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CONSTANT-SIGN AND NODAL SOLUTIONS
FOR A NEUMANN PROBLEM WITH p-LAPLACIAN
AND EQUI-DIFFUSIVE REACTION TERM

SALVATORE A. MARANO — NICOLAOS S. PAPAGEORGIOU

ABSTRACT. The existence of both constant and sign-changing (namely,
nodal) solutions to a Neumann boundary-value problem with p-Laplacian
and reaction term depending on a positive parameter is established. Proofs
make use of sub- and super-solution techniques as well as critical point
theory.

1. Introduction

Let © be a bounded domain in RN, N > 3, with a smooth boundary 95,
let 1 <p< oo, andlet f:Q2 x R — R be a Carathéodory function. Given a real
parameter A > 0, consider the problem

—Apu = AMulP72u — f(z,u) in €,

(1.1)
du_ on 99,
on
where
. 9 ou 9
Apu = div (|Vu|P~*Vu) and e |VulP~*Vu - n,
n

with n(z) being the outward unit normal vector to 02 at the point z € J.
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In this paper, a smallest positive solution and a biggest negative solution to
(1.1) are obtained (see Theorem 3.7) by chiefly assuming that
flz,1) _ f(=,t)

e =0, Jm 12t = oo uniformly in 2.

A third nodal solution exists (cf. Theorem 4.1) as soon as, roughly speaking, A
is not an eigenvalue of the operator —A, with homogeneous Neumann boundary
conditions. The approach taken exploits truncation techniques, sub- and super-
solution methods, besides results from critical point theory.

Problem (1.1) has very recently been investigated in [15]. However, that
work treats a different situation, i.e. the case when the parameter A is near
resonance. Other papers on related topics are [1], [10], [13]. If f(x,t) == [t|97%¢,
(z,t) € Q x R, for some g € |p, p*[, with p* being the critical Sobolev exponent,
then the equation in (1.1) reduces to the so-called equi-diffusive equation

—Apu = MulP"2u — [u|?%u  in Q.

Under homogeneous Dirichlet boundary conditions, it was thoroughly stud-
ied; see for instance [7] (where N = 1) and [9] (where N > 1).

2. Basic assumptions and preliminary results

Let (X, | - ||) be a real Banach space. Given a set V' C X, write OV for the
boundary of V, int(V) for the interior of V', and V for the closure of V. The
symbol X* denotes the dual space of X, while (-, -} indicates the duality pairing
between X and X*. A function ®: X — R fulfilling

d(z) =0

llz]|—o0
is called coercive. Let ® € C'(X). We say that ® satisfies the Palais—Smale
condition when

(PS)s FEvery sequence {zr} C X such that {®(xy)} is bounded and
kli120|\<b’(xk)||X* =0

possesses a convergent subsequence.
If ¢ € R then, as usual, ®¢ := {z € X : ®(z) < ¢} while K (®) := K(®) N
®~1(c), with K(®) being the critical set of ®, i.e. K(®):={z € X : ®'(z) = 0}.
Let (A, B) be a topological pair fulfilling B C A C X. The symbol Hy(A, B),
k € Ny, indicates the k-th-relative singular homology group of (A, B) with integer
coefficients. If zg € K (®) is an isolated point of K(®) then

Ck(q),ajo) = H}g(q)c NnU, PN U\{mo}), k € Ny,
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are the critical groups of ® at zy. Here, U stands for any neighbourhood of xg
such that K(®) N ®°NU = {zp}. By excision, critical groups turn out to be
independent of U. The monographs [3], [5] represent general references on this

subject.
Finally, an operator A: X — X* is called coercive when
(Alw).2) _
lzll—oo Iz

We say that A is of type (S)4 if 2 — 2z in X and limsup,_, . (A(zg), 2 —2x) <0
imply z;, — =x.

Throughout the paper, 2 denotes a bounded domain of the real Euclidean N-
space (RV,|-]), N > 3, with a smooth boundary 99, p € ]1,0c[, p’' :=p/(p—1),
and || - ||, is the standard norm of LP(§). Indicate with p* the critical exponent
for the Sobolev embedding WP (Q) < L%(Q). Recall that p* = Np/(N — p) if
p < N, p* = oo otherwise. Moreover, define

— — Ou
1 L 1 .
C,(Q):= {u eC(Q): o
If, as usual, CL1(Q)y = {u € CL(Q) : u(z) > 0 for all z € Q} then it is known

(see e.g. [15, p. 1261]) that

=0on GQ}.

int(CL(Q),) = {u € CLQ) : u(z) >0 for all z € Q}.

Write W,1P(Q) for the closure of C1(Q) with respect to the standard norm
| - || of WHP(Q). When u,v € W}P(Q) and u(z) < v(z) almost everywhere in

we put
[u,v] == {w € WP(Q) : u(z) < w(z) < v(z) for almost every = € Q}.

From now on “measurable” always signifies Lebesgue measurable while m(E)
indicates the Lebesgue measure of E. To shorten notation, define, for any
u,v: Q2 — R,

Qu>v):={ze€Q:ulx)>v(x)}, u':=max{u,0}, u~ :=max{—u,0}.

The result below represents a WP (£)-version of the famous H! versus C*
local minimizers theorem by Brézis and Nirenberg [4]. For its proof we refer the
reader to [15, Proposition 2.5]. Let g: 2 x R — R be a Carathéody function such
that

lg(z,t)] < a1 (1+[t|7") for all (z,t) € Q xR,
where a; > 0 while ¢ € ]1,p*[, and let G(z,¢) : fo x,t)dt, (z,8) € Q x R.
Define, for every u € W,1P(Q),

1 p_ z.u(x)) dx
O AG<,<»d.
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Obviously, ¢ € C1(W,1P(Q)). Moreover, one has

PROPOSITION 2.1. If there exist ug € WP(Q), do > 0 such that ¢(ug) <
o(ug +v) for all v € CL(Q) satisfying [vllcr@) < do then ug € CH() and g

turns out to be a WP (Q)-local minimizer of .

Let A:WIP(Q) — (WLP(Q))* be the nonlinear operator, arising from the
p-Laplacian, defined by

(A(u),v) :== /Q |Vu(z)|P~2Vu(z) - Vo(x) de  for all u,v € W,HP(Q),

and let o(—A,) the family of eigenvalues of the Neumann problem

0
(2.1) —Apu = AulP"?u  in Q, 220 ondQ.
on
Recall (vide e.g. [11]) that
(p1) o(—A,) contains a strictly increasing sequence {\} obtained through
the Ljusternik—Schnirelman principle.
(p2) A1 =0 and limg_, o A = 0.
(ps) Eigenfunctions corresponding to positive eigenvalues are nodal.
(p4) The operator A is continuous and of type (S)4.

From now on, to avoid unnecessary technicalities, “for every x € 7 will take
the place of “for almost every x € 7. Moreover, to avoid cumbersome formulae,
the variable z will be omitted when no confusion can arise.

Let f: Q2 xR — R be a Carathéodory function such that f(z,0) = 0 in Q and
the conditions below hold true.

(f1) There exist ap > 0, q € |p, p*| such that

|f (2, t)] < ar(L+ [T for all (z,t) € A x R.

St :
(f2) 221(1) it 0 uniformly in x € 1.

flz,t)
f

( 3) [t =00 |t|p—2t
(f1) To every p > 0 and every bounded interval A C [, 00| there correspond

= oo uniformly in x € Q.

constants v > p, 0 > 0 such that the function
t = nlt|P723 — f(x,t) + 0t 2t

turns out increasing in [—p, p| for alln € A, z € Q.
A function u € W1P(Q) is called a sub-solution to (1.1) if

|VulP~2Vu - Vo dr + / (f(z,u) — Nu[P?u)vdr <0 for all v € CL(Q),.
Q Q
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Likewise, we say that uw € W1P(Q) is a super-solution of (1.1) when
/Q |Va|P~2Va - Vo dr + /Q(f(x,ﬂ) — AalP?u)vdr >0 forallve CL(Q),.
LEMMA 2.2. Let (f;)—(f3) be satisfied. Then (1.1) possesses a sub-solution
u, and a super-solution Uy such that uy, <y in Q and u,,uy € int(CL(Q)L).

PROOF. Pick A\g > A\, > 0,1 > Ag+ . Owing to (f3) and (f;) there exists
a ¢, > 0 such that

(2.2) fz,t) >ntP~' —¢, forall (z,t) € Q x R .

Since n > A\ + u, the functional : W1P(Q) — R given by
1 — X —
wla) = STl + 2l + T - cn/Qudx for all u € WP(Q)

is coercive. A simple argument, based on the compact embedding of W?(£) in
LP(Q2), ensures that it is weakly sequentially lower semi-continuous. Therefore,

Y(my) = inf  Y(u)

u€EW,'P (Q)
for some wy € WIP(£). This implies 1’ () = 0, i.e.
(2.3)  A®@) + pfaaP"Hun = o+ p =)@ ey in (W P(Q))"
Acting on (2.3) with v := —@, we obtain
LIV I+l I = e, [ @ de <o,
Consequently, u, = 0, which, on account of (2.3), means uy > 0in Q and uy # 0.

Since, by (2.3) again,

(2.4) —Apay + @t = ATy e, in Q, % =0 on 09,
n

standard results from nonlinear regularity theory (see e.g. [10]) ensure that
1y € Cp(2)+ \ {0}

Thanks to [16, Theorem 5], the obvious inequality A,uy < nﬂf\*l yields
Uy € int(Ch(Q)4).

Finally, gathering (2.4) and (2.2) together we have

(2.5) —ApTy = AT = (E Tt = ey) > M@ — fz,1).

Hence, @y turns out to be a super-solution of (1.1).
Now, pick € € ]0, A[. Due to (f3), there exists a 6 > 0 such that

(2.6) fz,t) < et~ for all (z,t) € Q x [0,d].
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Suppose, as we allow,

(2.7) 0 < minwy(x),
€N

fix any ¢ € ]0, 0], and define
uy(x):=¢ forall z € Q.

Obviously, u, € int(C}(Q)y). Using (2.6) we then see that u, is a sub-solution
of (1.1). Finally, (2.7) evidently gives u, <%, in €, which completes the proof.(]

Likewise, one has
LEMMA 2.3. Let (f1)—(f3) be satisfied. Then, (1.1) possesses a sub-solution
vy and a super-solution Uy such that vy, < Ty in Q and vy,Ty € —int(CL(Q),).
3. Constant-sign solutions

Let n > 0, let fn+ :Q0 x R — R be the Carathéodory function defined by
setting, for every (z,t) € Q x R,

if t <0,
ntP~! — f(x,t) otherwise,

and let F,f(z,¢) : fo fif(z,t) dt. For p> 0, write

f;(x’t) =

gaﬂ( u) = ||Vu|\p ||qu / /\+u ))dz forall u € Wl’p(Q)

Since f;;u is of Carathéodory’s type, one has (p,‘f € CH(WLr(Q)).
THEOREM 3.1. Suppose (f1)—(fy) hold true. Then problem (1.1) possesses
a solution ug € int(C}(Q) ) N [uy, ], which is a local minimizer of ¢} .
PROOF. Put, for every (z,t) € Q x R,
A+ @y ()P~ = fla,uy (@) if £ <uy(2),
(31) frplwt)i={ O+ @ = fla,b i1, (2) < £ < T (a),
A+ @i (@)t = f(z,ax(x) it > (@),

where u, and Uy are as in Lemma 2.2. Since the functional
1 Iz
oulu) = EIIVUIIQ + EIIUIIZ - / Frpu(z,u(e) de, uweW,"(9Q),

with F(z,&) = fo Frpulz,t)dt, is weakly sequentially lower semi-continuous
and coercive, one has

(3'2) Pu (UO) = iIllf Pu (u)
wu€EW,'P(Q)



CONSTANT-SIGN AND NODAL SOLUTIONS FOR A NEUMANN PROBLEM 239
for some ug € W,?(€). This implies ¢/, (uo) = 0, namely
(3.3) A(uo) + pluoP2ug = farpu(uo) in (WEP(Q))*.
Acting on (3.3) with v := (u, — uo)™ and using (2.6) we obtain
(Al ar = w0)) + 1 [ fuol” 2oy = o) o
=) [ 7 = ) e = [ ) = ) da
> (=) [ 7 (= ) e
Observe that A(uy,) = 0. The choice of ¢ forces
(A(uo) — A(uy), (wy —u0)™) + M/Q(\UOV’_QUO —u} )y — uo)t da > 0.

By monotonicity we thus have m(Q(uy > up)) = 0, that is u, < wug in Q.
A similar reasoning then provides ug < @y. Therefore, on account of (3.1) and
(3.3), the function gy turns out to be a solution of (1.1). Through standard
results from nonlinear regularity theory we finally get ug € int(C}(Q)4).

Next, pick o € ]0,¢[ and define u, := ug — 0. Obviously, u, € int(CL(Q)4)
because

Ug () > up(z) —o=E6—0 >0 forall x e

Moreover,

(3.4) — Apuy () + Oug (x)" ™ = — Apug(x) + Oup(x) ™ — (o)
= Aug ()P — f(2,uo(x)) + Oug(x)" " — h(o),

where 0, r come from (fy) written for p := |[Up|lcc and A := [\, A + 1], while
h(oc) — 0 as ¢ — 0F. Combining (3.4) with (f;) and (2.6) we achieve

(85)  —Apue(@) +0u(2) " 2 AL — f(w,€) + 06" — h(o)
> (A=)t 667 — (o).

Choose o > 0 so small that k(o) < (A —€)¢P~ L. Then (3.5) leads to
~Apup () + Oug (x) ™1 2 06 = —Apu, (x) + Ouy (2)
which implies u, > u, in . So, a fortiori,

(3.6) up — uy, € int(CL(Q)4).
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Likewise, if n > 0 and u,, := ug + 7 then, by (2.5),

(3.7) = Apuy(x) + Ouy(2)" ' = —=Apug(x) + Oug(x)"' + h(n)
— Nug()P 1 = F( u0(2)) + Buo(x)" + ()
<NU ()P — f(z,an () + 0ur(z)" " + h(n)
< (A= X)Tx + Aot (2)P Y = f(z,ax(x)) + 0 (z)" 1 + h(n)
< (X = Xo)Ta — Apn(z) + 0ax(x)" + h(n)

where lim, o+ h(n) = 0 while 7, = min_ g% (x). Choosing 7 in (3.7) so small
that h(n) < (Ag — A\)m and arguing as before provides

(38) Uy —ug € lnt(C;(ﬁﬁ,)

Write, for 0 > 0, @ € C1(0),

Bj(u) = {u € Cp () : [lu—llcn ) < 0}

Due to (3.6), (3.8) we can find a §p > 0 such that Bs,(ug) C [uy,u»]. Fix any
v € Bs,(0). By the above inclusion and (3.1) one has

(o)) (uo + tv) = @), (ug + tv) for all t € [0,1].

Thus, on account of (3.2),

1 d 1
i+ ) (o) = [ Lot = [ o+ )0

1 1
d
/ <<P/M(u0 +tv),v) dt = / @‘PM(UO +tv) dt = ¢, (uo +v) — pu(uo) > 0.
0 0

As v € Bs,(0) was arbitrary, the function ug turns out to be a C}(£2)-local
minimizer of goj. Bearing in mind Proposition 2.1, the conclusion follows. O

Now, let > 0, let f,":Q x R — R be the Carathéodory function defined by
setting, for every (z,t) € Q x R,

tP=2t — f(x,t) ift <0,
Fo (@) = { Z| | e otherwise,
and let F, (z,€) = f(f fo (z,t)dt. If p >0, put
¢, (u) = %HVUHZ + %Hu”ﬁ — /QF/\_—W(I’“(I)) dx for all u € WEP(Q).
Since fy, , is of Carathéodory’s type, one has ¢, € C*(W,;?(Q)). The next re-

sult can be established through arguments analogous to those adopted in proving
Theorem 3.1.
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THEOREM 3.2. Suppose (f1)—(fs) hold true. Then problem (1.1) possesses
a solution vo € —int(CR,(Q)4) N [vy,TA], which is a local minimizer of ¢, .

THEOREM 3.3. If assumptions (f1)—(f4) are satisfied then (1.1) has the small-
est solution u, € int(CL(Q),) in the order interval [uy,y].

PROOF. Define S} := {u € [u,,u,] : u is a solution to (1.1)}. Theorem 3.1
yields S;\' # () while standard results from nonlinear regularity theory (cf. e.g.
[10]) combined with Lemma 2.2 give Sy C int(CL(2)4). We claim that S turns
out to be downward directed. Indeed, pick ui,us € S;f and put @ := min{uy, ua}.
The same reasoning exploited in the proof of [1, Lemma 1] ensures here that @
is a super-solution to (1.1). Hence, as before (see Theorem 3.1), one can find
a solution uz € int(CL(Q)+) N [uy, U] of problem (1.1). Since uz € S5, uz < uy,
and u3 < us, the assertion follows.

Our next goal is to show that Sy possesses a minimal element. So, let
C C Sy be a chain. By [6, p. 336] we have

(3.9) inf C = inf{uy, : k € N}

for some {uy} C C, while Lemma 1.1.5 of [8] allows this sequence to be decreas-
ing. Moreover, {uz} is bounded in W!'?(Q), because

3.10) up € [uy,ux] and A(uyg :)\up_l—f Sug) in (WEP(Q))* for all k € N.
A k n

Passing to a subsequence when necessary, we may thus suppose ur — u in
WLr(Q) as well as uy — u in L(£2), with

(3.11) u = inf{uy : k € N}.

Hypothesis (f;) forces
kh_)rgo /Q fzyup () (uk(x) — u(z)) de = 0.

Therefore, on account of (3.10),
lim (A(ug),ur —u) = 0.
k—o0

Property (p4) ensures that uy — u in W,1P(Q). From (3.10) it follows, letting

k — oo,
u € [@Aaﬂ)\]’ A(u) =Mt — f( 'vu) in (W#p(ﬂ))*v

i.e. u € SY. Now, (3.9) and (3.11) lead to inf C' € S, as desired.

By Zorn’s lemma the set S;f possesses a minimal element, say u,. If u € S;\'
then there exists u € Sy such that @ < min{u,,u}, because Sy is downward
directed. The minimality of u, gives u, = u. Hence, u, < u in , and the proof
is complete. O
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Using Lemma 2.3 instead of Lemma 2.2 and arguing as before provides the
next result.

THEOREM 3.4. If assumptions (f1)—(f4) are satisfied then problem (1.1) has
the greatest solution v. € —int(C}(Q)4) in the order interval [vy,D,].

Theorems 3.3 and 3.4 lead to the existence of extremal constant sign solu-
tions.

THEOREM 3.5. Suppose (f1)—(f4) hold true. Then (1.1) possesses a smallest
positive solution uy € int(CL(Q),).

Proor. Pick {t;} C ]0, 1] fulfilling ¢, — 0 and define u, , := tyu,. For each
k € N, Theorem 3.3 provides a function u, x € int(C}(Q)4) N[wy 1, U] such that

(3.12) At g) = Musw )P = f(uwg)  in (WEP(Q))*.

Through the same arguments exploited in the proof of this result we then obtain
a solution uy € CL(Q)4 to (1.1) enjoying the property

(3.13) U — up  in WEP(Q).
One has uy # 0. Indeed, if wy, := s /|| k|| then
(3.14) wy, —w in WHP(Q) and wp — w in LP(Q)

for some w € W1'P(Q). Moreover, on account of (3.12),

3.15 Alwy) = Pt —
e T

in (WP(Q))* for all k € N.

Suppose, contrary to our claim, that uy = 0. Acting on (3.15) with v := wy, —w
and using (3.14), besides (f3), it results in

lim (A(wy), wr —w) = 0.

k—o0

Hence, by (p4),
(3.16) wy, — w in W,2P(Q), which forces |jwl|| = 1.
Due to (3.13) we get

3.17
(8:17) TPt

—0 in LP(Q).

Gathering (3.15)—(3.17) together directly yields A(w) = AwP~!, namely w turns
out to be an eigenfunction of (2.1) corresponding to the eigenvalue A. Since
w(z) > 0 for all z € Q, Property (p3) forces A = 0, against the choice of A.
Therefore, uy € CL(Q2)4 \ {0}.
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Next, pick any p > max, g u(z). Assumption (fy) provides r» > p, 0 > 0
such that

=yt () + O () = M (@) = s w (2)) + G () 20

almost everywhere in 2. Thus, A,uy < 91[[1 and so, on account of [16, Theo-
rem 5], uy € int(CL(Q),). It remains to verify that u, is the smallest solution
of (1.1) inside int(C}(Q)4). If u belongs to int(C}(Q);) and solves (1.1) then
uy . < u for any k large enough. By the minimality of u.  we get u.x < u. Via
(3.13), letting k — oo yields uy < w. a

A similar argument, with Theorem 3.4, v,, and vy := ¢, in place of
Theorem 3.3, u, ;, and Wy, respectively, produces the next result.

THEOREM 3.6. If (f1)—(f4) are satisfied then problem (1.1) has a biggest neg-
ative solution v_ € —int(CL(Q)4).
Gathering Theorems 3.5 and 3.6 together we obtain

THEOREM 3.7. Suppose (f1)—(fs) hold true. Then (1.1) possesses a biggest
negative solution v_ € —int(CL(Q)y) and a smallest positive solution u, €

int(C1(9)-).

Finally, when f(x,t) := |t|97%t, (x,t) € Q x R, the positive solution given by
Theorem 3.5 is unique, as the next result shows.

THEOREM 3.8. Let q € |p,p*[ and let X\ > 0. Then the Neumann problem

(3.18) —Apu= AP~ —a= b in Q, u>0 in ), ? =0 on 09
n

has only one solution in int(CL(Q)4).

PROOF. If u,v € W1P(Q) are two solutions of (3.18) then standard results
from nonlinear regularity theory (vide for instance [10]) and [16, Theorem 5]
guarantee that u,v € int(C}(Q).). Thus, thanks to [2, Theorem 1.1],

P
0< / (|Vu|p — V(Uzl> . Vv|p_2Vv> dx
Q

uP

- /Q (|Vu|p a Up—l(_Ap”)> dx = /Q(|Vu|1’ — P +uPv?7P) dx
= / (_uq + upvq—iv) dr = / UP(,UQ—P _ uq—p) dr.
Q

Q

Interchanging the role of u and v provides

/ vP (uqu — vqu) dr > 0.
Q
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Consequently,

(3.19) / (P —vP) (u?P — 0?7 P) da < 0.
Q

Since the function t — t/P~1 ¢ € Rt is strictly monotone because ¢ > p,
inequality (3.19) forces u = v. O

4. Nodal solutions

A third non-zero, sign-changing (i.e. nodal) solution can be obtained provided
A € ]A2,00[\ o(—A,), as the result below shows. Let v_ and u4 the solutions of
problem (1.1) given by Theorem 3.7. Define, for every n > 0, (z,t) € Q x R,

nlo_(@)P~2v_(z) - fla,v_(2)) it <v_(2),

Fala,t) = { nlt]P=2t = f(a,1) if v_(x) <t < uy (o),
s (@)P — f,us(x)) if 6> g (2),
nlo— ()P~ 2v_(x) — f(z,v_(2)) ift <v_(2),
[ (,t) == ¢ nltP=*t — f(x,1) if v_(x) <t <0,
0 if t >0,
0 if t <0,
(4.1) J(x,t) =ttt — f(x,t) if 0 <t <uy(x),

mus (@) = fla,ug (@) i > g (o),

Obviously, fy, f,, fo : Q2 X R — R are Carathéodory functions. Moreover, set

3 3
) —/0 folw.t)dt, F*(x,€) /O fE@.t)dt, (2,6) € QxR

THEOREM 4.1. If X € |Ag,00[\ 0(—A,) and (f1)—(f1) are satisfied then (1.1)
possesses a nodal solution w € CL(Q).

PRrROOF. Write, for u > 0,
o (u) = ||vu|\P 2l - / F (o u(@) de for all u € WHP(Q).

By (4.1) the functional ¢ belongs to C!' (W, *(9)), is coercive and sequentially
weakly lower semi-continuous. Hence, there exists u € W,1'P(Q) such that

4.2 (@)= inf ().
(4.2) . (1) uewﬁ”’(Q)wu()

One clearly has @ € K(¢;}). Moreover, @ # 0. Indeed, pick € €]0, \[. Since

min uy (z) > 0,
z€eQ
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on account of (f2) for any £ > 0 sufficiently small we get

i (§) = —%fpm(QH/Q </O§f(:c,t)dt> do< -2"°F

which forces

£Pm(€2) <0,

o (W) < 0= (0),

and the assertion follows. The next goal is to prove that

(4.3) U=ugt.

If u € K(p;f) \ {0} then

(1.4) Aw) + P20 = £, (-u) i (WEP(Q))".

Acting on (4.4) with —u~ € W}P(Q) we obtain min{1, u}|u~|? < 0. Therefore,

u > 0. Through (4.4) again it results in

(A(w), (u— ug) )+ p /Q P — ) de

- /Q (O ™ = )| (w =) do

:(A(u+),(u—u+)+>—I—u/ﬂuﬁfl(u—qu)erx.

By the strict monotonicity of ¢ + [t|P~2¢, t € R, this implies u < u,. Conse-
quently, u € [0,u4] \ {0}, and (4.4) becomes

Aw) = ™t = f(-u) in (W, P(Q)7,

namely v turns out to be a solution of (1.1), u € int(C}(Q),), besides u < u,.
Thanks to Theorem 3.7 we thus have u = uy. So, K(¢;}) \ {0} = {uy}. Now,
(4.3) comes at once from u € K(¢;) \ {0}. Define

1 I
ou(w) i= IVl + Al ~ [ Fr(o, (@) do
p p Q
for all uw € W1P(Q). Since

Pu ‘Cl @, = Pulcr@),

and uy € int(CL(Q),), combining (4.2), (4.3) with Proposition 2.1 ensures that
uy is a WP (Q)-local minimizer of ¢,,.

Similarly, the function v_ turns out a W,1'P(€2)-local minimizer of ¢,. This
can be verified as before, but with o7 replaced by

o (u) = fHVqu f||u||1’ / o u(@) dr for all w € WEP(Q).
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Without loss of generality we may assume that

(4.5) pu(v-) < p(u’).

If w4 is not an isolated critical point of ¢, then there exists a sequence {uy} C
WEP(€Q) of pairwise distinct critical points for ¢, converging to uy. Since an
argument analogous to that involving <,0;Lr yields here

(4.6) K(pu) € [, ugl,

by the properties of v_ and w4, each wug turns out a nodal solution of (1.1),
and the conclusion follows. Suppose now wu. is isolated. The same reasoning
exploited in the proof of [14, Proposition 6] provides r > 0 fulfilling
4.7 r < ||luy —v_|], uy) < inf u).
(47) fus =l pulu) < il o)
Moreover, the functional ¢,, satisfies the Palais-Smale condition, because it evi-
dently is coercive. By (4.5) and (4.7), the classical Mountain pass Theorem can
be applied. Thus, there exists w € W17 (Q2) such that
'(@) =0 inf < ou(u).

¢ (@) g ueagnr(u”‘»ou(u) < (1)
On account of (4.5) and (4.7) again, the above inequality forces @ & {v_, u4}.
Due to (4.6) we then get

A@) = Nl a - f(-, @) in (W, "(Q))",

i.e. the function @ solves problem (1.1). Standard results from nonlinear regu-
larity theory (cf. [10]) finally give u € C1(Q). Bearing in mind Theorem 3.7,
besides (4.6), the conclusion is achieved once we show that @ # 0. Define, for
every (t,u) € [0,1] x WLP(Q),

h(t, u) := tou(u) + (1 = )¢ (u),  where ¢(u) := =([[Vullj — Alul[3).

1
P
Since ¢, is coercive and X € o(—A,), the function h(t, -), t € [0, 1], satisfies the
Palais—Smale condition. We claim that zero turns out an isolated critical point
of h(t, -) uniformly in ¢ € [0,1]. If, on the contrary, h!, (tx,ur) = 0 for some
{(tr,ur)} € [0,1] x WEP(Q) with (t,ur) — (¢,0) in [0,1] x WIP(€), then

—Apuy + trplug [P 2uy = ti (@, ur) + (1 — ti)Aug [P 2w, in Q,

4.8
(48) % =0 on o).
on

Theorem 2 of [12] provides a € |0, 1[, M > 0 fulfilling

{up} € CL*(Q) and ||uk||C;,,a(§) <M forall keN.
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By compactness of the embedding C}®(Q2) C C1(Q) this forces ux — 0in C} (),
where a subsequence is considered when necessary. Consequently, uy € [v_, uy]
for any sufficiently large k. Due to (4.8) we thus obtain

Alur) = Mug|P2ugp — tp f(-,ug) in (Wi’p(Q))*~

Now, arguing exactly as in the proof of Theorem 3.5 yields A € o(—A,), which
is impossible.

Through the homotopy invariance property of critical groups [5, p. 334] one
has

Cr(pu, 0) = Cr(h(1, -),0) = Ci(h(0, -),0) = Cx(1,0) for all k € Np.

From Proposition 2.6 in [13] it follows

(4.9) Co(pp,0) = Ci(pu, 0) = 0.

Observe that

(4.10) Ci(pp, @) # 0,

because @ is a mountain pass point [5, Corollary 5.2.5]. Comparing (4.9) with

(4.10) finally leads to @ # 0. O
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