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CONSTANT-SIGN AND NODAL SOLUTIONS
FOR A NEUMANN PROBLEM WITH p-LAPLACIAN

AND EQUI-DIFFUSIVE REACTION TERM

Salvatore A. Marano — Nicolaos S. Papageorgiou

Abstract. The existence of both constant and sign-changing (namely,

nodal) solutions to a Neumann boundary-value problem with p-Laplacian
and reaction term depending on a positive parameter is established. Proofs

make use of sub- and super-solution techniques as well as critical point
theory.

1. Introduction

Let Ω be a bounded domain in RN , N ≥ 3, with a smooth boundary ∂Ω,
let 1 < p <∞, and let f : Ω× R → R be a Carathéodory function. Given a real
parameter λ > 0, consider the problem

(1.1)

{ −∆pu = λ|u|p−2u− f(x, u) in Ω,
∂u

∂n
= 0 on ∂Ω,

where

∆pu := div (|∇u|p−2∇u) and
∂u

∂n
= |∇u|p−2∇u · n,

with n(x) being the outward unit normal vector to ∂Ω at the point x ∈ ∂Ω.
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In this paper, a smallest positive solution and a biggest negative solution to
(1.1) are obtained (see Theorem 3.7) by chiefly assuming that

lim
t→0

f(x, t)
|t|p−2t

= 0, lim
t→∞

f(x, t)
|t|p−2t

= ∞ uniformly in Ω.

A third nodal solution exists (cf. Theorem 4.1) as soon as, roughly speaking, λ
is not an eigenvalue of the operator −∆p with homogeneous Neumann boundary
conditions. The approach taken exploits truncation techniques, sub- and super-
solution methods, besides results from critical point theory.

Problem (1.1) has very recently been investigated in [15]. However, that
work treats a different situation, i.e. the case when the parameter λ is near
resonance. Other papers on related topics are [1], [10], [13]. If f(x, t) := |t|q−2t,
(x, t) ∈ Ω× R, for some q ∈ ]p, p∗[, with p∗ being the critical Sobolev exponent,
then the equation in (1.1) reduces to the so-called equi-diffusive equation

−∆pu = λ|u|p−2u− |u|q−2u in Ω.

Under homogeneous Dirichlet boundary conditions, it was thoroughly stud-
ied; see for instance [7] (where N = 1) and [9] (where N > 1).

2. Basic assumptions and preliminary results

Let (X, ‖ · ‖) be a real Banach space. Given a set V ⊆ X, write ∂V for the
boundary of V , int(V ) for the interior of V , and V for the closure of V . The
symbol X∗ denotes the dual space of X, while 〈 · , · 〉 indicates the duality pairing
between X and X∗. A function Φ:X → R fulfilling

lim
‖x‖→∞

Φ(x) = ∞

is called coercive. Let Φ ∈ C1(X). We say that Φ satisfies the Palais–Smale
condition when

(PS)Φ Every sequence {xk} ⊆ X such that {Φ(xk)} is bounded and

lim
k→∞

‖Φ′(xk)‖X∗ = 0

possesses a convergent subsequence.

If c ∈ R then, as usual, Φc := {x ∈ X : Φ(x) ≤ c} while Kc(Φ) := K(Φ) ∩
Φ−1(c), with K(Φ) being the critical set of Φ, i.e. K(Φ) := {x ∈ X : Φ′(x) = 0}.

Let (A,B) be a topological pair fulfilling B ⊂ A ⊆ X. The symbol Hk(A,B),
k ∈ N0, indicates the k-th-relative singular homology group of (A,B) with integer
coefficients. If x0 ∈ Kc(Φ) is an isolated point of K(Φ) then

Ck(Φ, x0) := Hk(Φc ∩ U,Φc ∩ U \ {x0}), k ∈ N0,
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are the critical groups of Φ at x0. Here, U stands for any neighbourhood of x0

such that K(Φ) ∩ Φc ∩ U = {x0}. By excision, critical groups turn out to be
independent of U . The monographs [3], [5] represent general references on this
subject.

Finally, an operator A:X → X∗ is called coercive when

lim
‖x‖→∞

〈A(x), x〉
‖x‖

= ∞.

We say that A is of type (S)+ if xk ⇀ x in X and lim supk→∞〈A(xk), xk−x〉 ≤ 0
imply xk → x.

Throughout the paper, Ω denotes a bounded domain of the real Euclidean N -
space (RN , | · |), N ≥ 3, with a smooth boundary ∂Ω, p ∈ ]1,∞[, p′ := p/(p− 1),
and ‖ · ‖p is the standard norm of Lp(Ω). Indicate with p∗ the critical exponent
for the Sobolev embedding W 1,p(Ω) ↪→ Lq(Ω). Recall that p∗ = Np/(N − p) if
p < N , p∗ = ∞ otherwise. Moreover, define

C1
n(Ω) :=

{
u ∈ C1(Ω) :

∂u

∂n
= 0 on ∂Ω

}
.

If, as usual, C1
n(Ω)+ := {u ∈ C1

n(Ω) : u(x) ≥ 0 for all x ∈ Ω} then it is known
(see e.g. [15, p. 1261]) that

int(C1
n(Ω)+) = {u ∈ C1

n(Ω) : u(x) > 0 for all x ∈ Ω}.

Write W 1,p
n (Ω) for the closure of C1

n(Ω) with respect to the standard norm
‖ · ‖ of W 1,p(Ω). When u, v ∈W 1,p

n (Ω) and u(x) ≤ v(x) almost everywhere in Ω
we put

[u, v] := {w ∈W 1,p
n (Ω) : u(x) ≤ w(x) ≤ v(x) for almost every x ∈ Ω}.

From now on “measurable” always signifies Lebesgue measurable while m(E)
indicates the Lebesgue measure of E. To shorten notation, define, for any
u, v: Ω → R,

Ω(u > v) := {x ∈ Ω : u(x) > v(x)}, u+ := max{u, 0}, u− := max{−u, 0}.

The result below represents a W 1,p
n (Ω)-version of the famous H1 versus C1

local minimizers theorem by Brézis and Nirenberg [4]. For its proof we refer the
reader to [15, Proposition 2.5]. Let g: Ω×R → R be a Carathéody function such
that

|g(x, t)| ≤ a1(1 + |t|q−1) for all (x, t) ∈ Ω× R,
where a1 > 0 while q ∈ ]1, p∗[, and let G(x, ξ) :=

∫ ξ

0
g(x, t) dt, (x, ξ) ∈ Ω × R.

Define, for every u ∈W 1,p
n (Ω),

ϕ(u) :=
1
p
‖∇u‖p

p −
∫

Ω

G(x, u(x)) dx.
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Obviously, ϕ ∈ C1(W 1,p
n (Ω)). Moreover, one has

Proposition 2.1. If there exist u0 ∈ W 1,p
n (Ω), δ0 > 0 such that ϕ(u0) ≤

ϕ(u0 + v) for all v ∈ C1
n(Ω) satisfying ‖v‖C1(Ω) ≤ δ0 then u0 ∈ C1

n(Ω) and u0

turns out to be a W 1,p
n (Ω)-local minimizer of ϕ.

Let A:W 1,p
n (Ω) → (W 1,p

n (Ω))∗ be the nonlinear operator, arising from the
p-Laplacian, defined by

〈A(u), v〉 :=
∫

Ω

|∇u(x)|p−2∇u(x) · ∇v(x) dx for all u, v ∈W 1,p
n (Ω),

and let σ(−∆p) the family of eigenvalues of the Neumann problem

(2.1) −∆pu = λ|u|p−2u in Ω,
∂u

∂n
= 0 on ∂Ω.

Recall (vide e.g. [11]) that

(p1) σ(−∆p) contains a strictly increasing sequence {λk} obtained through
the Ljusternik–Schnirelman principle.

(p2) λ1 = 0 and limk→∞ λk = ∞.
(p3) Eigenfunctions corresponding to positive eigenvalues are nodal.
(p4) The operator A is continuous and of type (S)+.

From now on, to avoid unnecessary technicalities, “for every x ∈ Ω” will take
the place of “for almost every x ∈ Ω”. Moreover, to avoid cumbersome formulae,
the variable x will be omitted when no confusion can arise.

Let f : Ω×R → R be a Carathéodory function such that f(x, 0) = 0 in Ω and
the conditions below hold true.

(f1) There exist a1 > 0, q ∈ ]p, p∗[ such that

|f(x, t)| ≤ a1(1 + |t|q−1) for all (x, t) ∈ Ω× R.

(f2) lim
t→0

f(x, t)
|t|p−2t

= 0 uniformly in x ∈ Ω.

(f3) lim
|t|→∞

f(x, t)
|t|p−2t

= ∞ uniformly in x ∈ Ω.

(f4) To every ρ > 0 and every bounded interval Λ ⊆ [λ,∞[ there correspond
constants r > p, θ > 0 such that the function

t 7→ η|t|p−2t− f(x, t) + θ|t|r−2t

turns out increasing in [−ρ, ρ] for all η ∈ Λ, x ∈ Ω.

A function u ∈W 1,p(Ω) is called a sub-solution to (1.1) if∫
Ω

|∇u|p−2∇u · ∇v dx+
∫

Ω

(f(x, u)− λ|u|p−2u)v dx ≤ 0 for all v ∈ C1
n(Ω)+.
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Likewise, we say that u ∈W 1,p(Ω) is a super-solution of (1.1) when∫
Ω

|∇u|p−2∇u · ∇v dx+
∫

Ω

(f(x, u)− λ|u|p−2u)v dx ≥ 0 for all v ∈ C1
n(Ω)+.

Lemma 2.2. Let (f1)–(f3) be satisfied. Then (1.1) possesses a sub-solution
uλ and a super-solution uλ such that uλ ≤ uλ in Ω and uλ, uλ ∈ int(C1

n(Ω)+).

Proof. Pick λ0 > λ, µ > 0, η > λ0 + µ. Owing to (f3) and (f1) there exists
a cη > 0 such that

(2.2) f(x, t) > ηtp−1 − cη for all (x, t) ∈ Ω× R+
0 .

Since η > λ0 + µ, the functional ψ:W 1,p
n (Ω) → R given by

ψ(u) :=
1
p
‖∇u‖p

p +
µ

p
‖u‖p

p +
η − λ0 − µ

p
‖u+‖p

p − cη
∫

Ω

u dx for all u ∈W 1,p
n (Ω)

is coercive. A simple argument, based on the compact embedding of W 1,p
n (Ω) in

Lp(Ω), ensures that it is weakly sequentially lower semi-continuous. Therefore,

ψ(uλ) = inf
u∈W 1,p

n (Ω)
ψ(u)

for some uλ ∈W 1,p
n (Ω). This implies ψ′(uλ) = 0, i.e.

(2.3) A(uλ) + µ|uλ|p−2uλ = (λ0 + µ− η)(u+
λ )p−1 + cη in (W 1,p

n (Ω))∗.

Acting on (2.3) with v := −u−λ we obtain

1
p
‖∇u−λ ‖

p
p + µ‖u−λ ‖

p
p = −cη

∫
Ω

u−λ dx ≤ 0.

Consequently, u−λ = 0, which, on account of (2.3), means uλ ≥ 0 in Ω and uλ 6= 0.
Since, by (2.3) again,

(2.4) −∆puλ + ηup−1
λ = λ0u

p−1
λ + cη in Ω,

∂uλ

∂n
= 0 on ∂Ω,

standard results from nonlinear regularity theory (see e.g. [10]) ensure that

uλ ∈ C1
n(Ω)+ \ {0}.

Thanks to [16, Theorem 5], the obvious inequality ∆puλ ≤ ηup−1
λ yields

uλ ∈ int(C1
n(Ω)+).

Finally, gathering (2.4) and (2.2) together we have

(2.5) −∆puλ = λ0u
p−1
λ − (ηup−1

λ − cη) ≥ λ0u
p−1
λ − f(x, uλ).

Hence, uλ turns out to be a super-solution of (1.1).
Now, pick ε ∈ ]0, λ[. Due to (f2), there exists a δ > 0 such that

(2.6) f(x, t) ≤ εtp−1 for all (x, t) ∈ Ω× [0, δ].
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Suppose, as we allow,

(2.7) δ ≤ min
x∈Ω

uλ(x),

fix any ξ ∈ ]0, δ], and define

uλ(x) := ξ for all x ∈ Ω.

Obviously, uλ ∈ int(C1
n(Ω)+). Using (2.6) we then see that uλ is a sub-solution

of (1.1). Finally, (2.7) evidently gives uλ ≤ uλ in Ω, which completes the proof.�

Likewise, one has

Lemma 2.3. Let (f1)–(f3) be satisfied. Then, (1.1) possesses a sub-solution
vλ and a super-solution vλ such that vλ ≤ vλ in Ω and vλ, vλ ∈ −int(C1

n(Ω)+).

3. Constant-sign solutions

Let η > 0, let f+
η : Ω × R → R be the Carathéodory function defined by

setting, for every (x, t) ∈ Ω× R,

f+
η (x, t) :=

{
0 if t ≤ 0,

ηtp−1 − f(x, t) otherwise,

and let F+
η (x, ξ) :=

∫ ξ

0
f+

η (x, t) dt. For µ > 0, write

ϕ+
µ (u) :=

1
p
‖∇u‖p

p +
µ

p
‖u‖p

p −
∫

Ω

F+
λ+µ(x, u(x)) dx for all u ∈W 1,p

n (Ω).

Since f+
λ+µ is of Carathéodory’s type, one has ϕ+

µ ∈ C1(W 1,p
n (Ω)).

Theorem 3.1. Suppose (f1)–(f4) hold true. Then problem (1.1) possesses
a solution u0 ∈ int(C1

n(Ω)+) ∩ [uλ, uλ], which is a local minimizer of ϕ+
µ .

Proof. Put, for every (x, t) ∈ Ω× R,

(3.1) fλ+µ(x, t) :=


(λ+ µ)uλ(x)p−1 − f(x, uλ(x)) if t < uλ(x),

(λ+ µ)tp−1 − f(x, t) if uλ(x) ≤ t ≤ uλ(x),

(λ+ µ)uλ(x)p−1 − f(x, uλ(x)) if t > uλ(x),

where uλ and uλ are as in Lemma 2.2. Since the functional

ϕµ(u) :=
1
p
‖∇u‖p

p +
µ

p
‖u‖p

p −
∫

Ω

Fλ+µ(x, u(x)) dx, u ∈W 1,p
n (Ω),

with F (x, ξ) :=
∫ ξ

0
fλ+µ(x, t) dt, is weakly sequentially lower semi-continuous

and coercive, one has

(3.2) ϕµ(u0) = inf
u∈W 1,p

n (Ω)
ϕµ(u)



Constant-Sign and Nodal Solutions for a Neumann Problem 239

for some u0 ∈W 1,p
n (Ω). This implies ϕ′µ(u0) = 0, namely

(3.3) A(u0) + µ|u0|p−2u0 = fλ+µ(·, u0) in (W 1,p
n (Ω))∗.

Acting on (3.3) with v := (uλ − u0)+ and using (2.6) we obtain

〈A(u0), (uλ − u0)+〉 + µ

∫
Ω

|u0|p−2u0(uλ − u0)+ dx

=(λ+ µ)
∫

Ω

up−1
λ (uλ − u0)+ dx−

∫
Ω

f(x, uλ)(uλ − u0)+ dx

≥ (λ+ µ− ε)
∫

Ω

up−1
λ (uλ − u0)+ dx.

Observe that A(uλ) = 0. The choice of ε forces

〈A(u0)−A(uλ), (uλ − u0)+〉+ µ

∫
Ω

(|u0|p−2u0 − up−1
λ )(uλ − u0)+ dx ≥ 0.

By monotonicity we thus have m(Ω(uλ > u0)) = 0, that is uλ ≤ u0 in Ω.
A similar reasoning then provides u0 ≤ uλ. Therefore, on account of (3.1) and
(3.3), the function u0 turns out to be a solution of (1.1). Through standard
results from nonlinear regularity theory we finally get u0 ∈ int(C1

n(Ω)+).
Next, pick σ ∈ ]0, ξ[ and define uσ := u0 − σ. Obviously, uσ ∈ int(C1

n(Ω)+)
because

uσ(x) ≥ uλ(x)− σ = ξ − σ > 0 for all x ∈ Ω.

Moreover,

(3.4) −∆puσ(x) + θuσ(x)r−1 = −∆pu0(x) + θu0(x)r−1 − h(σ)

=λu0(x)p−1 − f(x, u0(x)) + θu0(x)r−1 − h(σ),

where θ, r come from (f4) written for ρ := ‖uλ‖∞ and Λ := [λ, λ + 1], while
h(σ) → 0 as σ → 0+. Combining (3.4) with (f4) and (2.6) we achieve

−∆puσ(x) + θuσ(x)r−1 ≥λξp−1 − f(x, ξ) + θξr−1 − h(σ)(3.5)

≥ (λ− ε)ξp−1 + θξr−1 − h(σ).

Choose σ > 0 so small that h(σ) < (λ− ε)ξp−1. Then (3.5) leads to

−∆puσ(x) + θuσ(x)r−1 ≥ θξr−1 = −∆puλ(x) + θuλ(x)r−1

which implies uσ ≥ uλ in Ω. So, a fortiori,

(3.6) u0 − uλ ∈ int(C1
n(Ω)+).
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Likewise, if η > 0 and uη := u0 + η then, by (2.5),

(3.7) −∆puη(x) + θuη(x)r−1 = −∆pu0(x) + θu0(x)r−1 + h(η)

=λu0(x)p−1 − f(x, u0(x)) + θu0(x)r−1 + h(η)

≤λuλ(x)p−1 − f(x, uλ(x)) + θuλ(x)r−1 + h(η)

≤ (λ− λ0)mλ + λ0uλ(x)p−1 − f(x, uλ(x)) + θuλ(x)r−1 + h(η)

≤ (λ− λ0)mλ −∆puλ(x) + θuλ(x)r−1 + h(η)

where limη→0+ h(η) = 0 while mλ = minx∈Ω uλ(x). Choosing η in (3.7) so small
that h(η) < (λ0 − λ)mλ and arguing as before provides

(3.8) uλ − u0 ∈ int(C1
n(Ω)+).

Write, for δ̂ > 0, û ∈ C1
n(Ω),

B
bδ(û) := {u ∈ C1

n(Ω) : ‖u− û‖C1(Ω) ≤ δ̂}.

Due to (3.6), (3.8) we can find a δ0 > 0 such that Bδ0(u0) ⊆ [uλ, uλ]. Fix any
v ∈ Bδ0(0). By the above inclusion and (3.1) one has

(ϕ+
µ )′(u0 + tv) = ϕ′µ(u0 + tv) for all t ∈ [0, 1].

Thus, on account of (3.2),

ϕ+
µ (u0 + v)− ϕ+

µ (u0) =
∫ 1

0

d

dt
ϕ+

µ (u0 + tv) dt =
∫ 1

0

〈(ϕ+
µ )′(u0 + tv), v〉 dt,∫ 1

0

〈ϕ′µ(u0 + tv), v〉 dt =
∫ 1

0

d

dt
ϕµ(u0 + tv) dt = ϕµ(u0 + v)− ϕµ(u0) ≥ 0.

As v ∈ Bδ0(0) was arbitrary, the function u0 turns out to be a C1
n(Ω)-local

minimizer of ϕ+
µ . Bearing in mind Proposition 2.1, the conclusion follows. �

Now, let η > 0, let f−η : Ω×R → R be the Carathéodory function defined by
setting, for every (x, t) ∈ Ω× R,

f−η (x, t) :=

{
η|t|p−2t− f(x, t) if t ≤ 0,

0 otherwise,

and let F−η (x, ξ) :=
∫ ξ

0
f−η (x, t) dt. If µ > 0, put

ϕ−µ (u) :=
1
p
‖∇u‖p

p +
µ

p
‖u‖p

p −
∫

Ω

F−λ+µ(x, u(x)) dx for all u ∈W 1,p
n (Ω).

Since f−λ+µ is of Carathéodory’s type, one has ϕ−µ ∈ C1(W 1,p
n (Ω)). The next re-

sult can be established through arguments analogous to those adopted in proving
Theorem 3.1.
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Theorem 3.2. Suppose (f1)–(f4) hold true. Then problem (1.1) possesses
a solution v0 ∈ −int(C1

n(Ω)+) ∩ [vλ, vλ], which is a local minimizer of ϕ−µ .

Theorem 3.3. If assumptions (f1)–(f4) are satisfied then (1.1) has the small-
est solution u∗ ∈ int(C1

n(Ω)+) in the order interval [uλ, uλ].

Proof. Define S+
λ := {u ∈ [uλ, uλ] : u is a solution to (1.1)}. Theorem 3.1

yields S+
λ 6= ∅ while standard results from nonlinear regularity theory (cf. e.g.

[10]) combined with Lemma 2.2 give S+
λ ⊆ int(C1

n(Ω)+). We claim that S+
λ turns

out to be downward directed. Indeed, pick u1, u2 ∈ S+
λ and put u := min{u1, u2}.

The same reasoning exploited in the proof of [1, Lemma 1] ensures here that u
is a super-solution to (1.1). Hence, as before (see Theorem 3.1), one can find
a solution u3 ∈ int(C1

n(Ω)+) ∩ [uλ, u] of problem (1.1). Since u3 ∈ S+
λ , u3 ≤ u1,

and u3 ≤ u2, the assertion follows.
Our next goal is to show that S+

λ possesses a minimal element. So, let
C ⊆ S+

λ be a chain. By [6, p. 336] we have

(3.9) inf C = inf{uk : k ∈ N}

for some {uk} ⊆ C, while Lemma 1.1.5 of [8] allows this sequence to be decreas-
ing. Moreover, {uk} is bounded in W 1,p

n (Ω), because

(3.10) uk ∈ [uλ, uλ] and A(uk) = λup−1
k −f( · , uk) in (W 1,p

n (Ω))∗ for all k ∈ N.

Passing to a subsequence when necessary, we may thus suppose uk ⇀ u in
W 1,p

n (Ω) as well as uk → u in Lq(Ω), with

(3.11) u = inf{uk : k ∈ N}.

Hypothesis (f1) forces

lim
k→∞

∫
Ω

f(x, uk(x))(uk(x)− u(x)) dx = 0.

Therefore, on account of (3.10),

lim
k→∞

〈A(uk), uk − u〉 = 0.

Property (p4) ensures that uk → u in W 1,p
n (Ω). From (3.10) it follows, letting

k →∞,

u ∈ [uλ, uλ], A(u) = λup−1 − f( · , u) in (W 1,p
n (Ω))∗,

i.e. u ∈ S+
λ . Now, (3.9) and (3.11) lead to inf C ∈ S+

λ , as desired.
By Zorn’s lemma the set S+

λ possesses a minimal element, say u∗. If u ∈ S+
λ

then there exists ũ ∈ S+
λ such that ũ ≤ min{u∗, u}, because S+

λ is downward
directed. The minimality of u∗ gives u∗ = ũ. Hence, u∗ ≤ u in Ω, and the proof
is complete. �
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Using Lemma 2.3 instead of Lemma 2.2 and arguing as before provides the
next result.

Theorem 3.4. If assumptions (f1)–(f4) are satisfied then problem (1.1) has
the greatest solution v∗ ∈ −int(C1

n(Ω)+) in the order interval [vλ, vλ].

Theorems 3.3 and 3.4 lead to the existence of extremal constant sign solu-
tions.

Theorem 3.5. Suppose (f1)–(f4) hold true. Then (1.1) possesses a smallest
positive solution u+ ∈ int(C1

n(Ω)+).

Proof. Pick {tk} ⊆ ]0, 1[ fulfilling tk → 0 and define uλ,k := tkuλ. For each
k ∈ N, Theorem 3.3 provides a function u∗,k ∈ int(C1

n(Ω)+)∩ [uλ,k, uλ] such that

(3.12) A(u∗,k) = λ(u∗,k)p−1 − f( · , u∗,k) in (W 1,p
n (Ω))∗.

Through the same arguments exploited in the proof of this result we then obtain
a solution u+ ∈ C1

n(Ω)+ to (1.1) enjoying the property

(3.13) u∗,k → u+ in W 1,p
n (Ω).

One has u+ 6= 0. Indeed, if wk := u∗,k/‖u∗,k‖ then

(3.14) wk ⇀ w in W 1,p
n (Ω) and wk → w in Lp(Ω)

for some w ∈W 1,p
n (Ω). Moreover, on account of (3.12),

(3.15) A(wk) = λwp−1
k − f( · , u∗,k)

‖u∗,k‖p−1
in (W 1,p

n (Ω))∗ for all k ∈ N.

Suppose, contrary to our claim, that u+ = 0. Acting on (3.15) with v := wk −w
and using (3.14), besides (f2), it results in

lim
k→∞

〈A(wk), wk − w〉 = 0.

Hence, by (p4),

(3.16) wk → w in W 1,p
n (Ω), which forces ‖w‖ = 1.

Due to (3.13) we get

(3.17)
f( · , u∗,k)
‖u∗,k‖p−1

⇀ 0 in Lp(Ω).

Gathering (3.15)–(3.17) together directly yields A(w) = λwp−1, namely w turns
out to be an eigenfunction of (2.1) corresponding to the eigenvalue λ. Since
w(x) > 0 for all x ∈ Ω, Property (p3) forces λ = 0, against the choice of λ.
Therefore, u+ ∈ C1

n(Ω)+ \ {0}.
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Next, pick any ρ ≥ maxx∈Ω u+(x). Assumption (f4) provides r > p, θ > 0
such that

−∆pu+(x) + θu+(x)r−1 = λu+(x)p−1 − f(x, u+(x)) + θu+(x)r−1 ≥ 0

almost everywhere in Ω. Thus, ∆pu+ ≤ θur−1
+ and so, on account of [16, Theo-

rem 5], u+ ∈ int(C1
n(Ω)+). It remains to verify that u+ is the smallest solution

of (1.1) inside int(C1
n(Ω)+). If u belongs to int(C1

n(Ω)+) and solves (1.1) then
uλ,k ≤ u for any k large enough. By the minimality of u∗,k we get u∗,k ≤ u. Via
(3.13), letting k →∞ yields u+ ≤ u. �

A similar argument, with Theorem 3.4, vλ, and vλ,k := tkvλ in place of
Theorem 3.3, uλ,k, and uλ, respectively, produces the next result.

Theorem 3.6. If (f1)–(f4) are satisfied then problem (1.1) has a biggest neg-
ative solution v− ∈ −int(C1

n(Ω)+).

Gathering Theorems 3.5 and 3.6 together we obtain

Theorem 3.7. Suppose (f1)–(f4) hold true. Then (1.1) possesses a biggest
negative solution v− ∈ −int(C1

n(Ω)+) and a smallest positive solution u+ ∈
int(C1

n(Ω)+).

Finally, when f(x, t) := |t|q−2t, (x, t) ∈ Ω×R, the positive solution given by
Theorem 3.5 is unique, as the next result shows.

Theorem 3.8. Let q ∈ ]p, p∗[ and let λ > 0. Then the Neumann problem

(3.18) −∆pu = λup−1 − uq−1 in Ω, u > 0 in Ω,
∂u

∂n
= 0 on ∂Ω

has only one solution in int(C1
n(Ω)+).

Proof. If u, v ∈ W 1,p
n (Ω) are two solutions of (3.18) then standard results

from nonlinear regularity theory (vide for instance [10]) and [16, Theorem 5]
guarantee that u, v ∈ int(C1

n(Ω)+). Thus, thanks to [2, Theorem 1.1],

0 ≤
∫

Ω

(
|∇u|p −∇

(
up

vp−1

)
· |∇v|p−2∇v

)
dx

=
∫

Ω

(
|∇u|p − up

vp−1
(−∆pv)

)
dx =

∫
Ω

(|∇u|p − λup + upvq−p) dx

=
∫

Ω

(−uq + upvq−p) dx =
∫

Ω

up(vq−p − uq−p) dx.

Interchanging the role of u and v provides∫
Ω

vp
(
uq−p − vq−p

)
dx ≥ 0.
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Consequently,

(3.19)
∫

Ω

(up − vp)
(
uq−p − vq−p

)
dx ≤ 0.

Since the function t 7→ tq/p−1, t ∈ R+, is strictly monotone because q > p,
inequality (3.19) forces u = v. �

4. Nodal solutions

A third non-zero, sign-changing (i.e. nodal) solution can be obtained provided
λ ∈ ]λ2,∞[ \σ(−∆p), as the result below shows. Let v− and u+ the solutions of
problem (1.1) given by Theorem 3.7. Define, for every η > 0, (x, t) ∈ Ω× R,

fη(x, t) :=


η|v−(x)|p−2v−(x)− f(x, v−(x)) if t < v−(x),

η|t|p−2t− f(x, t) if v−(x) ≤ t ≤ u+(x),

ηu+(x)p−1 − f(x, u+(x)) if t > u+(x),

f−η (x, t) :=


η|v−(x)|p−2v−(x)− f(x, v−(x)) if t < v−(x),

η|t|p−2t− f(x, t) if v−(x) ≤ t ≤ 0,

0 if t > 0,

f+
η (x, t) :=


0 if t < 0,

ηtp−1 − f(x, t) if 0 ≤ t ≤ u+(x),

ηu+(x)p−1 − f(x, u+(x)) if t > u+(x).

(4.1)

Obviously, fη, f
−
η , f

+
η : Ω× R → R are Carathéodory functions. Moreover, set

Fη(x, ξ) :=
∫ ξ

0

fη(x, t) dt, F±η (x, ξ) :=
∫ ξ

0

f±η (x, t) dt, (x, ξ) ∈ Ω× R.

Theorem 4.1. If λ ∈ ]λ2,∞[ \ σ(−∆p) and (f1)–(f4) are satisfied then (1.1)
possesses a nodal solution u ∈ C1

n(Ω).

Proof. Write, for µ > 0,

ϕ+
µ (u) :=

1
p
‖∇u‖p

p +
µ

p
‖u‖p

p −
∫

Ω

F+
λ+µ(x, u(x)) dx for all u ∈W 1,p

n (Ω).

By (4.1) the functional ϕ+
µ belongs to C1(W 1,p

n (Ω)), is coercive and sequentially
weakly lower semi-continuous. Hence, there exists û ∈W 1,p

n (Ω) such that

(4.2) ϕ+
µ (û) = inf

u∈W 1,p
n (Ω)

ϕ+
µ (u).

One clearly has û ∈ K(ϕ+
µ ). Moreover, û 6= 0. Indeed, pick ε ∈]0, λ[. Since

min
x∈Ω

u+(x) > 0,
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on account of (f2) for any ξ > 0 sufficiently small we get

ϕ+
µ (ξ) = −λ

p
ξpm(Ω) +

∫
Ω

( ∫ ξ

0

f(x, t) dt
)
dx ≤ −λ− ε

p
ξpm(Ω) < 0,

which forces
ϕ+

µ (û) < 0 = ϕ+
µ (0),

and the assertion follows. The next goal is to prove that

(4.3) û = u+.

If u ∈ K(ϕ+
µ ) \ {0} then

(4.4) A(u) + µ|u|p−2u = f+
λ+µ( · , u) in (W 1,p

n (Ω))∗.

Acting on (4.4) with −u− ∈W 1,p
n (Ω) we obtain min{1, µ}‖u−‖p ≤ 0. Therefore,

u ≥ 0. Through (4.4) again it results in

〈A(u), (u− u+)+〉+ µ

∫
Ω

up−1(u− u+)+ dx

=
∫

Ω

[
(λ+ µ)up−1

+ − f(x, u+)
]
(u− u+)+ dx

=〈A(u+), (u− u+)+〉+ µ

∫
Ω

up−1
+ (u− u+)+ dx.

By the strict monotonicity of t 7→ |t|p−2t, t ∈ R, this implies u ≤ u+. Conse-
quently, u ∈ [0, u+] \ {0}, and (4.4) becomes

A(u) = λup−1 − f( · , u) in (W 1,p
n (Ω))∗,

namely u turns out to be a solution of (1.1), u ∈ int(C1
n(Ω)+), besides u ≤ u+.

Thanks to Theorem 3.7 we thus have u = u+. So, K(ϕ+
µ ) \ {0} = {u+}. Now,

(4.3) comes at once from û ∈ K(ϕ+
µ ) \ {0}. Define

ϕµ(u) :=
1
p
‖∇u‖p

p +
µ

p
‖u‖p

p −
∫

Ω

Fλ+µ(x, u(x)) dx

for all u ∈W 1,p
n (Ω). Since

ϕ+
µ |C1

n(Ω)+
= ϕµ|C1

n(Ω)+

and u+ ∈ int(C1
n(Ω)+), combining (4.2), (4.3) with Proposition 2.1 ensures that

u+ is a W 1,p
n (Ω)-local minimizer of ϕµ.

Similarly, the function v− turns out a W 1,p
n (Ω)-local minimizer of ϕµ. This

can be verified as before, but with ϕ+
µ replaced by

ϕ−µ (u) :=
1
p
‖∇u‖p

p +
µ

p
‖u‖p

p −
∫

Ω

F−λ+µ(x, u(x)) dx for all u ∈W 1,p
n (Ω).
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Without loss of generality we may assume that

(4.5) ϕµ(v−) ≤ ϕµ(u+).

If u+ is not an isolated critical point of ϕµ then there exists a sequence {uk} ⊆
W 1,p

n (Ω) of pairwise distinct critical points for ϕµ converging to u+. Since an
argument analogous to that involving ϕ+

µ yields here

(4.6) K(ϕµ) ⊆ [v−, u+],

by the properties of v− and u+, each uk turns out a nodal solution of (1.1),
and the conclusion follows. Suppose now u+ is isolated. The same reasoning
exploited in the proof of [14, Proposition 6] provides r > 0 fulfilling

(4.7) r < ‖u+ − v−‖, ϕµ(u+) < inf
u∈∂Br(u+)

ϕµ(u).

Moreover, the functional ϕµ satisfies the Palais–Smale condition, because it evi-
dently is coercive. By (4.5) and (4.7), the classical Mountain pass Theorem can
be applied. Thus, there exists u ∈W 1,p

n (Ω) such that

ϕ′µ(u) = 0, inf
u∈∂Br(u+)

ϕµ(u) ≤ ϕµ(u).

On account of (4.5) and (4.7) again, the above inequality forces u 6∈ {v−, u+}.
Due to (4.6) we then get

A(u) = λ|u|p−2u− f( · , u) in (W 1,p
n (Ω))∗,

i.e. the function u solves problem (1.1). Standard results from nonlinear regu-
larity theory (cf. [10]) finally give u ∈ C1

n(Ω). Bearing in mind Theorem 3.7,
besides (4.6), the conclusion is achieved once we show that u 6= 0. Define, for
every (t, u) ∈ [0, 1]×W 1,p

n (Ω),

h(t, u) := tϕµ(u) + (1− t)ψ(u), where ψ(u) :=
1
p
(‖∇u‖p

p − λ‖u‖p
p).

Since ϕµ is coercive and λ 6∈ σ(−∆p), the function h(t, · ), t ∈ [0, 1], satisfies the
Palais–Smale condition. We claim that zero turns out an isolated critical point
of h(t, · ) uniformly in t ∈ [0, 1]. If, on the contrary, h′u(tk, uk) = 0 for some
{(tk, uk)} ⊆ [0, 1]×W 1,p

n (Ω) with (tk, uk) → (t, 0) in [0, 1]×W 1,p
n (Ω), then

(4.8)
−∆puk + tkµ|uk|p−2uk = tkfλ+µ(x, uk) + (1− tk)λ|uk|p−2uk in Ω,

∂uk

∂n
= 0 on ∂Ω.

Theorem 2 of [12] provides α ∈ ]0, 1[, M > 0 fulfilling

{uk} ⊆ C1,α
n (Ω) and ‖uk‖C1,α

n (Ω) ≤M for all k ∈ N.
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By compactness of the embedding C1,α
n (Ω) ⊆ C1

n(Ω) this forces uk → 0 in C1
n(Ω),

where a subsequence is considered when necessary. Consequently, uk ∈ [v−, u+]
for any sufficiently large k. Due to (4.8) we thus obtain

A(uk) = λ|uk|p−2uk − tkf( · , uk) in (W 1,p
n (Ω))∗.

Now, arguing exactly as in the proof of Theorem 3.5 yields λ ∈ σ(−∆p), which
is impossible.

Through the homotopy invariance property of critical groups [5, p. 334] one
has

Ck(ϕµ, 0) = Ck(h(1, · ), 0) = Ck(h(0, · ), 0) = Ck(ψ, 0) for all k ∈ N0.

From Proposition 2.6 in [13] it follows

(4.9) C0(ϕµ, 0) = C1(ϕµ, 0) = 0.

Observe that

(4.10) C1(ϕµ, u) 6= 0,

because u is a mountain pass point [5, Corollary 5.2.5]. Comparing (4.9) with
(4.10) finally leads to u 6= 0. �
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[8] S. Heikkilä and V. Lakshmikantham, Monotone Iterative Techniques for Discontin-
uous Nonlinear Differential Equations, Marcel Dekker, New York, 1994.

[9] S. Kamin and L. Veron, Flat core property associated to the p-Laplace operator, Proc.

Amer. Math. Soc. 118 (1993), 1079–1085.
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