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PERIODIC SOLUTIONS TO SINGULAR SECOND ORDER
DIFFERENTIAL EQUATIONS: THE REPULSIVE CASE

Robert Hakl — Pedro J. Torres — Manuel Zamora

Abstract. This paper is devoted to study the existence of periodic solu-
tions to the second–order differential equation u′′+f(u)u′+g(u) = h(t, u),

where h is a Carathéodory function and f, g are continuous functions on
(0,∞) which may have singularities at zero. The repulsive case is consid-

ered. By using Schaefer’s fixed point theorem, new conditions for existence

of periodic solutions are obtained. Such conditions are compared with those
existent in the related literature and applied to the Rayleigh–Plesset equa-

tion, a physical model for the oscillations of a spherical bubble in a liquid

under the influence of a periodic acoustic field. Such a model has been the
main motivation of this work.

1. Introduction

In this paper, we are concerned with the periodic problem

u′′(t) + f(u(t))u′(t) + g(u(t)) = h(t, u(t)) for a.e. t ∈ [0, ω],(1.1)

u(0) = u(ω), u′(0) = u′(ω)(1.2)

where f, g ∈ C(R+; R) may have singularities at zero, h ∈ Car([0, ω]×R+; R). By
a positive solution to (1.1), (1.2) we understand a function u ∈ AC1(R/ωZ; R+)
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verifying (1.1). A special case which may serve as a model is

u′′(t) + f(u(t))u′(t) +
g1

uν(t)
− g2

uγ(t)
= h0(t)uδ(t) for a.e. t ∈ [0, ω],(1.3)

u(0) = u(ω), u′(0) = u′(ω)(1.4)

where ν, γ ∈ R+, g1, g2, δ ∈ R+, h0 ∈ L([0, ω]; R) and f ∈ C(R+; R). In the
related literature, it is said that the nonlinearity g has an attractive singularity
(resp. repulsive singularity) at zero if limx→0+ g(x) = ∞ (resp. limx→0+ g(x) =
−∞). This paper is devoted to the repulsive case, which in the model equation
(1.3) means γ > ν or else γ = ν and g1 < g2.

Generally speaking, differential equations with singularities have been consid-
ered from the very beginning of the discipline. The main reason is that singular
forces are ubiquitous in applications, being gravitational and electromagnetic
forces the most obvious examples. Even if we restrict our attention to the model
equation (1.3), it has a long and rich history. It seems that the first reference
goes back to Nagumo in 1943 [15]. After some works in the sixties [6]–[8], [11],
the paper of Lazer and Solimini [12] is acknowledged as a major milestone and
the origin of a fruitful line of research. Without any intention of being exhaus-
tive, one can cite for instance [1], [2], [4], [10], [19], [22]–[24], [27] and their
references. Also, the monographs [17], [18] contain a whole section dedicated to
the periodic problem and a quite complete bibliography up to 2008. Beginning
with the paper of Habets–Sanchez [10], many of this references have considered
the inclusion of a friction term of Liénard type f(u)u′, but up to our knowledge
none of them have considered the possibility of a singularity also in f(u).

We have been compelled to consider the case of a possible singularity in f(u)
motivated by the following physical model. In Physics of Fluids, the Rayleigh–
Plesset equation

ρ

[
RR̈ +

3
2
Ṙ2

]
= [Pv − P∞(t)] + Pg0

(
R0

R

)3k

− 2S

R
− 4µṘ

R

is a largely studied model for the oscillations of the radius R(t) of a spherical
bubble immersed in a fluid under the influence of a periodic acoustic field P∞
(see, e.g. [9]). The rest of constants are physical parameters which are described
with more detail in Section 3. The change variable R = u2/5 leads to

ü =
5[Pv − P∞(t)]

2ρ
u1/5 +

(
5Pg0R

3k
0

2ρ

)
1

u(6k−1)/5
− 5S

u1/5
− 4µ

u̇

u4/5
,

which is an equation like (1.3) with f(u) = 4µu−4/5. Up to our knowledge, the
existing results about singular equations do not fit adequately this case.

By using a combination of Schaefer’s fixed point theorem with techniques of
a priori estimates, we have proved a result which is interesting in two aspects:
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first, it covers the physical application which was our initial motivation; second,
it has independent interest from a theoretical point of view as a complement of
the existing literature.

The structure of the paper is as follows: after Introduction, in Section 2
the main result is presented and compared with other mathematical results on
singular equations available in the literature. Afterwards, the main result is
applied to the Rayleigh–Plesset equation in Section 3. The rest of the paper is
devoted to the proof of the main result. We have organised the proof into three
sections. In Section 4 the Schaefer’s fixed point theorem is presented. Section 5
includes the fixed point formulation of the problem and some auxiliary results.
Finally, in Section 6 we perform the required a priori estimates in order to finish
the proof.

For convenience, we finish this introduction with a list of notation which is
used throughout the paper:

R is the set of all real numbers, R+ = (0,∞), R+ = [0,∞), [x]+ = max{x, 0},
[x]− = max{−x, 0}.

C([0, ω]; R) is the Banach space of continuous functions u: [0, ω] → R with
the norm

‖u‖∞ = max{|u(t)| : t ∈ [0, ω]}.

C(D1;D2), where D1, D2 ⊆ R, is the set of continuous functions u:D1 → D2.
C1([0, ω]; R) is the Banach space of continuous functions u: [0, ω] → R with

continuous derivative, with the norm ‖u‖C1 = ‖u‖∞ + ‖u′‖∞.
AC([0, ω]; R) is a set of all absolutely continuous functions.
AC1([0, ω]; R) is a set of all functions u: [0, ω] → R such that u and u′ are

absolutely continuous.
L([0, ω]; R) is the Banach space of Lebesgue integrable functions p: [0, ω] → R

with the norm

‖p‖1 =
∫ ω

0

|p(s)| ds.

L([0, ω]; R+) = {p ∈ L([0, ω]; R) : p(t) ≥ 0 for a.e. t ∈ [0, ω]}.
For a given p ∈ L([0, ω]; R), its mean value is defined by

p =
1
ω

∫ ω

0

p(s) ds.

Finally, a function f : [0, ω] × D1 → D2 belongs to the set of Carathéodory
functions Car([0, ω] × D1;D2) if and only if f( · , x): [0, ω] → D2 is measurable
for all x ∈ D1, f(t, · ):D1 → D2 is continuous for almost every t ∈ [0, ω],
and for each compact set K ⊂ D1, there exists mK ∈ L([0, ω]; R+) such that
|f(t, x)| ≤ mK(t) for almost every t ∈ [0, ω] and all x ∈ K.
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Throughout the paper, speaking about periodic function u we mean that
both u and u′ are periodic functions; i.e.

u(0) = u(ω), u′(0) = u′(ω).

2. Main result and comparison with previously known results

In this section we present the main result of the paper and discuss some
consequences in order to compare it with related results.

Theorem 2.1. Let η ∈ Car([0, ω] × R+; R+) be a non–decreasing function
with respect to the second variable, h0 ∈ L([0, ω]; R), ρ ∈ C(R+; R+) be non-
decreasing and r > 0 be such that the following items are fulfilled:

(a) −η(t, x) ≤ h(t, x) ≤ h0(t)ρ(x) for almost every t ∈ [0, ω], x ≥ r,

(b) g(x) ≥ h0ρ(x) for x ≥ r,

(c) lim
x→0+

g(x) = −∞,
∫ 1

0

g(x) dx = −∞,

(d) g∗
def= lim sup

x→∞

[g(x)]+
x

<

(
π

ω

)2

,

(e) lim sup
x→∞

1
x

∫ ω

0

η(t, x) dt <
4
ω

(
1− g∗

(
ω

π

)2)
,

(f)
∫ 1

0

[f(s)]+ ds < ∞ or
∫ 1

0

[f(s)]− ds < ∞.

Then there exists at least one positive solution to the problem (1.1), (1.2).

The proof will be performed later in Section 6. Such a result finds a direct
application to equation (1.3) in the sublinear case δ < 1.

Corollary 2.2. Let us assume 0 ≤ δ < 1, γ > ν, γ ≥ 1, g2 > 0 and

(2.1)
∫ 1

0

[f(s)]+ ds < ∞ or
∫ 1

0

[f(s)]− ds < ∞.

If h0 ≤ 0 and g1 + |h0| > 0, then there exists at least one positive solution to the
problem (1.3), (1.4).

Proof. It can be proved by applying Theorem 2.1 with η(t, x) = [h0(t)]−xδ,
ρ(x) = xδ and h(t, x) = h0(t)xδ. Indeed, hypotheses (a), (c)–(f) of Theorem 2.1
are straightforward. Finally, hypothesis (b) can be easily proven by using the
inequality g1 + |h0| > 0. �

The linear case δ = 1 is also covered by Theorem 2.1 as follows.
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Corollary 2.3. Let us assume δ = 1, γ > ν, γ ≥ 1, g2 > 0 and suppose
that (2.1) holds. If h0 ≤ 0, g1 + |h0| > 0 and∫ ω

0

[h0(s)]− ds <
4
ω

,

then there exists at least one positive solution to the problem (1.3), (1.4).

Proof. It can be proved by applying Theorem 2.1 with η(t, x) = [h0(t)]−x,
ρ(x) = x, h(t, x) = h0(t)x and reasoning as we did in Corollary 2.2. �

Corollary 2.3 can be compared with [1, Theorem 3.1]. Although both results
are independent, our result imposes a weaker condition over f since it may have
a singularity at zero, and also the condition over h0 is of integral type, while
in [1] a uniform bound is needed.

Many classical papers consider the case where the right-hand side only de-
pends on t and f is continuous at zero, that is, f ∈ C(R+; R) and δ = 0. We
consider this case in a separated corollary.

Corollary 2.4. Let us consider the problem

u′′(t) + f(u(t))u′(t) + g(u(t)) = h0(t) for a.e. t ∈ [0, ω],(2.2)

u(0) = u(ω), u′(0) = u′(ω)(2.3)

where f ∈ C(R+; R), h0 ∈ L([0, ω]; R), and g ∈ C(R+; R) verifies the conditions:

(a) lim
x→0+

g(x) = −∞,

(b)
∫ 1

0

g(x) dx = −∞,

(c) lim sup
x→∞

g(x)
x

<
(π

ω

)2

,

(d) there exists r > 0 such that g(x) ≥ h0 for every x ≥ r.

Then there exists at least one positive solution to the problem (2.2), (2.3).

Proof. It is enough to apply Theorem 2.1 with h(t, x) = h0(t), η(t, x) =
[h0(t)]− and ρ ≡ 1. �

Let us observe that the condition (c) is in some sense optimal, since in [2] the
authors have constructed an example of h ∈ C([0, ω]; R) such that the equation

u′′ +
(

π

ω

)2

u− 1
u3

= h(t)

has no periodic solution. Corollary 2.4 covers the classical model equation of
Lazer–Solimini [12]. It also improves the following result by Mawhin.
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Theorem 2.5 (see [14]). Let us assume that f(x) ≡ c ∈ R. Fix 0 < a <

1/(2ω2e2|c|ω) and b ≥ 0 such that

(a) g(x) ≤ ax + b for x > 0,

(b) lim
x→0+

g(x) = −∞,

(c)
∫ 1

0

g(x) dx = −∞,

(d) lim inf
x→∞

g(x) > h0.

Then there exists at least one positive solution to the problem (2.2), (2.3).

Another related result was proved by Habets and Sanchez.

Theorem 2.6 (see [10]). Let f ∈ C(R+; R) and let

(a) g(x)− h0(t) ≤ c for t ∈ [0, ω], x > 0,

(b) g(x) < h0 for all x < r0,

(c)
∫ 1

0

g(x) dx = −∞,

(d) g(x) > h0 for all x > r1,

(e)
∫ ω

0

h2
0(s) ds < ∞

be fulfilled with suitable constants c > 0 and 0 < r0 < 1 < r1 < ∞. Then the
problem (2.2), (2.3) has at least one positive solution.

One can easily verify that Corollary 2.4 improves Theorem 2.6 in a certain
way.

3. Application to a physical model:
the Rayleigh–Plesset equation

In this section we will use our main mathematical result to study the Rayleigh
–Plesset equation, which models the oscillations of a spherical bubble in a liq-
uid subjected to a periodic acoustic field. The Rayleigh–Plesset equation plays
a prominent role in Dynamics of Fluids. It can be derived by taking spherical
coordinates in Euler equations and assuming some physically admissible simpli-
fications, as shown in many reviews and monographs (see for instance [3], [5], [9],
[16], [25]). A variety of physical, biological and medical models rely on this equa-
tion (see bibliographies of the cited references), in connection with the physical
phenomena of cavitation and sonoluminescence.

Following [9], the evolution in time of the radius R(t) of the bubble is ruled
by

(3.1) ρ

[
RR̈ +

3
2
Ṙ2

]
= [Pv − P∞(t)] + Pg0

(
R0

R

)3k

− 2S

R
− 4µṘ

R
.
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Here, at the left-hand side Ṙ and R̈ are the first and second derivatives of the
bubble radius with respect to time and ρ is the density of the liquid. At the
right-hand side we have four different terms. The first one is Pv − P∞(t), which
measures the difference between the vapour pressure Pv inside the bubble and
the applied pressure, which is time-periodic. The second term is related with the
non-condensability of the gas. More exactly, Pg0 and R0 correspond, respectively,
to the gas pressure and initial radius of the bubble, while k is the polytropic
coefficient, which contents information about thermic transmission behaviour of
the system liquid–gas. If the behaviour is isothermal then the coefficient k is
equal to one. The most usual case considered in the cited references is when
polytropic coefficient is greater than or equal to one, but possibly it is any real
number. In this paper, we consider the adiabatic case (when k ≥ 1). The third
terms corresponds to surface tension, i.e. the energy which is needed to increase
the surface of a liquid by area unit. Finally, the last term corresponds to the
viscosity of liquid.

When the surface tension and viscosity effects are neglected (a physically
admissible simplification for bubbles of big radius), we may obtain the classical
Rayleigh equation

ρ

[
RR̈ +

3
2
Ṙ2

]
= Pv − P∞(t),

which was proposed in 1907 by Rayleigh. Furthermore, we observe that when
the applied pressure is constant, the Rayleigh equation has a first integral

Ṙ2 =
2
3

Pv − P∞
ρ

[
1−

(
R0

R

)3]
.

Nevertheless, when the applied pressure P∞(t) is time-varying, most of the
present knowledge about the dynamics of this models is based on numerical
computations.

If the change of variables R = u2/5 is introduced in the Rayleigh–Plesset
equation, we obtain

ü =
5[Pv − P∞(t)]

2ρ
u1/5 +

(
5Pg0R

3k
0

2ρ

)
1

u(6k−1)/5
− 5S

u1/5
− 4µ

u̇

u4/5
,

which corresponds to a Liénard equation, more exactly, it is an equation of the
type (1.3), where h0(t) = 5[Pv − P∞(t)]/(2ρ), g1 = 5S, g2 = 5Pg0R

3k
0 /(2ρ),

δ = ν = 1/5, γ = (6k − 1)/5 and f(x) = 4µ/x4/5. If k ≥ 1, then γ ≥ 1. A direct
application of Corollary 2.2 gives the following result.

Theorem 3.1. Let us assume k ≥ 1 and Pv ≤ P∞. Then there exists at
least one positive periodic solution to the equation (3.1).

As far as we know, this is the first analytical proof of a well-known numerical
evidence exposed in many related works, see for instance [9]. In a subsequent
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paper, we will consider the case when the polytropic coefficient k is any real
number and also the case Pv > P∞.

4. Compact operators and Schaefer’s theorem

Throughout the paper we are going to consider the Banach space X =
C1([0, ω]; R) × R with the norm ‖(u, a)‖ = ‖u‖C1 + |a|. The following result
is known as a Schaefer’s fixed point theorem and it is a direct consequence of the
Schauder’s fixed point theorem (see [20], or more recent books [21], [26]). We
formulate it in a suitable for us form.

Theorem 4.1 (see [20]). Let F :X → X be a continuous operator which is
compact on each bounded subset of X. If there exists r > 0 such that every
solution to

(4.1) (u, a) = λF (u, a)

for λ ∈ (0, 1) verifies

(4.2) ‖(u, a)‖ ≤ r,

then (4.1) has a solution for λ = 1.

Our aim is to apply this result to a given operator whose fixed points corre-
spond to periodic solutions of our differential equation. In order to define such
operator and prove its compactness the following definition is needed.

Definition 4.2. An operator H:X → L([0, ω]; R), resp. A:X → R is called
Carathéodory if it is continuous and for every r > 0 there exists a function
qr ∈ L([0, ω]; R+), resp. a constant Mr ∈ R+ such that

|H(u, a)(t)| ≤ qr(t) for a.e. t ∈ [0, ω], ‖(u, a)‖ ≤ r,

resp.
|A(u, a)| ≤ Mr for ‖(u, a)‖ ≤ r.

Lemma 4.3. Let H:X → L([0, ω]; R) and A:X → R be Carathéodory oper-
ators. Define an operator Ω: X → C1([0, ω]; R) by

Ω(u, a)(t) = − 1
ω

[
(ω − t)

∫ t

0

sH(u, a)(s) ds + t

∫ ω

t

(ω − s)H(u, a)(s) ds

]
for t ∈ [0, ω]. Then the operator F :X → X given by F = (Ω, A) is compact on
each bounded subset of X.

Proof. It is sufficient to prove that both Ω and A transform each bounded
subset of X into a precompact set. First, note that the image of each bounded
subset of X by A is in fact a precompact set since R is a finite-dimensional space
and A is a Carathéodory operator.
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On the other hand, the definition of Ω implies

|Ω(u, a)(t)| ≤ ω

4

∫ ω

0

|H(u, a)(s)| ds for t ∈ [0, ω],(4.3) ∣∣∣∣ d

dt
Ω(u, a)(t)

∣∣∣∣ ≤ ∫ ω

0

|H(u, a)(s)| ds for t ∈ [0, ω],(4.4) ∣∣∣∣ d2

dt2
Ω(u, a)(t)

∣∣∣∣ ≤ |H(u, a)(t)| for a.e. t ∈ [0, ω].(4.5)

Furthermore, since H is a Carathéodory operator, for every r > 0 there exists
a function qr ∈ L([0, ω]; R+) such that

(4.6) |H(u, a)(t)| ≤ qr(t) for a.e. t ∈ [0, ω], ‖(u, a)‖ ≤ r.

Now let M ⊂ X be a bounded set. Obviously, there exists r > 0 such that
‖(u, a)‖ ≤ r for every (u, a) ∈ M . Then, from (4.3)–(4.6), for (u, a) ∈ M , we
obtain

‖Ω(u, a)‖∞ ≤ ω

4
‖qr‖1 ,∥∥∥∥ d

dt
Ω(u, a)

∥∥∥∥
∞
≤ ‖qr‖1,∣∣∣∣ d2

dt2
Ω(u, a)(t)

∣∣∣∣ ≤ qr(t) for a.e. t ∈ [0, ω].

By Arzelà–Ascoli theorem, the set Ω(M) is precompact. �

The following corollary is an immediate consequence of Theorem 4.1 and
Lemma 4.3.

Corollary 4.4. Let H:X → L([0, ω]; R) and A:X → R be Carathéodory
operators. If there exists r > 0 (not depending on λ) such that every solution to
the problem

u′′(t) = λH(u, a)(t) for a.e. t ∈ [0, ω],(4.7)

u(0) = 0, u(ω) = 0,(4.8)

a = λA(u, a)(4.9)

for λ ∈ (0, 1) verifies (4.2), then (4.7)–(4.9) has a solution for λ = 1.

5. Auxiliary results

In this section we will develop some preliminaries in order to prove the main
theorem. The first aim is to rewrite the problem (1.1), (1.2) as a fixed point
problem.

Let us define the continuous operator T :X → C1([0, ω]; R) by

T (u, a)(t) = ea + u(t)−min{u(s) : s ∈ [0, ω]}.
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For λ ∈ (0, 1) we consider the problem

(5.1) u′′(t) + λf(T (u, a)(t))u′(t) + λg(T (u, a)(t)) = λh(t, T (u, a)(t)),

+
λ

ω

[ ∫ ω

0

g(T (u, a)(s)) ds−
∫ ω

0

h(s, T (u, a)(s)) ds

]
, for a.e. t ∈ [0, ω],

u(0) = 0, u(ω) = 0,(5.2)

a = λa− λ

ω

[ ∫ ω

0

g(T (u, a)(s)) ds−
∫ ω

0

h(s, T (u, a)(s)) ds

]
.(5.3)

Remark 5.1. It can be easily seen that if (u, a) ∈ X is a solution to (5.1)–
(5.3), then the function u is periodic.

Lemma 5.2. If there exists r > 0 such that for each solution (u, a) to (5.1)–
(5.3) with λ ∈ (0, 1) the estimate (4.2) holds, then there exists at least one positive
solution to (1.1), (1.2).

Proof. We define the operators H:X → L([0, ω]; R) and A:X → R as
follows:

H(u, a)(t) = −f(T (u, a)(t))u′(t)− g(T (u, a)(t)) + h(t, T (u, a)(t))

+
1
ω

[ ∫ ω

0

g(T (u, a)(s))ds−
∫ ω

0

h(s, T (u, a)(s)) ds

]
for a.e. t ∈ [0, ω],

A(u, a) = a− 1
ω

[ ∫ ω

0

g(T (u, a)(s)) ds−
∫ ω

0

h(s, T (u, a)(s)) ds

]
.

It is clear that both H and A are Carathéodory operators. By Corollary 4.4, the
problem (5.1)–(5.3) with λ = 1 has at least one solution (u, a). Furthermore,
from (5.3) (with λ = 1) we obtain that

(5.4)
∫ ω

0

g(T (u, a)(s))ds =
∫ ω

0

h(s, T (u, a)(s)) ds,

and, consequently, from (5.1) with λ = 1, (5.2) and (5.4) we conclude that u is
a periodic function satisfying

u′′(t) + f(T (u, a)(t))u′(t) + g(T (u, a)(t)) = h(t, T (u, a)(t)) for a.e. t ∈ [0, ω].

Now we define v by v(t) = T (u, a)(t) for t ∈ [0, ω]. Then v is a positive solution
to (1.1), (1.2). �

The section is completed by lemmas presenting some useful inequalities.

Lemma 5.3. Let u ∈ AC([0, ω]; R) be such that

(5.5) u(0) = u(ω).
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Then the inequality

(5.6) (M −m)2 ≤ ω

4

∫ ω

0

u′
2
(s) ds

holds where M = max{u(t) : t ∈ [0, ω]}, m = min{u(t) : t ∈ [0, ω]}.

Proof. Let us define ũ: [0, 2ω] → R by

(5.7) ũ(t) =

{
u(t) if t ∈ [0, ω],

u(t− ω) if t ∈ (ω, 2ω].

Evidently, (5.5) implies that ũ ∈ AC([0, 2ω]; R) and also there exist t0 ∈ [0, ω]
and t1 ∈ (t0, t0 + ω) such that ũ(t0) = m, ũ(t1) = M , ũ(t0 + ω) = m. Then

M −m =
∫ t1

t0

ũ′(s) ds, m−M =
∫ t0+ω

t1

ũ′(s) ds.

Using the Cauchy–Bunyakovskii–Schwarz inequality we prove that

M −m ≤

√
(t1 − t0)

( ∫ t1

t0

ũ′ 2(s) ds

)
,

M −m ≤

√
(t0 + ω − t1)

( ∫ t0+ω

t1

ũ′ 2(s) ds

)
.

Multiplying both inequalities and using that AB ≤ (A + B)2/4 for each A, B

in R+ we can prove

(M −m)2 ≤ ω

4

∫ t0+ω

t0

ũ′
2
(s) ds.

Finally, from the last inequality, in virtue of (5.7), we obtain (5.6). �

Lemma 5.4. Let ρ ∈ C(R+; R+) be a non–decreasing function and let v ∈
AC1([0, ω]; R) be a positive function such that v(0) = v(ω), v′(0) = v′(ω). Then

(5.8)
∫ ω

0

v′′(t)
ρ(v(t))

dt ≥ 0.

Proof. There exists a sequence ρn ∈ C(R+; R+) of non–decreasing func-
tions with continuous derivatives such that

lim
n→∞

‖ρn ◦ v − ρ ◦ v‖∞ = 0,(5.9)

ρn(mv) = ρ(mv) where mv = min{v(s) : s ∈ [0, ω]}.

Then, ∫ ω

0

v′′(t)
ρn(v(t))

dt =
∫ ω

0

ρ′n(v(t))v′
2
(t)

ρ2
n(v(t))

dt ≥ 0,(5.10) ∣∣∣∣ ∫ ω

0

[
v′′(t)

ρn(v(t))
− v′′(t)

ρ(v(t))

]
dt

∣∣∣∣ ≤ ‖ρn ◦ v − ρ ◦ v‖∞
ρ2(mv)

∫ ω

0

|v′′(t)| dt.(5.11)
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Now from (5.9)–(5.11) we obtain (5.8). �

Lemma 5.5. Let v ∈ AC1([0, ω]; R) be such that

(5.12) v(0) = v(ω), v′(0) = v′(ω).

Then

(5.13)
∫ ω

0

v2(t) dt ≤
(

ω

π

)2 ∫ ω

0

v′
2
(t) dt + 2m

∫ ω

0

v(t) dt

where m = min{v(t) : t ∈ [0, ω]}.

Proof. Let tm ∈ [0, ω] be a point such that

(5.14) v(tm) = m,

and define

(5.15) w(t) =

{
v(t)−m for t ∈ [0, ω],

v(t− ω)−m for t ∈ (ω, 2ω].

Obviously, in accordance with (5.12) and (5.14) we have

w ∈ AC1([0, 2ω]; R),(5.16)

w(tm) = 0, w(tm + ω) = 0.(5.17)

Using Wirtinger’s inequality, by virtue of (5.15)–(5.17), we obtain

(5.18)
∫ tm+ω

tm

w2(t) dt ≤
(

ω

π

)2 ∫ ω

0

v′
2
(t) dt.

On the other hand,

(5.19)
∫ tm+ω

tm

w2(t) dt =
∫ ω

0

(v(t)−m)2 dt ≥
∫ ω

0

v2(t)dt− 2m

∫ ω

0

v(t) dt.

From (5.18) and (5.19) we get (5.13). �

6. A priori estimates and proof of the main result

A priori estimates of possible solutions to the problem (5.1)–(5.3) with λ ∈
(0, 1) are established in this section. This will lead to a direct proof of Theo-
rem 2.1.

Lemma 6.1. Let h0 ∈ L([0, ω]; R), ρ ∈ C(R+; R+) be a non-decreasing func-
tion such that

(6.1) h(t, x) ≤ h0(t)ρ(x) for a.e. t ∈ [0, ω], x ≥ r,

for some r > 0, and let us assume that

(6.2) g(x) ≥ h0ρ(x) for x ≥ r.
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Then for each solution (u, a) to (5.1)–(5.3), we have

(6.3) a ≤ ln(1 + r).

Proof. Let us suppose that (6.3) is false. Then

a > ln(1 + r) > 0,(6.4)

T (u, a)(t) > 1 + r for t ∈ [0, ω].(6.5)

Using (6.4) in (5.3), we get

(6.6)
λ

ω

[ ∫ ω

0

g(T (u, a)(s)) ds−
∫ ω

0

h(s, T (u, a)(s)) ds

]
< 0.

From (5.1) using (6.1), (6.5) and (6.6) we obtain

(6.7) u′′(t) + λf(T (u, a)(t))u′(t) + λg(T (u, a)(t)) < λh0(t)ρ(T (u, a)(t))

for almost every t ∈ [0, ω]. Dividing by ρ(T (u, a)(t)) the equation (6.7), inte-
grating in [0, ω], and using (5.2), one gets∫ ω

0

u′′(t)
ρ(T (u, a)(t))

dt + λ

∫ ω

0

g(T (u, a)(t))
ρ(T (u, a)(t))

dt < λωh0.

According to Lemma 5.4, Remark 5.1 and λ > 0, it follows that

(6.8)
∫ ω

0

g(T (u, a)(t))
ρ(T (u, a)(t))

dt < ωh0.

On the other hand, applying (6.5) and the hypothesis (6.2) we obtain

ωh0 ≤
∫ ω

0

g(T (u, a)(t))
ρ(T (u, a)(t))

dt

which, however, contradicts (6.8). �

Lemma 6.2. Let r > 0, and let η ∈ Car([0, ω] × R+; R+) be a function
non–decreasing in the second variable such that

(6.9) −η(t, x) ≤ h(t, x) for a.e. t ∈ [0, ω], x ≥ r.

Furthermore, let us assume that

lim sup
x→0+

g(x) < ∞,(6.10)

g∗
def= lim sup

x→∞

[g(x)]+
x

<
(π

ω

)2

,(6.11)

lim sup
x→∞

1
x

∫ ω

0

η(s, x) ds <
4
ω

(
1− g∗

(
ω

π

)2)
.(6.12)
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Then for each a0 > 0 there exists a constant K > 0 such that any solution (u, a)
of (5.1)–(5.3) with a ≤ a0 verifies

(6.13) M −m ≤ K

where M = max{u(s) : s ∈ [0, ω]}, m = min{u(s) : s ∈ [0, ω]}.

Proof. Define the truncated function

η̃(t, x) =

{
η(t, x) if x ≥ r,

η(t, r) if x < r,
(6.14)

ξ(t, x) = η̃(t, x) + ϕr(t)(6.15)

where

(6.16) ϕr(t) = sup{|h(t, x)| : 0 ≤ x ≤ r} for a.e. t ∈ [0, ω].

Obviously, ξ is a function non–decreasing in the second variable. Using (6.9) and
(6.14)–(6.16), we obtain the inequality

(6.17) −ξ(t, x) ≤ h(t, x) for a.e. t ∈ [0, ω], x ∈ R+.

Furthermore,

lim sup
x→∞

1
x

∫ ω

0

ξ(s, x) ds = lim sup
x→∞

(
1
x

∫ ω

0

η̃(s, x) ds +
‖ϕr‖1

x

)
(6.18)

= lim sup
x→∞

1
x

∫ ω

0

η(s, x) ds.

According to (5.3) we can rewrite (5.1) as

(6.19) u′′(t)+λf(T (u, a)(t))u′(t)+λg(T (u, a)(t)) = λh(t, T (u, a)(t))−(1−λ)a.

Multiplying (6.19) by T (u, a)(t) and integrating on [0, ω], we obtain, with respect
to Remark 5.1,

−
∫ ω

0

u′
2
(s) ds + λ

∫ ω

0

g(T (u, a)(s))T (u, a)(s) ds

= λ

∫ ω

0

h(s, T (u, a)(s))T (u, a)(s) ds− (1− λ)a
∫ ω

0

T (u, a)(s) ds.

Then

(6.20)
∫ ω

0

u′
2
(s) ds = λ

∫ ω

0

g(T (u, a)(s))T (u, a)(s) ds

− λ

∫ ω

0

h(s, T (u, a)(s))T (u, a)(s) ds + (1− λ)a
∫ ω

0

T (u, a)(s) ds
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is fulfilled. On the other hand, from (6.11) and (6.12) it follows the existence of
ε0 > 0 and r0 > 0 such that

g(x)
x

≤ g∗ + ε0 <

(
π

ω

)2

for x ≥ r0,(6.21)

lim sup
x→∞

1
x

∫ ω

0

η(s, x) ds <
4
ω

(
1− (g∗ + ε0)

(
ω

π

)2)
.(6.22)

Moreover, (6.10) implies that

(6.23) Mg = sup
{
g(x) : x ∈ (0, r0]

}
< ∞.

Hence, from (6.21) and (6.23) we obtain

(6.24) g(x) ≤ (g∗ + ε0)x + Mg for x > 0.

Now, (6.24) implies

(6.25)
∫ ω

0

g(T (u, a)(s))T (u, a)(s) ds

≤ (g∗ + ε0)
∫ ω

0

(
T (u, a)(s)

)2
ds + Mg

∫ ω

0

T (u, a)(s) ds.

Using Lemma 5.5 in (6.25) we arrive at

(6.26)
∫ ω

0

g(T (u, a)(s))T (u, a)(s) ds

≤ (g∗ + ε0)
(

ω

π

)2 ∫ ω

0

u′
2
(s) ds + ((g∗ + ε0)2ea + Mg)

∫ ω

0

T (u, a)(s) ds.

If we use the inequalities (6.17), (6.26) and the hypothesis a ≤ a0 in (6.20) we
prove

(6.27)
[
1− (g∗ + ε0)

(
ω

π

)2] ∫ ω

0

u′
2
(s) ds

≤
∫ ω

0

ξ(s, ea0 + M −m)T (u, a)(s) ds + K0

∫ ω

0

T (u, a)(s) ds

where K0 = (g∗+ ε0)2ea0 +Mg +a0. Obviously, possible constant solution (zero
solution) to (5.1)–(5.3) satisfy (6.13) by itself. Therefore, in what follows we
can assume, without loss of generality, that M 6= m, i.e. M −m > 0. Thus, let
ε = ea0/(M −m). In addition,

(6.28) ε → 0 as M −m →∞,
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and T (u, a)(t) ≤ (1 + ε)(M −m) for t ∈ [0, ω]. Consequently, (6.27) implies[
1− (g∗ + ε0)

(
ω

π

)2] ∫ ω

0

u′
2
(s) ds

≤
(

K0ω +
∫ ω

0

ξ(s, (1 + ε)(M −m)) ds

)
(1 + ε)(M −m).

According to Lemma 5.3, from the last inequality we obtain

(6.29)
4
ω

[
1− (g∗ + ε0)

(
ω

π

)2]
≤ 1

y
(1 + ε)2

(
K0ω +

∫ ω

0

ξ(s, y) ds

)
where y = (1 + ε)(M −m). Finally, (6.18), (6.22), (6.28) and (6.29) imply the
existence of a constant K such that (6.13) is verified. �

Remark 6.3. Note that from the inequality (6.13), in view of (5.2), it also
follows that ‖u‖∞ ≤ K.

Lemma 6.4. Let us assume that

(6.30)
∫ 1

0

[f(s)]+ ds < ∞

or

(6.31)
∫ 1

0

[f(s)]− ds < ∞.

Furthermore, assume that (6.10) is verified. Then, for each a0 ≥ 0 and K > 0
there exists a constant K1 > 0 such that every solution (u, a) to (5.1)–(5.3) with

(6.32) ‖u‖∞ ≤ K and a ≤ a0

verifies the boundary

(6.33) ‖u′‖∞ ≤ λK1 + a0ω.

Proof. Assume that the condition (6.30) is fulfilled. Let (u, a) be a solution
of (5.1)–(5.3), then u is a periodic function and, in addition, there exist t0, t1 ∈
[0, ω] such that

(6.34) u(t0) = m, u(t1) = M

where M = max{u(t) : t ∈ [0, ω]}, m = min{u(t) : t ∈ [0, ω]}.
By integrating (6.19) on the interval [t0, t] ⊆ [t0, t0 + ω], we obtain

ϑ(u′)(t) + λ

∫ t

t0

f(ϑ(T (u, a))(s))ϑ(u′)(s) ds + λ

∫ t

t0

g(ϑ(T (u, a))(s)) ds

= λ

∫ t

t0

ϑ1(h)(s, ϑ(T (u, a))(s)) ds− (1− λ)a(t− t0)
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where ϑ: C([0, ω]; R) → C([0, 2ω]; R), ϑ1: Car([0, ω] × R+; R) → Car([0, 2ω] ×
R+; R), respectively, are operators of the periodical extension, i.e.

ϑ(v)(t) =

{
v(t) if t ∈ [0, ω],

v(t− ω) if t ∈ (ω, 2ω],
(6.35)

ϑ1(h)(t, x) =

{
h(t, x) if t ∈ [0, ω],

h(t− ω, x) if t ∈ (ω, 2ω].
(6.36)

Obviously,

−ϑ(u′)(t) =λ

∫ t

t0

f(ϑ(T (u, a))(s))ϑ(u′)(s) ds(6.37)

+ λ

∫ t

t0

g(ϑ(T (u, a))(s)) ds

− λ

∫ t

t0

ϑ1(h)(s, ϑ(T (u, a))(s)) ds + (1− λ)a(t− t0).

Using (6.32) and (6.34) we get

(6.38) 0 < T (u, a)(t0) ≤ T (u, a)(t) ≤ T (u, a)(t1) ≤ ea0 + 2K for t ∈ [0, ω].

Then, by (6.10) and the fact that h ∈ Car([0, ω]×R+; R), the number µ and the
function σ defined by

(6.39)
µ = sup{[g(s)]+ : s ∈ (0, ea0 + 2K]},

σ(s) = sup{|h(s, x)| : x ∈ [0, ea0 + 2K]},

satisfy

(6.40) 0 ≤ µ < ∞, σ ∈ L([0, ω]; R+).

Using (6.32), (6.38)–(6.40) and t0 ≤ t ≤ t0 + ω in the equation (6.37), we obtain

(6.41) −ϑ(u′)(t) ≤ λ

∫ ea0+2K

0

[f(s)]+ ds + λωµ + λ‖σ‖1 + ωa0.

Put

K1 =
∫ ea0+2K

0

[f(s)]+ ds + ωµ + ‖σ‖1.

Then, from (6.41), we have

(6.42) −ϑ(u′)(t) ≤ λK1 + ωa0 for t ∈ [t0, t0 + ω].
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On the other hand, if we integrate on the interval [t, t1 + ω] ⊆ [t1, t1 + ω] the
equation (6.19), we obtain

(6.43) ϑ(u′)(t) =λ

∫ t1+ω

t

f(ϑ(T (u, a))(s))ϑ(u′)(s) ds

+ λ

∫ t1+ω

t

g(ϑ(T (u, a))(s)) ds

− λ

∫ t1+ω

t

ϑ1(h)(s, ϑ(T (u, a))(s)) ds + (1− λ)a(t1 + ω − t).

Using (6.32), (6.38)–(6.40) and t1 ≤ t ≤ t1 + ω in the equation (6.43), we have

(6.44) ϑ(u′)(t) ≤ λK1 + ωa0 for t ∈ [t1, t1 + ω].

From (6.42) and (6.44) we conclude that (6.33) is verified. Therefore the proof
is finished for this case.

Now we suppose that (6.31) is fulfilled. By defining

(6.45) v(t) = u(ω − t) for t ∈ [0, ω]

we obtain that

v′′(t)− λf(T (v, a)(t))v′(t) + λg(T (v, a)(t)) = λh̃(t, T (v, a)(t))− (1− λ)a

for almost every t ∈ [0, ω], where

h̃(t, x) = h(ω − t, x) for a.e. t ∈ [0, ω], x ∈ R+.

If we follow analogical steps as above, using (6.31) instead of (6.30), we arrive at

(6.46) ‖v′‖∞ ≤ λK1 + a0ω

with

K1 =
∫ ea0+2K

0

[f(s)]− ds + ωµ + ‖σ‖1.

Now, (6.45) and (6.46) imply (6.33). �

Remark 6.5. If we take a0 = 0 in Lemma 6.4, we obtain that

(6.47) ‖u′‖∞ ≤ λK1

whenever (u, a) is a solution to (5.1)–(5.3) with a ≤ 0.

Lemma 6.6. We suppose that

(6.48) lim
x→0+

g(x) = −∞,

∫ 1

0

g(s) ds = −∞,

and (6.30) or (6.31) is satisfied. Then for each K > 0 there exists a constant
a1 > 0 such that every solution (u, a) to (5.1)–(5.3) with

(6.49) ‖u‖∞ ≤ K and a ≤ 0
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admits the estimate

(6.50) −a1 ≤ a.

Proof. We define σ as in (6.39) with a0 = 0. Obviously, because h ∈
Car([0, ω]× R+; R), we have σ ∈ L([0, ω]; R+).

Let (u, a) be a solution to (5.1)–(5.3). From (5.3), by virtue of (6.39) and
(6.49), it follows that

a(1− λ)
λ

= − 1
ω

[ ∫ ω

0

g(T (u, a)(s)) ds−
∫ ω

0

h(s, T (u, a)(s)) ds]

≥ − 1
ω

∫ ω

0

g(T (u, a)(s)) ds− 1
ω
‖σ‖1,

and consequently,

− 1
ω

∫ ω

0

g(T (u, a)(s)) ds ≤ a(1− λ)
λ

+
1
ω
‖σ‖1.

Hence, according to (6.49) we obtain

(6.51) −
∫ ω

0

g(T (u, a)(s)) ds ≤ ‖σ‖1.

On the other hand, (6.48) implies that there exists s0 > 0 such that

(6.52) g(s) < −‖σ‖1
ω

≤ 0 for s ∈ (0, s0).

We denote by tm ∈ [0, ω] the point where u(tm) = min{u(t) : t ∈ [0, ω]}.
Obviously, either

(6.53) T (u, a)(tm) = ea ≥ s0,

or

(6.54) T (u, a)(tm) = ea < s0.

Clearly, if we get an estimate (6.50) in the case (6.54), the same estimate will be
valid also for every solution (u, a) to (5.1)–(5.3) verifying (6.53). Hence, without
loss of generality, we can suppose that (6.54) is fulfilled.

If T (u, a)(t) < s0 for every t ∈ [0, ω], from (6.51) and (6.52) we obtain
a contradiction. Therefore, there exist points t1, t2 ∈ (tm, tm + ω) such that

ϑ(T (u, a))(t) < s0 for t ∈ [tm, t1), ϑ(T (u, a))(t1) = s0,(6.55)

ϑ(T (u, a))(t) < s0 for t ∈ (t2, tm + ω], ϑ(T (u, a))(t2) = s0,(6.56)

where ϑ is an operator defined by (6.35). Since a ≤ 0, we have

λ

ω

[ ∫ ω

0

g(T (u, a)(s)) ds−
∫ ω

0

h(s, T (u, a)(s)) ds

]
≥ 0,
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and thus

u′′(t)+λf(T (u, a)(t))u′(t)+λg(T (u, a)(t)) ≥ λh(t, T (u, a)(t)) for a.e. t ∈ [0, ω].

Obviously,

(6.57) [ϑ(u′)(t)]′ + λf(ϑ(T (u, a))(t))ϑ(u′)(t) + λg(ϑ(T (u, a))(t))

≥ λϑ1(h)(t, ϑ(T (u, a))(t)) for a.e. t ∈ [0, 2ω]

where ϑ and ϑ1 are operators defined by (6.35) and (6.36), respectively.
First, let us assume that (6.30) is verified. Integrating on [tm, t1] the inequal-

ity (6.57) we obtain

ϑ(u′)(t1) + λ

∫ t1

tm

f(ϑ(T (u, a))(s))ϑ(u′)(s)ds + λ

∫ t1

tm

g(ϑ(T (u, a))(s)) ds

≥ λ

∫ t1

tm

ϑ1(h)(s, ϑ(T (u, a))(s)) ds.

By a change of variables and using (6.54) and (6.55) we get

ϑ(u′)(t1) + λ

∫ s0

ea

f(s) ds− λ

∫ t1

tm

ϑ1(h)(s, ϑ(T (u, a))(s)) ds

≥ −λ

∫ t1

tm

g(ϑ(T (u, a))(s)) ds.

According to Lemma 6.4, Remark 6.5, and the conditions (6.48) and (6.49) we
obtain that there exists a constant K1 > 0 such that (6.47) is fulfilled. Using
(6.47), (6.54), the inequality λ > 0 and the fact that x ≤ [x]+ for any x ∈ R we
obtain

(6.58) −
∫ t1

tm

g(ϑ(T (u, a))(s))ds ≤ K2

where
K2 = K1 +

∫ s0

0

[f(s)]+ ds + ‖σ‖1.

Multiplying by K1 in the inequality (6.58), we find

−K1

∫ t1

tm

g(ϑ(T (u, a))(s))ds ≤ K2K1.

Using (6.47), (6.52), and (6.55) we obtain

−
∫ t1

tm

g(ϑ(T (u, a))(s))ϑ(u′)(s)ds ≤ K2K1.

After a simple change of variables and using (6.54) and (6.55) we arrive at

(6.59) −
∫ s0

ea

g(s)ds ≤ K2K1.

Using (6.48) we ensure the existence of a1 > 0 such that (6.50) is fulfilled.
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Now assume that (6.31) holds true. Integrating on [t2, tm +ω] the inequality
(6.57) and following analogous steps as above, using (6.56) instead of (6.55), we
arrive at (6.59) with

K2 = K1 +
∫ s0

0

[f(s)]− ds + ‖σ‖1.

Then, the condition (6.48) implies the existence of a constant a1 > 0 such that
(6.50) is fulfilled. �

Proof of Theorem 2.1. The result immediately follows from Lemma 5.2,
Lemmas 6.1–6.6, and Remark 6.3. �
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