Vu)pep) are
defined and

ﬁ(ﬁm N, (Vp>peP) = ﬁ(FOa N, (Vp)pEP)
@(ﬁ& N, (VED)PGP) - @(F()? N, (%)PGP)'

Using (6.5) together with Corollary 6.12 and Corollary 5.7 we see that
H(Ez, [Ny, (Voln)per), CH(E:, [Ny, (Valn)per),

ﬂ(ﬁs,la [N]n ) ([Vp]n)peP) and ﬁ(ﬁs,lv [N]n ) ([Vp]n)pGP)
are defined and

(6.14)

H(Fs, [N]n ) ([V;?]n)peP> = H(ﬁa,l, [N]n ) ([%]n)p€P>v
ﬁ(Fa [N]n ) ([Vp]n)pEP) = CH( &,15 [N]n ) ([%]n)pEP)~

~

Let € := min(e(}?&N7 (Vp)pep), €(Fe1, [Ny, ((Vply)pep) and G be a C'-vector
field on the manifold M such that

(6.15)

sup |DMe(z).G1(z) — DMe(z).FE(a)|g < &,
xeN

where ﬁf is the principal part of 135. Thus

H(F()v Nv (VP)PEP) = [H(ﬂ—Gv K¢, (MP,G)PGP)L

(6.16) __
CH(F07 N, (V;?)pep) = [CH(T‘—C% Kg, (MP,G)pEP)]v
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where 7 is the local (semi)flow on M generated by G and K¢ = Inv,,(N) and
My =Inv.,(V,), p € P.

Let G’ be the C'-vector field on the manifold Y x M given by G'(u,r) =
(e71Bu,G(z)), for (u,x) € Y x M and let mg be the local (semi)flow on Y x M
generated by G’. Tt follows that

sup TG (@) = T(Fe(@))lyxe < e(Fet, [N]y s (Vilo)per)
(u,z)E[N]T,

and so

H(Fe, [Ny, (Voln)per) = [H(mar, Kar, (Mp.ar)pep)],
CH(

(6.17)
1 [N]n ) ([Vp]n)peP) = [CH(re, Ker, (MpyG’)peP)]a

o) o)

where Kg/ = Invy, ([N],) and My ¢ = Inv,_,(V,), p € P. Notice that g =
Te X TG, where 7, is the (semi)flow generated by the linear differential equation

ey = By.

The (semi)flow 7. is clearly conjugate to the product semiflow 7 x 72 where

77 resp. w1 is the (semi)flow on a finite-dimensional normed space Y~ resp.

YT generated by the linear differential equation
ey =By resp. ey =BTy

where B~ € L(Y~,Y ") resp. BT € L(YT,Y™") is a linear operator with all
eigenvalues having negative resp. positive real parts. Thus 7 is conjugate to the
(semi)flow (mg x ) x 2. Now, [5, Theorem 2.2] implies that the (co)homology
index braid of (wg/, Kgr, (Mp.c)pep) is isomorphic to the (co)homology index
braid of (7TG X 7T€+7KG X {0y+}, (Mp’G X {0y+})p€p).

Since k = dim Y™, an application of [4, Theorem 3.1] and [11, Theorem 4.1]
implies

H(ra, Kar, (My.a)per) = Hi(ma, Ka, (My.c)pep),

(6.18) N
CH(rer, Kar, (Mp,cr)pep) = CH" (1a, Ka, (Mp,c)pep).
Now, formulas (6.14)—(6.18) imply

W(FE, [N]n ) ([V;)}n)peP) = [Hk(ﬂ'Ga K, (Mp,G)peP)} = Hk(FOy N, (Vp)peP)v
W(Fsv [N]n ) ([Vp}n)pEP) = [CHk(WGv Ke, (MZLG)PGP)] = mk(FOa N, (Vp)pep)-

The theorem is proved. |
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