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MULTIPLICITY OF NONRADIAL SOLUTIONS
FOR A CLASS OF QUASILINEAR EQUATIONS
ON ANNULUS WITH EXPONENTIAL CRITICAL GROWTH

CLAUDIANOR O. ALVES — LuciaNA R. DE FREITAS

ABSTRACT. In this paper, we establish the existence of many rotationally
non-equivalent and nonradial solutions for the following class of quasilinear
problems

—Anu=Af(|z],u) z€Q,
(P) U>0 $€Qr7
u=0 z € Oy,

where Q = {z € RN 17 < || <r+1}, N>2, N #3,7>0, A >0,

Apnu = div(|]Vu|N¥ ~2Vu) is the N-Laplacian operator and f is a continuous
function with exponential critical growth.

1. Introduction

This article concerns with the multiplicity of nonradial solutions for the quasi-

linear problem

—Anu = Af(|z],u) =z € Q,,
(P) u>0 x € Qy,
u=0 x € 08y,
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244 C.0O. ALvESs — L.R. DE FREITAS

where A is a positive parameter and €2, is an annulus of the form
Q. ={zeRV :r<|z|<r+1} 7>0, N>2, N#3.
We assume that f is a continuous function with exponential critical growth (see
[1], [10], [12]), more precisely:
(Ho) There exists ag > 0 such that

p 10zl 9)] _{0 if a > a,

N/(N—1) .
|s]—o0 eclsIN/! ) +o0o if a < ap,

uniformly in x € §2,..

We also assume that f satisfies the following conditions:

o S0l )

(Hy) lim o1 = 0, uniformly in z € Q,.

(H2) There exists v > N such that

0 <vF(|z|,s) < f(|z|,s)s, forall |s| >0 and all z € Q,,

where F(|z|,s) = [ f(|z|,t) dt.
(Hs) There exist p > N and C), > 0 such that

f(|z],s) > CpsP~t, forall s >0 and all z € Q,.

(Hy) There exist 0 > N and a constant C, > 0 such that

?(M,s)s — (N =1)f(|z|],s) > Cys, forall s >0 and all x € Q,.
s

Since we are looking for positive solutions, hereafter f(|z|,s) = 0 in Q, X
(—00,0).

Consider the following problem:
{ —Au4+u—uP=0 ze€D,

1.1
(L) u=20 x € 0D.

According B. Gidas, W.N. Ni and L. Nirenberg [15], when D C R is the unit
ball and 1 < p < 2* —1,if N >3 or p > 1, if N = 2, any positive solution of
class C? of (1.1) must be radially symmetric. However, if D is an annulus, say

D={zeRY:r? < |z|> < (r+d)?},

we have a phenomenon known as symmetry breaking observed by H. Brezis and
L. Niremberg [3]. More precisely, in [3] the authors proved that for N > 3
the problem (1.1) admits both radial and nonradial positive solutions, for all
p < 2* — 1 sufficiently close to 2* — 1. C. Coffman in [8] proved that the number
of nonradial and rotationally non-equivalent positive solutions of (1.1) in D tends
to 400 as r tends to +o0,if p>1land N =2o0or1<p< N/(N —2)and N > 3.
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Motivated by the above papers, some authors have studied this class of prob-
lem. For the subcritical case, we cite the papers of Y.Y. Li [19], T. Suzuki [26],
S.S. Lin [20] and therein references.

Related to the critical case, Z. Wang and M. Willem [30] have showed the
existence of multiple solutions for the following problem

—Au= u+u¥"', u>0 zeQ,
(1.2)

u=0 x € 09,

where Q. = {z € RY :r < |z| < r + 1}, N > 4. The authors proved that
for 0 < A < 72 and n > 1, there exists R(\,n) such that for r > R()\,n), the
equation (1.2) has at least n nonradial and rotationally non-equivalent solutions.
Motivated by [30], D.G. de Figueiredo and O.H. Miyagaki [9] have considered
the following problem

—Au= f(lz|,u) +u* "', u>0, zeQ,,
(1.3) { Szl u)

u=0 x € 00,

where f is a C! function with subcritical growth.

Still related to this class of problem, we would like to cite the papers of
J. Byeon [4], A. Castro and B.M. Finan [6], F. Catrina and Z.-Q. Wang [7],
N. Mizoguchi and T. Suzuki [21], N. Hirano and N. Mizoguchi [16] and references
therein.

The present paper was motivated by the fact that we did not find in the liter-
ature any article dealing with the existence of multiple nonradial and rotationally
non-equivalent positive solutions for problem (P) involving a nonlinearity with
exponential critical growth. Here, we adapt some some arguments used in [§]
and [30]. However, since we are working with exponential critical growth, we
modified the proof of some estimates found in those papers.

Our main result is the following:

THEOREM 1.1. Suppose that f is a function satisfying (Ho)—(Hs). Then,
for each n € N, there exist 7o = ro(n) > 0 and Ao = Ao(n) > 0 such that for
A > X and r > ro, the problem (P) has at least n nonradial and rotationally
non-equivalent solutions.

For the reader interested in the study of quasilinear problems involving the
N-Laplacian operator and nonlinearity with critical exponential growth, we cite
the papers of Adimurthi [1], C.O. Alves and G.M. Figueiredo [2], E.A.B. Silva
and S.H.M. Soares [25], Bezerra J.M.B. do O, E. Medeiros and U. Severo [13],
Y. Wang, J. Yang and Y. Zhang [31], E. Tonkes [27], R. Panda [24] and therein

references.
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2. Technical results involving exponential critical growth

We begin this section recalling the Trudinger—Moser inequality (see N. Tru-
dinger [28] and J. Moser [22]), which will be essential to carry out the proof of
our results.

LEMMA 2.1 (Trudinger—-Moser inequality for bounded domains). Let  C
RN (N > 2) be a bounded domain. Given any u € Wol’N(Q), we have

/(N—=1)
/ ™Y gy < 0o, for every a > 0.
Q
Moreover, there exists a positive constant C = C(N,|QY|) such that

sup / eeul™ Y gy <C, foradla<ayny= Nwllv/gf_l) >0,
<1Ja

llelly1n o)
where wy_1 is the (N — 1)-dimensional measure of the (N — 1)-sphere.

The next result is a version of the Trudinger-Moser inequality for whole R,
and its proof can be found in D.M. Cao [5], for N = 2, and do J.M.B. 0 [11],
for N > 2.

LEMMA 2.2 (Trudinger—Moser inequality for unbounded domains). Given
any u € WHN(RYN) with N > 2, we have

/ (ea\u|N/<N71) — SN,Q(mu)) dx < o0,
RN

for every a > 0. Moreover, if |Vu|% <1 |Juy €M< ooand a < ay =

ijlv/gf_l), then there exists a positive constant C = C'(N, M, «) such that

/ (ealu\N“N‘” — Sn_a(a, u)) dz < C,
RN

where

2
N

k

Sn_ao(a,u) = —

a Nk/(N—1)
wrl
0

E
I

and wy—_1 1s the (N — 1)-dimensional measure of the (N — 1)—sphere.

In the sequel, we prove some technical lemmas which will be used in the
proof of the some estimates later on.

LEMMA 2.3. Let « > 0 and r > 1. Then, for every B > r, there exists
a constant C' = C(B) > 0 such that

)|
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PROOF. In order to simplify notation, we write y = |s|™/(N=1) and

N-2

_ akyk
S(a,y) = o
k=0 ’
Observing that
( i aFyPN\" yr(N—l)( i akyk_NH)T
~ r | |

(eay—s(a»y)) _ _k=N-1 k! _ k=N—-1 k!

(e%2v — §(Bar,y)) —  (Ba)ry* R T A
2. DY k!
k=N-—1 k=N-—1

we deduce that N ,
(e —S(avw)
lim — = 0.
2 (oo S(any)
Furthermore,
S(a,y)\"
—~ ary _
i =Sy " (1
—o00 (pBa _q o o ’
y=oo (ePoy — S(Ba,y)) eﬁay<15(ﬁ3y7y)>
e
and the lemma follows. O

LEMMA 2.4. Let (u,) be a sequence in WHN (RYN) with
v\ N1
limsup [|u, ||V < (N> .
n—-—400 Qo

Then, there exist a > ag, t > 1 and C' > 0 independent of n, such that
_ t
/ (ealunlN/(N - SN_Q(a,un)) de < C, for all n > ng,
RN

for some ng sufficiently large.

PROOF. Since

N
limsupHunHN < (N) ,

n—00 Qo
there are m > 0 and ng € N such that
‘N/(N—l)

Q@
<m<—N, for all n > ng.
Qo

Choose @ > ag, t > 1 and B > t satisfying am < ay and Sfam < ay. From
Lemma 2.3, there exists C = C(8) such that

_ t
/N (ealu"lN/(N v SN_Q(a,un)) dx
R

RN [Junl|
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for every n > ng. Hence, by Lemma 2.2, there exists C' > 0 independent of n
such that

afup [N/ (V=1 t
(e n — SN_Q(Oé,Un)) dr < C, for all n > ng,
]RN

which completes the proof. O

The same arguments used in the proof of the last lemma can be used to prove
the following corollary:

COROLLARY 2.5. Let B a bounded domain in R and (u,) be a sequence in
Wy N (B) with

an\ N1
limsup ||u, ||V < (N> .
n— oo (67s)

Then, there exist a > ag, t > 1 and C' > 0 independent of n, such that
/ et"‘lu’llN/(NA) de < C, for allm > ng,
B

for some ng sufficiently large.

3. Preliminares

In what follows, O(N) denotes the group of N x N orthogonal matrices. For
any integer k > 1, let us consider the finite rotational subgroup Oy of O(2) given
by

2l 27l 27l 27l
Oy, == {g €0(2):g(x) = (1'1 cos % + $286H%, —mlsen% + x5 cos 2) }

where z = (21,72) € R? and [ € {0,... ,k—1}. We define the subgroups of O(N)
Gr:=0,xO(N—-2), 1<k<oo and Gy :=0(2)x O(N —2).

Associated with the above subgroups, we set the subspaces

W(}C]?Vk Q) == {ue WyN(Q,) s u(z) =u(g™x), forall g € G}, 1<k < oo,

endowed with the usual norm of W N(Q,), that is,
1/N
| = </ |Vu|Ndac> , ue Wb (), 1<k < oo
Q. '

The above subspaces verify the following compact embeddings, whose proof
can be found in [32]

Woe () = LY(Q,), 1<t<oo, 1<k<oo

and
WeNRY) — LYRY), N <t<co.
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Hereafter, we denote by Iy: Wolgk (€2,) — R the functional given by

1
I)\(u):N/Q |Vu|Ndx—)\/ F(|z|,u) dx

r

and by J , the following real number

Jer:= inf I ,
k, uEl.Xl/lk,r A(U)

where M., = {u € Wy'& () \ {0} : I} (w)u = 0}.

The next lemma is a version of Poincaré’s inequality, which is a key point in
our study.

LEMMA 3.1 (Poincaré’s inequality).

1\ V-1
/Q lu(2)|Ndz < (T—: ) /Q \Vu(2)|N dz, for allu € Wol’N(QT).

PRrROOF. Note that for ¢ € C5°((r,r + 1)),

P(t) = /tw'(s)ds, r<t<r+1.

Thus, applying the Hélder’s inequality

r+1 r+1 1/N r+1 (N—-1)/N
ol [ wenass ([ wera) ([ a)

that is
r+1
mes/’|W@Ww,

which implies,

r+1 r4+1
(3.1) / |¢(t)|thg/ WO dt, for all v € C((r, 7+ 1)).

Consider the hyperspherical coordinates z = (p,61,... ,0y_1) of the z € Q,,
which consists of a radial coordinate r < p < r+1 and N — 1 angular coordinates
O1,...,0N—1, with 0 < 0; <7, j=1,...,N-2and 0 < Oy_y < 27. If
z=(z1,...,2N) is written in the cartesian coordinates, we have

z1 = pcosb
z9 = psen, 61 cos
z3 = psen 6 sen 6y cos O3
zn—1 =psenf;...senfn_ocosln_1,

zy = psenfy...senfy_osenfyn_1.
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For simplicity, we denote 6 := (61,... ,0n_1), df :=db;...d0n_1 and

N—392

sen(fy,...,0n_1) = sen™ "20;sen ..senfn_o.

For each ¢ € C§° (), ©(2) = ¢(p,0) and

2
/ |Ndz—/ / / / 0)|NpNtsen(6y,... ,0n_1)dpdb,

from where it follows that

r+1
(3.2) /Q lp(2)|N dz < (r—i—l)N_l// lo(p, 0)|Nsen(6y,. .. ,0n_1)dpdd.

For each 6, the function ¥(p) = ¢(p,d) belongs to C§°((r,r 4+ 1)). Thus,

by (3.1),
r+1 r+1
/ Iw(p)lNdpg/ [ ()| dp,

that is,

r+1 N r+1 N r+1 1 N N1
/ o(p,0)] dpg/ 100(0.0)] dp:/ e O dp

leading to

r+1 N 1 r41 NN
63 [ e A< g [ o)

From (3.2) and (3.3),

N r+1\V s N N-1
. ()" dz < | — [0p(p:0) p™ “sen(fy, ... ,On—1) dpdb.

r

Once that 4,0% < |Vy|?, the last inequality yields

/| ()Y s

1
< (7’+ ) // (IVe(p,0) )2 pN~tsen(by, ... ,On_1) dpdb.

This way,
N—-1
1
[weras< (Z2) [ veetas
Q.. r Q,

and the result follows by density. |
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4. Properties of the levels J; ,

LEMMA 4.1. For each 1 <k < oo and r > 0, we have Jy , > 0.

PRrOOF. If k and r are fixed, we claim that there exists 7 > 0 such that
(4.1) [u| [V > 5 for all u € My,

In fact, otherwise, there exists (u,) C My, with ||u,|| — 0 as n — co. So, there
exists ng € N such that

N ax\ V!
[lun]|™ < v for all n > ny,
0

that is,
ao||un| [N NTY <y for all n > nyg.

Choose o > ag and t; > 1 such that t;a|u, ||/ V=Y < ay, for all n > ng. By
(Ho) and (Hy), for each € > 0 and s > N, there exists C. = C(e,s) > 0 such
that

HunHN‘::11<un>un-+/x]Q Sl Y

|N/(N71)

Ss)\/ |un|Nda:+)\C€/ [ |* €1 dz.
Q, Q.

Combining Poincaré’s inequality with Holder’s inequality, and choosing e suffi-
ciently small, we deduce

1/t1
Cy|un )N §02||un||s</ etrellunl 1N D (up | /[ ) ¥/ D dm) .

T

The last inequality combined with Applying the Trudinger—Moser leads to
CillunlY < Cslu I,

or more precisely ||u,||*”™ > Cs, for some positive constant Cs, which is a
contradiction, because ||u,|| — 0. Thus, (4.1) is proved.
By (Hs), for each u € My, -,

B = 1) - SB@u= (5= 1)l > (5= 1)

Therefore,

1 1
Jk’TZ<N_V)n>O’ for all 1 <k < oo and all r > 0. |
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LEMMA 4.2. For any 1 < k < oo, there exists A\g = Ao(k) > 0, which is
independent of r, such that

1 1 1 N N-1
<ol ===)— . for all X > Ag.
Jk’<2<N )( 0) or all A > Ao

PRrOOF. Fix 1 < k < co. Notice that we can choose 6 = §(k) > 0 such that
the ball Bs, := Bs(((2r +1)/2,0,,...,0)) C Q, satisfies

g'Bs,Ng'Bs, =0, forall g€ Gy, i#7, 4,j=01,...,k—1.

Consider v, € Wy (Bjs,) \ {0}, in such a way that

Spk = inf [ofl _ el
veW, N (Bs,»)\{0} |v]p |vr|p

where p > N is given by (Hs). A direct computation shows that S, , depends
only on p and §.
Define

vi= Z gu, € Wolgk (€2)\ {0}.
g€GK
Since

I\(tv)tv —» —c0 ast — oo and I§(tv)tv >0, fort =0,
there exists t,, > 0 such that t,v € My, ,. Observe that

Jer < IN(tyv) = kIx(tyv,) = krzlglaxl,\(tvr),

>0
and so,
N
Jir < kr{lZaS({N|UT|N — )\/5,. F(|x,th)dx}.
From (Hj),
Jir < kmax ﬂHvTHN - )\%tp|vr|p
T=""%0 | N D P’
leading to,
Jir N N Cp —-N
L ha NP Py, |P )
ol = g { 782 - APl
Since the function
h(t) = ﬂSN —)\@t”\ [
- N k,p P v’l“p )

attains its maximum at

, Sllc\,]p Yp=-N) 4
o ACyp |Ur|p,

a straightforward computation yields

1 1\  Np/(p—N _ _
Jir < k(N - p)sk;/(p >CéV/(N p) \N/(N=p)_
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Choosing
N—p)/N
L1y e\
Sfp 2\ N v Qg
>‘0 = = )
Cp k i — l
N p
we get
N—-1
1/1 1\ /[/ayn
il R  ad >
Jk,r<2<N V)(@()) for all A > Mo,
and the proof is complete. O

LEMMA 4.3. If A > Xg and 1 < k < oo, then Ji , is attained.

PrOOF. Let (v,) C My, be a minimizing sequence for J ,, that is, (v,) C
Woe () \ {0}, I5 (vn)v, = 0 and Ix(v,) — Ji.,. We claim that

Ii(vy) -0 in (W&’é\l(ﬁ,«))’.

In fact, using Ekeland Variational Principle (see [14]), there exists a sequence
(wy,) C My, verifying

W, :’Un+0n(1), I)\(wn) — ka
and
(4.2) I\ (wn) = Lo B\ (wn) = on(1),

where (£,) C R and E\(w) = I} (w)w, for w € Wolé\; (€2). The below equality

y 0
B wn)un = Nlunl¥ =3 [ [ S ol + (el wn), | da

- f 5 ol wnyun = (F = 1ol )|,

together with (Hy) implies that there exist o > N and C, > 0 such that
(4.3) —E\ (wy)wy, > C’U/ wit d.
Qr

Using the last expression, we can prove that there exists § > 0 such that
| B4 (wp)wy| > 6 for all n € N. Indeed, suppose by contradiction that there
exists a subsequence, still denoted by (w,,), such that

E\ (wy)wy, = 0p(1).
By (4.3),
/ w? T dr = 0,(1),
Q.
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then by interpolation
(4.4) / wy dr = o,(1), forallT>o+1.
Qr
From definition of (w,,), it is easy to show that (w,) is bounded and satisfies
Ji
limsup ||w, ||V < k|
N v

Consequently, by Lemma 4.2

1/ an\ N1
lim sup ||w, ||V < 2((;:;) for all A > .

Since (w,) € Wy (Q,), by Corollary 2.5, there exist o > ag, t > 1 (£ ~ 1) and
C' > 0, independent of n, such that

(4.5) / e R s C, for all n > nyg.
Q.
From (Hp) and (H;), for each € > 0 and s > 1, there exists C' > 0 such that
llwa||N = A/ Fll], wp)w, dz < Aelun |N + c/ jwPeln ™ gy,
Q. Q.

Choosing € small enough and using Holder’s inequality together with (4.5), we
have

(4.6) lwall¥ < Sllwnl[§ + Clwnl,

N |

where t; = t/(t —1). Therefore, from (4.4), ||w,||Y = 0,(1), showing that
w, — 0 in WM (Q,). However, using (4.6) ||w,|[*"N > Cy > 0, for some
C5 > 0, which is an absurd. This contradiction yields there exists § > 0 such
that

(4.7) |ES (wy)wy| > 6, for allm € N.

Now, from (4.2)

00 B\ (wp)wy, = 0p(1),
and so, £, = o,(1). Since (w,) is bounded, it is not difficult to prove that
(E4 (wy,)) is bounded. Using again (4.2),

I(wy) = 0 in (Wi ()"
Thus, without loss generality,

I\(vy) — Jir and Ij(v,) — 0.
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Since (vy,) is bounded, there exists v € Wolgk(Qr) such that, for a subsequence

we have N
Up =0 in Wy, (92,),

vp(x) — v(z) a.e. in Q,
Uy — U in LY(Q,.) for ¢t > 1.
The above limits imply that

(4.8) /Q (f<x|,vn>vn - f<|x|,vn>v> dr = 0,(1).
In fact, by (Ho)—(Hy),
(4.9) £ (1], vn)on] < JoalN + Clog et ™70

Consider « and t given by Corollary 2.5 and define

N/(N-1) N/(N-1)
calvnl calvl ,

Qn:

From Corollary 2.5, Q,, € L!(£2,) and (Q,,) is bounded in L!(Q,). Moreover,
Qn(x) — Q(x) almost everywhere in 2,. Using a result due to Brezis—Lieb

and @ :=

Lemma (see [18]), we derive

(4.10) Qn —Q in L'Q,).

Since v, — v strongly in L(,.) for every ¢ > 1, we have
(4.11) ol = o] in LY (9,),

where t' = ¢/(t — 1). Hence, from (4.10)—(4.11),

(4.12) /Q|vn|QndxH/Q [v|Q de.

Then (4.9)—(4.12) combined with Lebesgue’s Dominated Convergence Theorem
give

/ f(‘$|71)n)’l}nd$—>/ f(‘.T|,U)Udl‘
Q. Q-

A similar argument shows that

/f(|x|,vn)vda:—>/ f(z],v)vdz,
Q. Q.

which proves (4.8).
Now, we will prove that v,, — v in I/VO1 gk (€2). To this end, we begin recalling
that there exists C' > 0 such that

([a]¥ 22 — |yI¥ 2y, x —y) = Cla —y|V (see [17)),
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for every x,y € RN (IV > 2), where (-, -) denotes the inner product in RY. The
above inequality leads to

C’/ Vv, — V|V dz < / (Vv N2V, — V|V 2V, Vo, — Vo) dz
Q. Q.
z/ |an|Ndm—/ |V, | N "2Vv, Vo dr
Q. Q.

—/ Vol N=2(Vv, Vo, — Vu) dz.

r

On the other hand, since (v,) is bounded, the limit I3 (v,,) — 0 gives

/ Vo, | N2V, Vu de — )\/ (x|, vn)vdz = 0,(1),
Q, Q,

and
/ |an|Ndx—)\/ f(zl|, vn)vn dz = 0,(1).
Q. Q.

Consequently

C/ Vo, — VoV dx S)\/ f(|x|,vn)vnda:—)\/ f(zl|, vn)vde
Q, Q, Q

—/ \Vo|N=2(Vv, Vo, — Vo) dz + o, (1).

"

Applying (4.8) and using the fact that v,, = v in W&& (€2,.), the last inequality
implies that

lim Vo, — Vo[V dz =0

n—oo Q’I‘
or equivalently,

U, — U in Wolgk(QT)
From this,
I\(vy) = I\(v) = Ji,r >0 and  I§(v,) — Iy (v) = 0.

Therefore, v € My, and I (v) = Ji ;. O

LEMMA 4.4. There exists 1o = ro(A) > 0 such that

N—1
1/1 1 an
il N f (il .
JOO’T_2<N V><a0> » Jorallr >ro

PROOF. Arguing by contradiction, we assume that there exists a sequence
(ry), with r, — 400 satisfying

1/1 1\/ax\" "
(4.13) Joo’rn<§ v o)\ o , forallmneN.

14 (7))
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Now, we claim that J ., is attained, for all n € N. In fact, fixed n, let (vi) C
Mo 7, be a minimizing sequence for Jo ., that is, (vi) C Wol”gx («.,)\ {0}
and satisfies

I(vg)vp, =0 and In(vg) — Jeor,, as k — oc.

Note that

1 1 1
(4.14) ok(1) + Joo,r, = In(vi) — ;If\(vk)vk > (N — u) o] [V

From (4.13) and (4.14),

an\ N1
limsup ||vg ||V < (N) .
Qo

k—o0

Now, we can repeat the same arguments employed in the proof of Lemma 4.3
to conclude that

Log) =0 in (Wod (2,)) and  wvy—v in Wgd (),
where v € Wol,évoo (€, ) is the weak limit of (vg) in W()1,7(1}Voo (Q,). Then,
I(vg) = I\(v) = Joor, >0 and I3 (vg) — I3(v) =0,

from where it follows that v € M, and I\ (v) = J s, , proving that J ., is
attained.

Since J r, is attained, for each n € N, we can choose a sequence (u,) C
Woe(Qr,)\ {0} satisfying
I\(up)un, =0 and  In(up) = Joo,r, -

Consequently,

N—-1
1/1 1\[ax 1, 11 N
POl = - 00,7 =1 nif[ n nz N mn )
2<N V)(ao) > Joo s, = In(un) = — I3 (un)u <N V)Ilu |

which implies

n—oo

v\ N1
(4.15) limsup ||u, ||V < (N) .
Let (u,) be a sequence given by

~ ( ) Un (x) if T < Q"'n’
Unp L) =
0 itz ¢Q, .

Observe that the following properties occur:
(1) (@) C Wgo (RN);
@) [l vy = Il e,
(3) U, — 0in Wé’g(RN), because @, (r) — 0 a.e. in RY.
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Using the compact embedding Wég(RN) — LYRN), N < t < oo, we derive
that

(4.16) U, — 0 in LY(RY), for N <t < ooc.

Now, observe that
0l ey = Tt + A [ F el wn)indo = [ f(lol, ) do
Goo an RN

From (Hy) — (Hy), given € > 0, ¢ > N and « > «yp, there exists C. > 0 such
that

~ ~ | N/ (N = ~
HunHJ{/\{[/évN(RN) < 5)\/9 ‘un‘Ndx—i-Cg)\/RN |un|q<ea\un|N N-1) —S(mun)) dz,

n

hence by Poincaré’s inequality,

N-1
o N Tn + 1 N
||un||WC1:ZZ(RN) < 8)\( . ) /T |Vup|™ dz

n

n

+CE>\/ i (17
RN

Choosing ¢ sufficiently small, there are positive constants C7, Cs such that

|N/(N—1)

— S(a, ’ﬁn)) dz.

‘N/(N—l)

Cullinl s v g, < CQ/\/RN (e ~ S0 iiy)) do.

Applying Hoélder’s inequality,

1/t
~ ~ i, [N/ (N=1) ~\!
ClHUHH{J/V[/(l;N(RN) < CQ)\IUn‘gtl |:/RN (e |t — S(a,un)) d$‘| y

where t is given by Lemma 2.4.

Now, the last inequality combined with Lemma 2.4 and (4.15) leads to

(4.17) ClHanH]‘/\(/éy::(RN) < C?)\mn‘gtl-

Then, by (4.16) and (4.17)
(4.18) Uy — 0 in WEY(RY).
On the other hand, from (4.17), there exist constants C7,Cy > 0 independent
of r, such that
ClHﬂnH%éOJZ(RN) S CQHEn”(IZ/VCl;,:Z(RN)
and so,
ltnl 33 oy = Ca > 0,

where Cy is independent of r, obtaining this way, a contradiction with (4.18).0
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LEMMA 4.5. Suppose that Jim » is attained for some 1 < k < oo and some
2 <m < oo. Suppose also that Jym r < Joo,r. Then, Jyr < Jpmr-

PrOOF. Consider u € My, » such that In(u) = Jim,. Let = (0, p) be
the polar coordinates of x € R2. Then, u = u(#, p, |y|), y € R¥N~2, It is easy to
derive that

N 1 2 2 2 N/
|VU| = ?u0+up+ |Vyu| .

Thus,

Tl p2m sy N/2
/ |Vau|N dx dy = // / <2u§ +ul + |Vyu2> pdfdpdy.
Q- r 0 P

Define
0
v(67pa |y|) =Uu E7pa |y| .
It is possible to show the following properties:
(i) v e Wy, (2);
' 1 N/2
(i) (90l = (gt a2+ Ty)
(iii) F(v)dxdy = / F(u) dzdy.
Q, Q,

We know that, there exists tg > 0 such that tgv € My, ,.. For simplicity, we
denote v := tgv. Now, since v € My,

1
Jer < Iy(w) = N/ |VolN da dy — )\/ F(v) dzx dy.
Q. Q.

Using (ii)—(iii),

1 27 1 N/2
(4.19) Jk,rgﬁ///o (Wu§+u§+vyu|2> pdf dpdy

- )\/ F(u)dx dy.
Q,

Once that I(u) = Jgm,r < Joo,r, We have u ¢ W()l”évoo(ﬂr) and therefore, u2 is
not identically zero. Then, using that m > 1, we obtain

r+1 2T 1 ) r+1 27 1 )
//T /0 mszuededpdy<//T /0 ?uepdedpdy,

which together with (4.19) implies Jy ,» < Ix(w) = Jgm,» and the proof is com-
plete. (]
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5. Proof of Theorema 1.1

In this section, we establish the proof of Theorem 1.1. First, notice that by
Lemma 4.2, for each n € N, there exists \g = \g(n) > 0 satisfying

11 1\ an\" "
Jg'nwf,« < 5 (N — 1/> (ao> 5 for all A > )\(TL)

On the other hand, by Lemma 4.4, there exists rqg = ro(Ag(n)) > 0 such that

N-1
1/1 1 «
Joo,r > 3 <N - u) (sz) , forall r > rg.

1/1 1\ /ax\V!
0 < Jon p = Joogn- i (P I i < Joors
R 22 l’T<2(N V)<040> -

for all A > Xp and for all » > rg. Once that Jo» , is attained, we can apply

Thus,

Lemma 4.5 to obtain
Jon—1, < Jon, for all A > Ag and for all 7 > rg.
Since Jan-29 , is attained also and satisfies
Jon-29 = Jon-1, < Jon p < Joor,
by Lemma 4.5 Jon-2 , < Jan-1,. Inductively,
0< oy < Jo2,p <o < Jonyp < Joor,

for all A > A\g and all » > rq.

By Lemma 4.3, we have that the minimizers of Jj ., are critical points of
Iy in Wolgk (€2,). Applying the Principle of symmetric criticality (see [23]), it
follows that they are critical points of I in VVO1 N(€,) and therefore are solutions
of (P). This way, all minimizers of Jom ,,m = 1,... ,n are nonradial, rotationally
non-equivalent and non-negative solutions of (P). Now, invoking the Harnack’s
inequality [29], we have that the solutions are strictly positive. O
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