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ON CURVED SQUEEZING AND CONLEY INDEX
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Dedicated to Professor Lech Górniewicz on the occasion of his 70-th birthday

Abstract. We consider reaction-diffusion equations on a family of do-

mains depending on a parameter ε > 0. As ε→ 0, the domains degenerate
to a lower dimensional manifold. Using some abstract results introduced

in the recent paper [2] we show that there is a limit equation as ε→ 0 and

obtain various convergence and admissibility results for the corresponding
semiflows. As a consequence, we also establish singular Conley index and

homology index continuation results. Under an additional dissipativeness

assumption, we also prove existence and upper-semicontinuity of global at-
tractors. The results of this paper extend and refine earlier results of [1]

and [7].

1. Introduction

Let M be a smooth k-dimensional submanifold of R`. There is a so called
normal neighbourhood U of M and for every ε ∈ ]0, 1] there is a transformation
Γε:U → U which squeezes U by the factor ε orthogonally towards M. Given
a smooth bounded domain Ω with ClΩ ⊂ U let Ωε = Γε[Ω] be the squeezed
domain. Given a function G: R → R satisfying appropriate regularity and growth
assumptions to be specified later, we consider, for each ε ∈ ]0, 1], the semilinear
parabolic Neumann boundary value problem

(Eε)
ũt = ∆ũ+G(ũ), t > 0, x̃ ∈ Ωε,

∂νε ũ = 0, t > 0, x̃ ∈ ∂Ωε.
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Here, ∆ is the Laplace operator in the x̃-variable and νε is the outer normal
vector field on ∂Ωε. If Bε is the linear operator generated on L2(Ωε) by the
bilinear form

ãε:H1(Ωε)×H1(Ωε) → R, (ũ, ṽ) 7→
∫

Ωε

∇ũ · ∇ṽ dx̃

and Ĝ is the Nemitski operator ofG, then equation (Eε) can be written abstractly
as the semilinear evolution equation

(F̃ε) ˙̃u = −Bεũ+ Ĝ(ũ)

generating a local semiflow on the space H1(Ωε). As ε → 0+, the domains
degenerate to M. The natural question arises if the family (F̃ε) has some limit
equation and a corresponding limit local semiflow. This problem was considered
in [7], where some previous results from [6] were generalized from the special
flat squeezing case to general curved squeezed domains. The idea is to perform
the change of variables ũ = u ◦ Γε in order to transform (F̃ε) to the equivalent
problem

(Fε) u̇ = −Aεu+ Ĝ(u)

with Aεu = Bε(u ◦ Γ−1
ε ) ◦ Γε, generating a local semiflow πε on the fixed space

H1(Ω). It turns out that the family (Fε) has a limit equation

(F0) u̇ = −A0u+ Ĝ(u)

generating a local semiflow π0 on a closed subspace H1
s (Ω) of H1(Ω). Some

singular linear and nonlinear convergence results together with existence and
upper semicontinuity results for attractors are established in [7], extending pre-
vious results from [6]. In the paper [1] a singular Conley continuation result for
the family (πε)ε∈[0,1] in the flat squeezing case is proved. The essential growth
assumption in all these papers is

|G′(u)| ≤ C(|u|β + 1), u ∈ R

for ` ≥ 3 where β ≤ 2/(`− 2). For the important case ` = 3, this means that

|G′(u)| ≤ C(|u|2 + 1), u ∈ R.

The purpose of this paper is to extend these result to functions G of higher
growth. In fact, we essentially assume, for ` = 3, that

|G′(u)| ≤ C(|u|β + 1), u ∈ R

where β < 4. We will then verify the abstract conditions (Spec), (Comp) and
(Conv) introduced in the recent paper [2]. The results of [2] then imply several
singular linear and nonlinear convergence theorems for the corresponding local
semiflows with the resulting singular Conley index and homology index braid
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continuation principles. We also prove (under some additional dissipativeness
hypothesis) existence and upper semicontinuity of attractors. The results of this
paper extend and refine results from [1] and [7].

2. Preliminaries

In this paper all linear spaces are over the reals.
Let H be a vector space and V be a linear subspace of H. Let a:V ×V → R

be a bilinear form on V and b:H ×H → R be a bilinear form on H. If λ ∈ R,
u ∈ V \ {0} satisfy

a(u, v) = λb(u, v) for all v ∈ V
then we say that λ is an eigenvalue of the pair (a, b) and u is an eigenvector of
the pair (a, b), corresponding to λ. The dimension of the span of all eigenvectors
of (a, b) corresponding to λ is called the multiplicity of λ. If each eigenvalue has
finite multiplicity and there is a nondecreasing sequence (λn)n∈N which contains
exactly the eigenvalues of (a, b) and the number of occurrences of each eigen-
value in this sequence is equal to its multiplicity, then this sequence is uniquely
determined and is called the repeated sequence of the eigenvalues of (a, b).

Given a and b as above define R = R(a, b) to be the set of all pairs (u,w) ∈
V ×H such that a(u, v) = b(w, v) for all v ∈ V . We call R the operator relation
generated by the pair (a, b). If R is the graph of a mapping B:D(B) → H, then
this map is called the operator generated by the pair (a, b).

It follows from the definition that B (if it exists) is linear and (λ, u) is
an eigenvalue-eigenvector pair of (a, b) if and only if (λ, u) is an eigenvalue-
eigenvector pair of B.

Let us also note that the condition for the existence of a repeated sequence
of eigenvalues as given in [6] and [7] is insufficient. This, however, is completely
irrelevant for the validity of the results contained in those papers.

The following proposition is well-known:

Proposition 2.1. Let V , H be two infinite dimensional Hilbert spaces. Sup-
pose V ⊂ H with compact inclusion, and V is dense in H. Let b = 〈 · , · 〉 be the
inner product of H and ‖ · ‖ and | · | denote the Euclidean norms of V and H.
Let a:V × V → R be a symmetric bilinear form on V . Assume that there are
constants d, C, α ∈ R, α > 0, such that, for all u, v ∈ V ,

|a(u, v)| ≤ C‖u‖‖v‖,
a(u, u) ≥ α‖u‖2 − d|u|2.

Then the operator relation generated by (a, b) is the graph of a linear selfad-
joint operator B on (H, b) with compact resolvent. Moreover, each eigenvalue of
(a, b) (equivalently, of B) has finite multiplicity and the repeated sequence (λn)n
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of eigenvalues of (a, b) exists. Furthermore, there exists a b-orthonormal and
b-complete sequence (wn)n in V such that, for each n ∈ N, wn is an eigenvector
of (a, b) corresponding to λ. Finally, if d = 0, then B is positive, D(B1/2) = V

and

a(u, v) = b(B1/2u,B1/2v), u, v ∈ V.

Suppose (H, 〈 · , · 〉) is an infinite dimensional Hilbert space and let A:D(A)
⊂ H → H be a (densely defined) selfadjoint operator on (H, 〈 · , · 〉H) such that,
for some λ ∈ ]0,∞[, the operator A = A + λ IdH is positive with A−1:H → H

compact. Using the notation of [2] the linear space Hβ = Hβ(A) = D(Aβ/2),
β ∈ [0,∞[ is a Hilbert space under the scalar product

〈u, v〉Hβ
= 〈Aβ/2u,Aβ/2v〉H , u, v ∈ Hβ .

For β ∈ ]0,∞[, let H−β = H ′
β be the dual of Hβ . It follows that H−β is a Hilbert

space under the dual scalar product

〈u, v〉H−β
= 〈F−1

β v, F−1
β u〉Hβ

, u, v ∈ H−β ,

where Fβ :Hβ → H−β , u 7→ 〈 · , u〉Hβ
, is the Fréchet–Riesz isomorphism.

For β ∈ [0,∞[ define the map ψβ :H = H0 → H−β by ψβ(u) = y, where
y:Hβ → R is defined by

y(v) = 〈v, u〉H , v ∈ Hβ .

ψβ is an injection (which we call the canonical embedding) so that we can (and
will) identify elements u ∈ H with ψβ(u) ∈ H−α. We thus consider H as a linear
subspace of H−β .

Fix an α ∈ [0,∞[. Let Ã = Ãα:H2−α → H−α be the unique continuous
extension of ψα ◦A:H2 → H−α. Then Ã is a densely defined positive selfadjoint
operator on the Hilbert space H−α with Ã−1:H → H compact. Moreover,
for every β ∈ R, the Hilbert space Hβ(Ã) is isometrically isomorphic to the
Hilbert space Hβ−α(A). Define Ã = Ã − λ IdH−α

:H2−α → H−α. Then Ã
is a densely defined selfadjoint operator on the Hilbert space H−α. Moreover,
Ã:H2−α → H−α is the unique continuous extension of ψα ◦A:H2 → H−α.

Now suppose that α ∈ [0, 1[ and let g:H1 → H−α be a locally Lipschitzian
map. Then g can be regarded as a locally Lipschitzian map from H1+α(Ã) to
H0(Ã), so that we may consider the abstract semilinear parabolic equation

(2.1) u̇ = −Ãu+ g(u)

generating a local semiflow on H1. By the definition of solution given in [5] and
equivalent to the definition of solution of the corresponding integral equation,
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we see that a function u: [0, t0[ → H1, where t0 ∈ ]0,∞], is a solution of (2.1) iff
u is a solution of

(2.2) u̇ = −Ãu+ (λu+ g(u)).

Now let (H, 〈 · , · 〉H) be another Hilbert space and R:H → H be a bijective linear
isometry. Let R′:H ′ → H ′ be the dual map. Define the map A:R[D(A)] → H

by
ARu = RAu, u ∈ D(A).

Then A is a densely defined selfadjoint operator on the Hilbert space H such
that A = A + λ IdH is positive with A−1:H → H compact. Let Hβ = Hβ(A),
β ∈ R, be the corresponding scale of Hilbert spaces. For β ∈ [0,∞[ let ψ

β
:H =

H0 → H−β be the corresponding canonical embedding.
Let Ã = Ãα:H2−α → H−α be the unique continuous extension of ψα ◦

A:H2 → H−α. Again Ã is a densely defined positive selfadjoint operator

on the Hilbert space H−α with Ã
−1

:H → H compact. Define Ã = Ã −
λ IdH−α

:H2−α → H−α. Then again Ã is a densely defined selfadjoint oper-
ator on the Hilbert space H−α.

It is easily seen that for each β ∈ [0,∞[ the map R induces, by restriction, an
isometry Rβ from Hβ onto Hβ and so the dual map R−β := R′β is an isometry
from H−β onto H−β . Since, as is immediately seen, ψβ = R−β ◦ ψβ

◦ Rβ , it
follows that

Ã = R−α ◦ Ã ◦R2−α.

Define the function g:H1 → H−α by

g = R−α ◦ g ◦R1.

We call g the R-conjugate of g. It follows that a function u: [0, t0[ → H1, where
t0 ∈ ]0,∞] is a solution of equation (2.1) if and only if the function u = R ◦ u is
a solution of the equation

(2.3) u̇ = −Ãu+ g(u).

3. The abstract conditions (Spec) and (Comp).

In this section we will introduce the operators Aε mentioned above and
prove some abstract results about them. In particular, we prove the abstract
conditions (Spec) and (Comp) introduced in [2]. As a consequence, we obtain,
in Conclusion 3.13, two singular convergence theorems for the corresponding
families of linear semigroups.

We assume the reader’s familiarity with the abstract part of [2] and with the
paper [7]. However, for the reader’s convenience we collect (with different nota-
tion) some relevant technical material from [7] and correct some inaccuracies of
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that paper. In particular, we give a correct definition of a normal neighbourhood
and prove its existence.

We assume throughout that `, k and r are positive integers with r ≥ 2, ` ≥ 2
and k < `. By ‖ · ‖ we denote the Euclidean norm in R`.

Let M⊂ R` be k-dimensional submanifold of R` of class Cr. For p ∈M we
denote by TpM the tangent space to M at the point p. We will identify TpM
in the usual way with a subspace of R`.

Definition 3.1. An open set U in R` is called a normal neighbouurhood
(or normal strip) of M if there is a map φ:U → M of class Cr−1, called an
orthogonal projection of U onto M and a continuous function δ:M → ]0,∞],
called the thickness of U such that:

(a) whenever x ∈ U and p ∈M then φ(x) = p if and only if the vector x−p
is orthogonal to TpM (in R`) and ‖x− p‖ < δ(p);

(b) εx+ (1− ε)φ(x) ∈ U for all x ∈ U and all ε ∈ [0, 1].

Examples.

(a) (Flat squeezing case) Let M = Rk × {0} ⊂ R`, U = R`, φ: R` = Rk ×
R`−k →M, (x1, x2) 7→ (x1, 0), δ ≡ ∞. With this choice of φ and δ, the set U is
a normal neighbourhood of M.

(b) Let S`−1 ⊂ R` be the ` − 1-dimensional unit sphere, U be the set of all
x ∈ R` with 0 < ‖x‖ < 2, φ:U →M, x 7→ x/‖x‖ and δ ≡ 1. With this choice of
φ and δ, the set U is a normal neighbourhood of M.

We will show later that normal neighbourhoods always exist.

Remark 3.2. In the definition of a normal neighbourhood given in [7] the
function δ was erroneously omitted. This does not affect the validity of the
results of that paper, which hold true under the present, correct Definition 3.1.
On the other hand, normal neighbourhoods in the sense of [7] might not exist.
This is e.g. the case for M = S`−1: for x ∈ R` \{0} and p ∈M, the vector x−p
is orthogonal to Tp(M) if and only if p = x/‖x‖ or p = −x/‖x‖, so there is no
map φ from a neighbourhood U of M to M such that, for each x ∈ U and each
p ∈M, φ(x) = p if and only if x− p is orthogonal to Tp(M).

In the sequel we consider a fixed normal neighbourhood U of M with orthog-
onal projection φ:U →M.

For ε ∈ [0, 1] define the curved squeezing transformation

(3.1) Γε:U → R`, x 7→ εx+ (1− ε)φ(x) = φ(x) + ε(x− φ(x)).

The following important properties follow from Definition 3.1:

Proposition 3.3. Let U be a normal neighbourhood of M. Then

(a) φ(U) = M and φ(x) = x if and only if x ∈M;
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(b) Dφ(x)ν = 0 for all x ∈ U and all vectors ν orthogonal to TpM, where
p := φ(x).

Proof. Part (a) is obvious. If x ∈ U and p = φ(x), then x− p is orthogonal
to TpM and ‖x − p‖ < δ(p). Therefore, for all t ∈ R with |t| sufficiently small,
x+ tν ∈ U , ‖(x+ tν)− p‖ < δ(p) and (x+ tν)− p = (x− p) + tν is orthogonal
to TpM. Thus φ(x+ tν) ≡ p for all |t| small enough. In particular, Dφ(x)ν = 0.
This proves part (b). �

Proposition 3.4. If M as above, then there exists a normal neighbourhood
of M in the sense of Definition 3.1.

Proof. Define, as usual, the normal bundle N(M) as the subset of R`×R`

consisting of all the ordered pairs (p, w) where p ∈ M and w is orthogonal (in
R`) to Tp(M). N(M) is a Cr−1-submanifold of R` × R`. Let S̃: R` × R` → R`

be the map (p, w) 7→ p + w. This is a C∞-map so its restriction S = S̃|N(M)

to N(M) is a Cr−1-map. For α ∈ ]0,∞[ and p ∈ M let Bα(p) be the set of all
(q, w) ∈ N(M) such that ‖q − p‖ < α and ‖w‖ < α. Clearly,

(3.2) Bα(p′) ⊂ Bα+‖p′−p‖(p), p, p′ ∈M.

For each p ∈ M the tangent map T(p,0)S:T(p,0)N(M) → TpR` ≈ R` is an
isomorphism. Thus there is an α = α(p) > 0 such that S|Bα(p) is a Cr−1-
diffeomorphism onto its image, this image being open in R`. We define δ̃(p) to
be the supremum of all numbers ρ > 0 such that S[Bρ(p)] is open in R` and
S|Bρ(p) is a Cr−1diffeomorphism of Bρ(p) onto S[Bρ(p)]. Thus δ̃(p) ∈ ]0,∞] is
defined. If δ̃(p) = ∞ then, by (3.2), δ̃(p′) = ∞ for every p′ ∈ M. Thus either
δ̃(p) ≡ ∞, so δ̃ is continuous or else δ̃(p) <∞ for every p ∈M. We also have

(3.3) ρ ≤ δ̃(p′) + ‖p′ − p‖, p, p′ ∈M, ρ ∈ ]0, δ̃(p)[ .

In fact, this is clear if ρ ≤ ‖p′ − p‖. If ρ > ‖p′ − p‖, then, by (3.2),

Bρ−‖p′−p‖(p′) ⊂ Bρ(p), p, p′ ∈M

so ρ− ‖p′ − p‖ ≤ δ̃(p′). This proves (3.3) and thus

δ̃(p) ≤ δ̃(p′) + ‖p′ − p‖, p, p′ ∈M.

By exchanging p with p′ we finally obtain

|δ̃(p)− δ̃(p′)| ≤ ‖p− p′‖, p, p′ ∈M.

In particular, δ̃ again is continuous. Let δ = δ̃/2. Let V be the set of all
(p, w) ∈ N(M) with ‖w‖ < δ(p). Continuity of δ implies that V is open in
N(M). Since, by construction, S is a local diffeomorphism on V , it follows that
U := S[V ] is open in R`. We claim that S|V is injective. In fact, let (p, w) and
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(p′, w′) ∈ V be such that p+ w = p′ + w′. We may assume that δ(p′) ≤ δ(p). It
follows that ‖p′ − p‖ ≤ ‖w‖+ ‖w′‖ < δ̃(p). It follows that there is a ρ ∈ ]0, δ̃(p)[
such that (p, w), (p′, w′) ∈ Bρ(p). Since S|Bρ(p) is injective, (p, w) = (p′, w′). It
follows that S|V :V → U is a Cr−1-diffeomorphism. Let φ:U → M be the map
π1 ◦ (S|V )−1, where π1:N(M) →M is the projection onto the first component.
It follows that φ is a Cr−1-map. It is immediate that the set U and the functions
φ and δ satisfy the conditions of Definition 3.1. �

For x ∈ U we denote by Q(x): R` → R` the orthogonal projection of R` ∼=
TpR` onto TpM, where p := φ(x). Let P (x) = I −Q(x). Note that P (x) is the
orthogonal projection of R` ∼= TpR` onto the orthogonal complement of TpM in
TpR` ∼= R`.

The following properties are an immediate consequence of the definition:

Proposition 3.5. The map [0, 1]× U → R`, (ε, x) 7→ Γε(x), is continuous.
Let ε ∈ ]0, 1] be arbitrary. Then

(a) Γε[U ] = { y ∈ U | φ(y) + (1/ε)(y − φ(y)) ∈ U }, Γε[U ] is open in R` and
Γε:U → Γε[U ] is a diffeomorphism of class Cr−1 with

Γ−1
ε (y) = φ(y) + (1/ε)(y − φ(y)), y ∈ Γε(U);

(b) φ(Γε(x)) = φ(x) for x ∈ U .

Theorem 3.6. ([7]) For x ∈ U and ε ∈ [0, 1] define

Jε(x) :=

{
ε−(`−k)/2|detDΓε(x)| if ε > 0,

|det(Dφ(x)|Tφ(x)M)| otherwise.

Then
Jε(x) > 0 for all ε ∈ [0, 1] and x ∈ U .

Moreover, the function [0, 1]× U → R, (ε, x) 7→ Jε(x), is continuous. For every
ε ∈ [0, 1] and for every x ∈ U there exists a linear map Sε(x): R` → R` such
that, for ε ∈ ]0, 1],

DΓ−1
ε (Γε(x)) = Sε(x) + (1/ε)P (x) for all x ∈ U .

Accordingly,

(DΓ−1
ε (Γε(x)))T = Sε(x)T + (1/ε)P (x) for all x ∈ U .

The following properties are satisfied:

(a) the maps [0, 1]× U → L(R`,R`),

(ε, x) 7→ Sε(x) and (ε, x) 7→ Sε(x)T

are continuous;
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(b) for every ε ∈ [0, 1], for every x ∈ U and for every ν orthogonal to
Tφ(x)M

Sε(x)ν = Sε(x)T ν = 0;

(c) for every ε ∈ [0, 1] and for every x ∈ U the maps

Sε(x)|Tφ(x)M:Tφ(x)M→ Tφ(x)M, Sε(x)T |Tφ(x)M:Tφ(x)M→ Tφ(x)M

are well-defined and bijective. Furthermore,

(S0(x)|Tφ(x)M)−1 = Dφ(x)|Tφ(x)M

and

(S0(x)T |Tφ(x)M)−1 = Dφ(x)T |Tφ(x)M.

Finally, φ:U →M is an open map.

Note that the maps Sε, ε ∈ [0, 1] in Theorem 3.6 are uniquely determined.
Let Ω be an arbitrary nonempty bounded domain in R` with Lipschitz bound-

ary and such that Cl Ω ⊂ U .
For ε ∈ ]0, 1], define the curved squeezed domain Ωε := Γε[Ω]. For ε ∈ ]0, 1]

define the following bilinear forms:

ãε:H1(Ωε)×H1(Ωε) → R, (ũ, ṽ) 7→
∫

Ωε

∇ũ(x) · ∇ṽ(x) dx;

ǎε:H1(Ωε)×H1(Ωε) → R, (ũ, ṽ) 7→ ε−(`−k)/2

∫
Ωε

∇ũ(x) · ∇ṽ(x) dx;

aε:H1(Ω)×H1(Ω) → R, (u, v) 7→
∫

Ω

Jε(x)〈Sε(x)T∇u(x), Sε(x)T∇v(x)〉 dx

+
1
ε2

∫
Ω

Jε(x)〈P (x)∇u(x), P (x)∇v(x)〉 dx;

b̃ε:L2(Ωε)× L2(Ωε) → R, (ũ, ṽ) 7→
∫

Ωε

ũ(x)ṽ(x) dx.

b̌ε:L2(Ωε)× L2(Ωε) → R, (ũ, ṽ) 7→ ε−(`−k)/2

∫
Ωε

ũ(x)ṽ(x) dx.

For ε ∈ [0, 1] define the bilinear form

bε:L2(Ω)× L2(Ω) → R, (u, v) 7→
∫

Ω

Jε(x)u(x)v(x) dx.

We have

(3.4) ãε(u, u) + b̃ε(u, u) = |u|2H1(Ωε), ε ∈ ]0, 1] , u ∈ H1(Ωε).

Let ε ∈ ]0, 1] be arbitrary. Then Proposition 2.1 and (3.4) imply that the pair
(ãε, b̃ε) generates a densely defined selfadjoint operator Bε in (L2(Ωε), b̃ε), which
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we interpret, as usual, as the operator −∆ on Ωε with Neumann boundary
condition on ∂Ωε. Since ǎε = ε−(`−k)/2ãε and b̌ε = ε−(`−k)/2b̃ε, we see that

(3.5) the pair (ǎε, b̌ε) generates Bε and both Bε and Bε := Bε + IdL2(Ωε)

are densely defined selfadjoint operators in (L2(Ωε), b̌ε) with Bε po-
sitive and B−1

ε :L2(Ωε) → L2(Ωε) compact.

Let α ∈ ]0, 1[ and ψα:H0(Bε) = L2(Ω) → H−α(Bε) be the canonical embedding
and B̃ε:H2−α(Bε) → H−α(Bε) be the unique continuous extension of ψα ◦Bε.
Then, for u ∈ D(Bε) = H2(Bε) and v ∈ H1(Bε),

B̃εu(v) = ψα(Bεu)(v) = b̌ε(Bεu, v) = ǎε(u, v).

Thus a simple density and continuity argument shows that

(3.6) B̃εu(v) = ǎε(u, v), u ∈ H2−α(Bε), v ∈ H1(Bε).

Note that, by Theorem 3.6 there are constants C, c ∈ ]0,∞[ such that

(3.7) cbε(u, u) ≤ |u|2L2(Ω) ≤ Cbε(u, u), for ε ∈ [0, 1] and u ∈ L2(Ω).

Let us now define the space

H1
s (Ω) := {u ∈ H1(Ω) | P (x)∇u(x) = 0 a.e. }.

Note that

(3.8) H1
s (Ω) is a closed linear subspace of the Hilbert space H1(Ω).

We have the following

Proposition 3.7. ([7]) The space H1
s (Ω) is infinite dimensional.

Now define the “limit” bilinear form

a0:H1
s (Ω)×H1

s (Ω) → R, (u, v) 7→
∫

Ω

J0(x)〈S0(x)T∇u(x), S0(x)T∇v(x)〉 dx.

Finally, let L2
s(Ω) be the closure of H1

s (Ω) in L2(Ω). Note that

(3.9) L2
s(Ω) is a closed linear subspace of the Hilbert space L2(Ω).

For ε ∈ ]0, 1] and u, v ∈ L2(Ω) set

〈u, v〉ε := bε(u, v).

For ε ∈ ]0, 1] and u, v ∈ H1(Ω) set

〈〈u, v〉〉ε := aε(u, v) + bε(u, v).
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By (3.7), 〈 · , · 〉ε (resp. 〈〈 · , · 〉〉ε) is a scalar product on L2(Ω) (resp. H1(Ω)). Let
| · |ε (resp. ‖ · ‖ε) be the Euclidean norm on L2(Ω) (resp. H1(Ω)) induced by
〈 · , · 〉ε (resp. 〈〈 · , · 〉〉ε). Furthermore, for u, v ∈ L2

s(Ω) set

〈u, v〉0 := b0(u, v).

Finally, for u, v ∈ H1
s (Ω) set

〈〈u, v〉〉0 := a0(u, v) + b0(u, v).

Again by (3.7), 〈 · , · 〉0 (resp. 〈〈 · , · 〉〉0) is a scalar product on L2
s(Ω) (resp.H1

s (Ω)).
Let | · |0 (resp. ‖ · ‖0) be the Euclidean norm on L2

s(Ω) (resp. H1
s (Ω)) induced

by 〈 · , · 〉0 (resp. 〈〈 · , · 〉〉0).

Proposition 3.8 ([7]). The following statements hold:

(a) For every δ ∈ ]0, 1[ there exists an ε ∈ ]0, 1] such that

(3.10) (1− δ)b0(u, u) ≤ bε(u, u) ≤ (1 + δ)b0(u, u)

for all u ∈ L2(Ω) and ε ∈ ]0, ε], and

(3.11) (1− δ)a0(u, u) ≤ aε(u, u) ≤ (1 + δ)a0(u, u)

for all u ∈ H1
s (Ω) and ε ∈ ]0, ε[.

(b) Whenever u and v ∈ L2(Ω), then

(3.12) bε(u, v) → b0(u, v) as ε→ 0.

(c) There is a constant C ∈ ]1,∞[ such that

‖u‖ε ≤ C‖u‖0 and ‖u‖0 ≤ C‖u‖ε

for all u ∈ H1
s (Ω) and all ε ∈ ]0, 1].

(d)

(3.13) aε(u, u) → a0(u, u) as ε→ 0,

for all u ∈ H1
s (Ω).

(e) There exists a γ ∈ ]0,∞[ such that

(3.14) γ|u|H1(Ω) ≤ ‖u‖ε for all ε ∈ ]0, 1] and u ∈ H1(Ω).

By (3.7) the norms | · |ε, ε ∈ [0, 1], are all equivalent to the usual norm on
L2(Ω), with equivalence constants independent of ε. Writing Hε = L2(Ω) for
ε ∈ ]0, 1] and H0 = L2

s(Ω) we thus see, using Proposition 3.7, that

(3.15) for ε ∈ [0, 1], (Hε, 〈 · , · 〉ε) is an infinite-dimensional Hilbert space.

By (3.14) and a trivial estimate the norm ‖ · ‖ε is, for each ε ∈ ]0, 1], equivalent
to the usual norm | · |H1(Ω), one of the constants depending on ε this time. It
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follows that, for ε ∈ ]0, 1], (H1(Ω), 〈〈 · , · 〉〉ε) is a Hilbert space which is densely
and compactly embedded in (Hε, 〈 · , · 〉ε).

Now let (uk)k in H1
s (Ω) be a ‖ · ‖0-Cauchy sequence. By Proposition 3.8

part (c) we have that, for any given ε ∈ ]0, 1], (uk)k is a ‖ · ‖ε-Cauchy sequence
and consequently also a | · |H1(Ω)-Cauchy sequence. Thus, for some u ∈ H1(Ω),
the sequence (uk)k converges to u in the | · |H1(Ω)-norm. Hence u ∈ H1

s (Ω) as
H1

s (Ω) is closed in H1(Ω) in the | · |H1(Ω)-norm. It follows that (uk)k converges
to u in the | · |ε-norm and thus, since uk − u ∈ H1

s (Ω) for k ∈ N, (uk)k converges
to u in the | · |0-norm. It follows that (H1

s (Ω), 〈〈 · , · 〉〉0) is a Hilbert space. By
definition, H1

s (Ω) is dense in (H0, 〈 · , · 〉0).
Now let (uk)k in H1

s (Ω) be ‖ · ‖0-bounded. By Proposition 3.8 part (c) we
have that, for any given ε ∈ ]0, 1], (uk)k is ‖ · ‖ε-bounded and so | · |H1(Ω)-
bounded. Thus, for some u ∈ L2(Ω), a subsequence of (uk)k, again denoted by
(uk)k, converges to u in the | · |L2(Ω)-norm. Hence u ∈ L2

s(Ω). From (3.7) we
obtain that (uk)k converges to u in (H0, 〈 · , · 〉0).

Altogether we obtain, using Proposition 3.7, that

(3.16) for ε ∈ [0, 1], (H1(Ω), 〈〈 · , · 〉〉ε) is an infinite dimensional Hilbert space
which is densely and compactly embedded in (Hε, 〈 · , · 〉ε).

Now, using Proposition 3.8, part (e) and then part (a), we obtain the estimates

aε(u, u) ≥ γ2|u|2H1(Ω) − |u|
2
ε, ε ∈ ]0, 1] , u ∈ H1(Ω),(3.17)

a0(u, u) ≥ (1 + δ)−1γ2|u|2H1(Ω) − |u|
2
0, ε ∈ ]0, 1] , u ∈ H1

s (Ω).(3.18)

Proposition 2.1 implies that, for ε ∈ [0, 1], the pair (aε, 〈 · , · 〉ε) generates a den-
sely defined selfadjoint operator Aε on (Hε, 〈 · , · 〉ε) with compact resolvent.
Moreover, there exists the repeated sequence (µε,j)j of eigenvalues of Aε. For
each ε ∈ ]0, 1] we also choose a corresponding (Hε, 〈 · , · 〉ε)-orthonormal and
complete sequence (wε,j)j of eigenfunctions.

Theorem 3.9 ([7]). The following properties hold:

(a) For every j ∈ N, µε,j → µ0,j as ε→ 0.
(b) Let (εn)n be an arbitrary sequence in ]0, 1] converging to 0. Then there

is a subsequence of (εn)n, again denoted by (εn)n, and there exists an
(H0, 〈 · , · 〉0)-orthonormal and complete sequence (w0,j)j of eigenvectors
of (a0, 〈 · , · 〉0) corresponding to (µ0,j)j such that, for every j,

‖wεn,j − w0,j‖εn
→ 0 as n→∞.

Now define, for ε ∈ [0, 1], Aε = Aε + Iε, where Iε is the identity operator
on Hε. Then Aε is the operator generated by the pair (〈〈 · , · 〉〉ε, 〈 · , · 〉ε).
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By Proposition 2.1,

(3.19) Aε:D(Aε) = D(Aε) ⊂ Hε → Hε is a densely defined positive selfad-
joint operator in (Hε, 〈 · , · 〉Hε) with Aε

−1:Hε → Hε compact. For
α ∈ R write Hε

α := Hα(Aε) := D(A1/2
ε ). In particular, Hε

0 = Hε.
We have Hε

1 = H1(Ω) if ε > 0 and Hε
1 = H1

s (Ω) if ε = 0. Finally,
〈〈u, v〉〉ε = 〈A1/2

ε u,A
1/2
ε v〉ε for u, v ∈ Hε

1 .

We also have that the sequence (λε,j)j , with λε,j = µε,j + 1 for each j ∈ N is
the repeated sequence of eigenvalues of the operator Aε with (wε,j)j as a cor-
responding sequence of eigenfunctions. Using (3.19) and Theorem 3.9 we thus
obtain that

(3.20) whenever (εn)n is a sequence in ]0, 1] with εn → 0 then λεn,j → λ0,j

as n → ∞, for all j ∈ N. Moreover, there is a sequence (nk)k in N
with nk → ∞ as k → ∞ and there is an H0-orthonormal sequence
of eigenfunctions (w0,j)j of A0 corresponding to (λ0,j)j such that
|wεnk

,j − w0,j |Hεnk
1

→ 0 as k →∞, for all j ∈ N.

We also claim that

(3.21) Under the notation of (3.20), 〈u,wεnk
,j〉εnk

→ 〈u,w0,j〉0 as k → ∞,
for all u ∈ H0 and all j ∈ N.

Indeed,

|〈u,wεnk
,j〉εnk

− 〈u,w0,j〉0| =
∣∣∣∣ ∫

Ω

(Jεnk
uwεnk

,j − J0uw0,j) dx
∣∣∣∣

≤ |Jεnk
− J0|L∞(Ω) · |u|L2(Ω) · (|wεnk

,j − w0,j |L2(Ω) + |w0,j |L2(Ω))

+ |J0|L∞(Ω) · |u|L2(Ω) · |wεnk
,j − w0,j |L2(Ω).

By (3.7),

|wεnk
,j − w0,j |2L2(Ω) ≤C〈wεnk

,j − w0,j , wεnk
,j − w0,j〉εnk

≤C〈〈wεnk
,j − w0,j , wεnk

,j − w0,j〉〉εnk

=C|wεnk
,j − w0,j |Hεnk

1
→ 0 as k →∞.

Since |Jεnk
− J0|L∞(Ω) → 0 as k →∞, the claim follows.

The statements (3.15), (3.19), (3.8), (3.9), (3.20), (3.21) and Proposition 3.8
now imply the following result.

Proposition 3.10. The family (Hε, 〈 · , · 〉Hε , Aε)ε∈[0,1] satisfies hypothesis
[2, (Spec)].



220 K. P. Rybakowski

Now we claim that

(3.22) whenever (εn)n is a sequence in ]0, 1] with εn → 0 and (ξn)n is
a sequence with ξn ∈ Hεn

1 for every n ∈ N and supn∈N |ξn|Hεn
1
<∞,

then there exist a v ∈ H0
1 and a sequence (nk)k in N with nk → ∞

as k →∞ such that |ξnk
− v|Hεnk → 0 k →∞.

Indeed, by Proposition 3.8 part (e) the sequence (ξn)n is bounded in H1(Ω).
Thus there are a v ∈ H1(Ω) and a sequence (nk)k in N with nk → ∞ as
k → ∞ such that (ξnk

)k converges weakly in H1(Ω) and strongly in L2(Ω) to
v. In view of (3.7) we only need to prove that v ∈ H1

s (Ω). Now the operator
∇:H1(Ω) → L2(Ω) is linear and (strongly) continuous, so ∇ is weakly continu-
ous. In particular,

(3.23) (∇ξnk
)k converges weakly in L2(Ω,R`) to ∇v.

Since the map P :U → L(R`,R`) is of class Cr−1, it is bounded on Ω, so for
each u ∈ L2(Ω,R`), the function P ( · )u, x 7→ P (x)u(x), lies in L2(Ω,R`). Thus
by (3.23)∫

Ω

〈P (x)∇ξnk
(x),u(x)〉R` dx =

∫
Ω

〈∇ξnk
(x), P (x)u(x)〉R` dx

−→
k→∞

∫
Ω

〈∇v(x), P (x)u(x)〉R` dx =
∫

Ω

〈P (x)∇v(x),u(x)〉R` dx,

so

(3.24) (P ( · )∇ξnk
)k converges weakly in L2(Ω,R`) to P ( · )∇v.

Now for each n ∈ N
1
ε2n

∫
Ω

〈P (x)∇ξn(x), P (x)∇ξn(x)〉R` dx ≤ |ξn|2Hεn
1
≤ sup

n∈N
|ξn|2Hεn

1 <∞.

Therefore, since εn → 0 for n → ∞ and infn∈N infx∈Ω Jεn
(x) > 0, we conclude

that (P ( · )∇ξn)n converges strongly in L2(Ω,R`) to 0, so

(3.25) (P ( · )∇ξn)n converges weakly in L2(Ω,R`) to 0.

From (3.24) and (3.25) we conclude that P ( · )∇v = 0 almost everywhere so
v ∈ H1

s (Ω). The claim is proved. This proves the following result.

Proposition 3.11. The family (Hε, 〈 · , · 〉Hε , Aε)ε∈[0,1] satisfies assumption
[2, (Comp)].

Let us now relate the operators Aε and Bε, to each other.
It is clear that, for ε ∈ ]0, 1], the assignment

u 7→ u ◦ Γε
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restricts to linear isomorphisms L2(Ωε) → L2(Ω) and H1(Ωε) → H1(Ω). Using
the change-of-variables formula and Theorem 3.6 we see that, for ε ∈ ]0, 1],

(3.26) aε(u ◦ Γε, v ◦ Γε) = ǎε(u, v)

for all u, v ∈ H1(Ωε). Moreover,

(3.27) bε(u ◦ Γε, v ◦ Γε) = b̌ε(u, v)

for all u, v ∈ L2(Ωε).
Using formulas (3.26) and (3.27) we obtain the following

Proposition 3.12. The (linear) operators Bε (resp. Aε) defined by (ǎε, b̌ε)
(resp. (aε, bε)) satisfy the following properties:

(a) u ∈ D(Bε) if and only if u ◦ Γε ∈ D(Aε);
(b) Aε(u ◦ Γε) = (Bεu) ◦ Γε for u ∈ D(Bε).

Given ε ∈ [0, 1] and α ∈ ]0, 1[ let ψα = ψε
α:Hε

0 → Hε
−α be the canonical

embedding and Ãε:Hε
2−α → Hε

−α be the unique continuous extension of ψα ◦Aε.
We set Ãε = Ãε− IdHε

−α
. Proceding as in the proof of formula (3.6) we see that

(3.28) Ãεw(v) = aε(w, v), w ∈ Hε
2−α, v ∈ Hε

1 .

Using Proposition 3.10 we now obtain the following

Conclusion 3.13. The linear singular convergence results [2, Theorems 4.6
and 4.7] hold in the present case.

4. Nonlinear semiflows on squeezed domains

In this section, we consider semilinear parabolic equations on the curved
squeezed domains Ωε. We first transform these equations to equivalent equa-
tions on the fixed domain Ω generating a family πε, ε ∈ [0, 1], of local semiflows.
Then, under appropriate hypotheses on the nonlinearities we establish the va-
lidity of the abstract condition (Conv) introduced in [2]. As a consequence we
obtain various convergence and compactness results for the family πε, ε ∈ [0, 1]
with the resulting singular Conley index and homology index braid continuation
principles.

As usual, set

2∗ =

{ 2`
`− 2

if ` ≥ 3,

an arbitrary p∗ ∈ ]2,∞[ if ` = 2.

For θ ∈ [0, 1] let

p(θ) =
(
θ

1
2∗Ω

+ (1− θ)
1
2

)−1

.
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Let q ∈ ](1− (1/2∗))−1, 2∗[ be arbitrary. Then there is an α ∈ ]0, 1[ such that
p := q/(q − 1) < p(α).

By interpolation theory, given an ε ∈ ]0, 1] there is a continuous embedding
from Hα(Bε) to Lp(Ωε) (with embedding constant depending on ε and α). Let
Zε:H1(Ωε) → Lq(Ωε) be a locally Lipschitzian map.

Example 4.1. Let ζε: Ωε × R → R, (x, s) 7→ ζε(x, s), be a function such
that

(a) there is a null set Nε in Ωε with ζε(x, · ) ∈ C1(R,R) for all x ∈ Ωε \Nε;
(b) for all s ∈ R, ζε( · , s) and ∂sζε( · , s) are measurable on Ωε;

Moreover, with

r =
2∗q

2∗ − q
, β =

2∗

q
− 1

there is a constant Cε ∈ ]0,∞[ and functions aε ∈ Lr(Ωε) and bε ∈ Lq(Ωε) such
that

|∂sζε(x, s)| ≤ C̃ε(aε(x) + |s|β), for (x, s) ∈ (Ωε \Nε)× R,

|ζε(x, 0)| ≤ bε(x), for x ∈ Ωε \Nε,

For u ∈ H1(Ωε) and x ∈ Ωε set Zε(u)(x) = ζε(x, u(x)). Then, by stan-
dard results (cf. the proof of [3, Theorem 2.6]), Zε(u) ∈ Lq(Ωε) and the map
Zε:H1(Ωε) → Lq(Ωε) is Lipschitzian on bounded subsets of H1(Ωε).

Consider the equation

(4.1) u̇ = −Bεu+ Zε(u).

Intuitively, if t0 ∈ ]0,∞] and u: [0, t0[ → H1(Ωε), we say that u is a ‘solution’
of (4.1) if and only if (a) u is continuous into H1(Ωε) and (b) u|]0,t0[ is differen-
tiable into L2(Ωε) and for every t ∈ ]0, t0[ and every h ∈ H1(Ωε)

(4.2)
∫

Ωε

u̇(t)(x)h(x) dx = −
∫

Ωε

∇u(t)(x)∇h(x) dx+
∫

Ωε

Zε(u(t))(x)h(x) dx.

Since H1(Ω) = H1(Bε) ⊂ Hα(Bε), the integrals in (4.2) make sense.
Now (4.2) is clearly equivalent to

b̌ε(u̇(t), h) = −ǎε(u(t), h) + ε−(`−k)/2

∫
Ωε

Zε(u(t))(x)h(x) dx.

Define the map gε:H1(Ωε) → H−α(Bε) by

gε(u)(h) = ε−(`−k)/2

∫
Ωε

Zε(u(t))(x)h(x) dx, u ∈ H1(Ωε), h ∈ Hα(Bε).

We see that gε is defined and locally Lipschitzian.
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Thus by formula (3.6) and the density of H1(Ωε) in Hα(Bε) we see that u is
a ‘solution’ of (4.1) if and only if (a) u is continuous into H1(Ωε) and (b) u|]0,t0[

is differentiable into L2(Ωε) and for every t ∈ ]0, t0[

u̇(t) = −B̃εu(t) + gε(u(t)).

Thus u is a “solution” of (4.1) iff u is a solution of

(4.3) u̇ = −B̃εu+ gε(u).

Here we have used the smoothing property of solutions of (4.3), cf. [4]. Define
R = R(ε):L2(Ωε) → L2(Ω) by u 7→ u ◦ Γε. Formula (3.27) implies that R is
a linear isometry from (L2(Ωε), b̌ε) onto (L2(Ω), bε). By the definition of Jε and
the change-of-variables formula we have

gε(u)(h) = ε−(`−k)/2

∫
Ωε

Zε(u)(x)h(x) dx

=
∫

Ω

Jε(x)Zε(u)(Γε(x))h(Γε(x)) dx, u ∈ H1(Ωε), h ∈ Hα(Bε).

Thus the R-conjugate of gε is the map g
ε
:H1(Ω) → H−α(Aε) given by

g
ε
(u)(h) =

∫
Ω

Jε(x)Zε(u ◦ Γ−1
ε )(Γε(x))h(x) dx, u ∈ H1(Ω), h ∈ Hα(Aε).

Thus, dropping the underscores and using the results of Section 2 (cf. (2.3)
and (2.2)) we see that the local semiflow π̃ε generated on H1(Ωε) by equa-
tion (4.3) is conjugated, via R(ε), to the local semiflow on the fixed space H1(Ω)
generated by equation

(4.4) u̇ = −Ãεu+ f̌ε(u),

where Ãε is defined after the statement of Proposition 3.12 and the map f̌ε:Hε
1 =

H1(Ω) → Hε
−α is given by

(4.5) f̌ε(u)(h) =
∫

Ω

Jε(x)(u(x) + Zε(u ◦ Γ−1
ε )(Γε(x))h(x) dx,

u ∈ H1(Ω), h ∈ H−α. Therefore, from now on, we will analyze, for ε ∈ ]0, 1],
equation (4.4) on the fixed domain Ω in place of the original equation (4.3) on
the variable curved squeezed domain Ωε.

We will now provide a condition ensuring that the family of equations (4.4)
has a limit equation as ε→ 0+.

Proposition 4.2. For ε ∈ [0, 1], let Φε:H1(Ω) → Lq(Ω) be a map satisfying
the following assumptions:

(a) For all M ∈ [0,∞[ there is an L = LM ∈ [0,∞[ such that

|Φε(u)− Φε(v)|Lq(Ω) ≤ L|u− v|H1(Ω)
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for all ε ∈ [0, 1] and all u, v ∈ H1(Ω) with |u|H1(Ω), |v|H1(Ω) ≤M .
(b) For every u ∈ H1

s (Ω),

|Φε(u)− Φ0(u)|Lq(Ω) → 0 as ε→ 0+.

For ε ∈ [0, 1] and u ∈ Hε
1 define, for h ∈ Hε

α,

fε(u)(h) =
∫

Ω

Jε(x)Φε(u)(x)h(x) dx.

Then fε(u) ∈ Hε
−α and the family (fε)ε∈[0,1] of maps satisfies condition [2,

(Conv)].

Proof. By the definition of the bilinear forms aε and bε, for every ε ∈ [0, 1]
there are continuous embeddings from Hε

0 to H0(Ω) = L2(Ω) and from Hε
1 to

H1(Ω) with embedding constants independent of ε ∈ [0, 1]. Thus by interpola-
tion theory (cf. [10]) for every θ ∈ [0, 1] and every ε ∈ [0, 1] there is a continuous
embedding from Hε

θ to Hθ(Ω) with embedding constant C1,θ ∈ ]0,∞[ indepen-
dent of ε ∈ [0, 1]. Furthermore, there is a continuous embedding from Hθ(Ω)
into Lp(θ)(Ω) with embedding constant C2,θ ∈ ]0,∞[. Moreover, there is a con-
tinuous embedding from Lp(θ)(Ω) to Lp(Ω) with embedding constant C3. Fi-
nally, C4 := sup(x,ε)∈Ω×[0,1] |Jε(x)| <∞. It follows that fε(u)(h) is defined and
|fε(u)(h)| ≤ C1,αC2,αC3C4|Φε(u)|Lq(Ω)|h|Hε

α
, so fε maps Hε

1 into Hε
−α. Thus [2,

(Conv), part (a)] is satisfied.
Let M ∈ [0,∞[ be arbitrary and L = LM be as in assumption (a). If ε ∈ [0, 1]

and u, v ∈ Hε
1 with |u|Hε

1
, |v|Hε

1
≤ M/C1,1 then u, v ∈ H1(Ω) with |u|H1(Ω),

|v|H1(Ω) ≤M so

|fε(u)− fε(v)|Hε
−α

≤ C1,αC2,αC3C4|Φε(u)− Φε(v)|Lq(Ω)

≤ C1,αC2,αC3C4L|u− v|H1(Ω) ≤ C1,αC2,αC3C4LC1,1|u− v|Hε
1
.

This together with assumption (a) implies [2, (Conv), part (c)]. If u ∈ H0
1 then,

for all ε ∈ [0, 1]

|fε(u)|Hε
−α

≤ C1,αC2,αC3C4|Φε(u)|Lq(Ω).

This together with assumption (b) easily implies [2, (Conv), part (d)].
Now let w ∈ H0

1 be arbitrary and (εn)n be a sequence in ]0, 1] with εn → 0.
Let t ∈ ]0,∞[ be arbitrary. We will show that

(4.6) lim
n→∞

|e−t eAεn fεn(w)− e−t eA0f0(w)|Hεn
1

= 0,

proving [2, (Conv), part (b)].
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To this end, we will use [2, Theorem 4.6], which holds in the present case in
view of Conclusion 3.13, and so we have to verify the assumptions of that result.
For n ∈ N set un = fεn(w) and define vn ∈ Hεn

−α by

vn(h) =
∫

Ω

Jεn(x)Φ0(w)(x)h(x) dx, h ∈ Hεn
α .

Finally, set u = f0(w). Then

|un − vn|Hεn
−α

≤ C1,αC2,αC3C4|Φεn(w)− Φ0(w)|Lq(Ω).

Notice that, by assumption (b), the right hand side of this estimate goes to zero
as n→∞. Thus [2, Theorem 4.6, assumption (a)] is satisfied.

Let C5 ∈ ]0,∞[ be a bound for the embedding H1(Ω) → Hα(Ω). Then, for
every j ∈ N,

|vn(wεn,j)− u(w0,j)| ≤ |Jεn |L∞(Ω)|Φ0(w)|Lq(Ω)|wεn,j − w0,j |Lp(Ω)

+ |Jεn − J0|L∞(Ω)|Φ0(w)|Lq(Ω)|w0,j |Lp(Ω)

≤C4|Φ0(w)|Lq(Ω)C5C1,1C2,αC3|wεn,j − w0,j |Hεn
1

+ |Jεn
− J0|L∞(Ω)|Φ0(w)|Lq(Ω)|w0,j |Lp(Ω).

Hence |vn(wεn,j) − u(w0,j)| → 0 as n → ∞. Thus [2, Theorem 4.6, assump-
tion (b)] is satisfied.

Now, for all n ∈ N,

|vn|Hεn
−α

≤ C1,αC2,αC3C4|Φ0(w)|Lq(Ω).

Thus [2, Theorem 4.6, assumption (c)] is satisfied. Now (4.6) follows from [2,
Theorem 4.6]. �

From now on we assume the following hypothesis:

Hypothesis 4.3. For ε ∈ [0, 1], ϕε: Ω× R → R is a function such that

(a) there is a null set N in Ω with ϕε(x, · ) ∈ C1(R,R) for all x ∈ Ω \N ;
(b) for all s ∈ R, ϕε( · , s) and ∂sϕε( · , s) are measurable on Ω;

Moreover, with

r =
2∗q

2∗ − q
, β =

2∗

q
− 1

there is a constant C ∈ ]0,∞[ and functions a ∈ Lr(Ω) and b ∈ Lq(Ω) such that
for all ε ∈ [0, 1]

|∂sϕε(x, s)| ≤C(a(x) + |s|β), for (x, s) ∈ (Ω \N)× R,

|ϕε(x, 0)| ≤ b(x), for x ∈ Ω \N ,

|ϕε(x, s)− ϕ0(x, s)| → 0, for (x, s) ∈ (Ω \N)× R.
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Remark. By redefining ϕε to be = 0 on N × R, we may and will assume
that N = ∅.

For ε ∈ [0, 1], u ∈ H1(Ω) and x ∈ Ω define

Φ̌ε(u)(x) = ϕε(x, u(x)).

Again the arguments from the proof of [3, Theorem 2.6] imply that Φ̌ε(u) ∈
Lq(Ω) and that the family Φ̌ε, ε ∈ [0, 1], satisfies the assumptions of Proposi-
tion 4.2. Therefore, trivially, the family Φε(u), ε ∈ [0, 1], also satisfies the as-
sumptions of Proposition 4.2, where, for ε ∈ [0, 1], the map Φε:H1(Ω) → Lq(Ω)
is given by

Φε(u) = u+ Φ̌ε(u), u ∈ H1(Ω).

We let the map fε, ε ∈ [0, 1] be defined as in Proposition 4.2 with this choice of
Φε. It follows that the family fε, ε ∈ [0, 1], satisfies condition [2, (Conv)]. Let
πε be the local semiflow on Hε

1 generated by the equation

(4.7) u̇ = −Ãεu+ fε(u).

Remark. For ε ∈ ]0, 1] define the function ζε: Ωε × R → R by

ζε(x, s) = ϕε(Γ−1
ε (x), s).

Then ζε satisfies the assumptions of Example 4.1. Let Zε be defined as in that
example. Then

Zε(u ◦ Γ−1
ε )(Γε(x)) = Φε(u)(x), u ∈ H1(Ω), x ∈ Ω

so fε is as in (4.5).

We now obtain the following

Conclusion 4.4. For the above family πε, ε ∈ [0, 1], the following results
hold: the convergence results [2, Theorems 5.4, 5.5, 5.7 and Corollary 5.6], the
admissibility results [2, Theorems 6.1, 6.2 and Corollary 6.3], the Conley index
continuation principle [2, Theorem 7.3] and the homology braid continuation
principle [2, Theorem 7.5].

To conclude this section let us note the following results which we will use
in Section 5.

Proposition 4.5. For ε ∈ [0, 1] define the function Fε: Ω× R → R by

Fε(x, t) =
∫ t

0

ϕε(x, s) dx, x ∈ Ω, t ∈ R.
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For u ∈ L2∗(Ω) and x ∈ Ω define F̂ε(u)(x) = Fε(x, u(x)). Then F̂ε(u) ∈
L2∗q/(2∗+q)(Ω) and the map F̂ε is continuously differentiable from L2∗(Ω) to
L2∗q/(2∗+q)(Ω). Moreover,

DF̂ε(u)(v)(x) = ϕε(x, u(x))v(x), u, v ∈ L2∗(Ω), x ∈ Ω.

Proof. By hypothesis 4.3, integrating and using Young’s inequality, we
obtain

|ϕε(x, t)| ≤ b(x) + Ca(x)|t|+ C

β + 1
|t|β+1 ≤ c(x) +

C + 1
β + 1

|t|β+1

i.e.

(4.8) |ϕε(x, t)| ≤ c(x) + C ′|t|β+1 x ∈ Ω, t ∈ R

where

c(x) = b(x) + C(β/(β + 1))a(x)(β+1)/β , x ∈ Ω, and C ′ =
C + 1
β + 1

.

Using the same arguments with (4.8) we get

(4.9) |Fε(x, t)| ≤ d(x) + C ′′|t|β+2 x ∈ Ω, t ∈ R

where

d(x) =
β + 1
β + 2

c(x)(β+2)/(β+1), x ∈ Ω, and C ′′ =
(

1
β + 2

+
C + 1

(β + 1)(β + 2)

)
.

Since rβ/(β+1) = q, we have c ∈ Lq(Ω). Now an application of [3, Theorem 2.6]
shows that F̂ε is a C1-map from Lq(β+1)(Ω) to Lq(β+1)/(β+2)(Ω). Since q(β+1) =
2∗ and q(β + 1)/(β + 2) = 2∗q/(2∗ + q), the assertion follows. �

Corollary 4.6. For ε ∈ [0, 1] the function Vε:Hε
1 → R given by

Vε(u) = (1/2)aε(u, u)−
∫

Ω

Jε(x)Fε(x, u(x)) dx, u ∈ Hε
1 ,

is defined, continuously differentiable and for each M ∈ [0,∞[

(4.10) sup
ε∈[0,1]

sup
‖u‖ε≤M

|Vε(u)| <∞.

Moreover,

(4.11) DVε(u)(v) = aε(u, v)−
∫

Ω

Jε(x)ϕε(x, u(x))v(x) dx, u, v ∈ Hε
1 .

Whenever I ⊂ R is an open interval and u: I → Hε
1 is a solution of the local

semiflow πε, then u is differentiable into Hε
1 with derivative u̇. The function

Vε ◦ u is differentiable and

(Vε ◦ u)′(t) = −|u̇(t)|2ε, t ∈ I.
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Proof. By our assumption on q we have 2∗q/(2∗+ q) > 1 so we have a con-
tinuous inclusion from L2∗q/(2∗+q)(Ω) to L1(Ω), with embedding constant C6.
We also have a continuous inclusion from Hε

1 to L2∗(Ω) with embedding con-
stant C1,1 (independent of ε ∈ [0, 1]). Finally, the integral is a linear continuous
map from L1(Ω) to R with embedding constant 1. Now Proposition 4.5 together
with the fact that aε is bilinear and bounded from Hε

1 ×Hε
1 to R imply that Vε

is defined, continuously differentiable, and that formula (4.11) holds.
Formula (4.9) implies

(4.12) |Vε(u)| ≤ (1/2)‖u‖2ε + C4|d|L1(Ω) + C4C
′′C6C

β+2
1,1 ‖u‖β+2

ε ,

ε ∈ [0, 1], u ∈ Hε
1 , with C4 := sup(x,ε)∈Ω×[0,1] |Jε(x)|. Formula (4.12) in turn

implies (4.10).
Now the smoothing property for solutions of (4.7) implies that u is differen-

tiable into Hε
1 .

We also have

bε(u̇(t), v) = −Ãε(u(t))(v) + fε(u(t))(v), t ∈ I, v ∈ Hε
1

where Ãε is defined after the statement of Proposition 3.12. Using (3.28) we
thus obtain, for t ∈ I,

(Vε ◦ u)′(t) = DVε(u(t))(u̇(t)) = aε(u(t), u̇(t))−
∫

Ω

Jε(x)ϕε(x, u(t)(x))u̇(t)(x) dx

= Ãε(u(t))(u̇(t))− fε(u(t))(u̇(t)) = −bε(u̇(t), u̇(t)) = −|u̇(t)|2ε.

The corollary is proved. �

5. Global attractors

In this section we will prove that, under a dissipativeness condition on the
family (ϕε)ε∈[0,1], for each ε ∈ [0, 1] the local semiflow πε is actually a global
semiflow and it has a global attractor Aε. We will also show that the family
of these attractors is upper-semicontinuous at ε = 0. These results extend the
corresponding results from [6] and [7].

Assume the following

Hypothesis 5.1. There is an η ∈ ]0, 1[ and for every ε ∈ [0, 1] there is
a positive function µε ∈ Lβ+2(Ω) such that M = supε∈[0,1] |µε|Lβ+2(Ω) <∞ and
for every ε ∈ [0, 1]

ϕε(x, t)/t ≤ −η, x ∈ Ω, |t| > µε(x).
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Remark 5.2. Hypothesis 5.1 is satisfied if the following uniform dissipative-
ness condition holds:

lim sup
|t|→∞

sup
(ε,x)∈[0,1]×Ω

ϕε(x, t)/t < 0.

In this case µε can be chosen to be a constant function independent of ε ∈ [0, 1].
Hypothesis 5.1 together with (4.8) implies that,

ϕε(x, t)t ≤ −ηt2, ε ∈ [0, 1] , x ∈ Ω, |t| > µε(x)

and

ϕε(x, t)t ≤ (c(x) + C ′|t|β+1)|t| ≤ β + 1
β + 2

c(x)(β+2)/(β+1) +
(

1
β + 2

+ C ′
)
|t|β+2

≤ β + 1
β + 2

c(x)(β+2)/(β+1) +
(

1
β + 2

+ C ′
)
µε(x)β+2,

ε ∈ [0, 1], x ∈ Ω, |t| ≤ µε(x). Thus

(5.1) ϕε(x, t)t ≤ −ηt2 +
β + 1
β + 2

c(x)(β+2)/(β+1) +
(

1
β + 2

+ C ′
)
µε(x)β+2,

(ε, x, t) ∈ [0, 1]× Ω× R. Consequently,

(5.2) fε(u)(u) =
∫

Ω

Jε(x)ϕε(x, u(x))u(x) dx ≤ −η|u|2ε + Č, u ∈ Hε
1

where

Č = C4|d|L1(Ω) +
(

1
β + 2

+ C ′
)
C4M

β+2 <∞.

Moreover, by a simple integration

Fε(x, t) ≤ Fε(x, µε(x))−
1
2
ηt2 +

1
2
ηµε(x)2, ε ∈ [0, 1] , x ∈ Ω, t > µε(x)

and

Fε(x, t) ≤ Fε(x,−µε(x))−
1
2
ηt2 +

1
2
ηµε(x)2, ε ∈ [0, 1] , x ∈ Ω, t < −µε(x).

Since µε(x)2 ≤ (2/(β + 2))µε(x)β+2 + β/(β + 2), it follows from (4.9) that

Fε(x, t) ≤ −1
2
ηt2 + 2d(x) +

(
2C ′′ +

η

β + 2

)
µβ+2

ε +
ηβ

2(β + 2)
,

(ε, x, t) ∈ [0, 1]× Ω× R, so that

(5.3)
∫

Ω

Jε(x)Fε(x, u(x)) dx ≤ −1
2
η|u|2ε + ˇ̌C, (ε, x, t) ∈ [0, 1]× Ω× R

where

ˇ̌C = 2C4|d|L1(Ω) +
(

2C ′′ +
η

β + 2

)
C4M

β+2 +
ηβ

2(β + 2)
C4λ(Ω) <∞

with λ(Ω) denoting the measure of Ω.
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Lemma 5.3. If ε ∈ [0, 1] and u is an equilibrium of πε, then ‖u‖2ε ≤ Č/η.

Proof. By our assumption u ∈ D(Ãε) = Hε
2−α and −Ãεu + fε(u) = 0.

It follows that Ãε(u)(u) = fε(u)(u), so in view of (3.28) and (5.2), aε(u, u) =
fε(u)(u) ≤ −η|u|2ε + Č so ‖u‖2ε = aε(u, u) + |u|2ε ≤ Č/η. �

Lemma 5.4. If ε ∈ [0, 1] and u ∈ Hε
1 , then ‖u‖2ε ≤ (2/η)(Vε(u) + ˇ̌C) and

‖u‖ε ≤ K(Vε(u) + 1), where K = max(1/η, (2 ˇ̌C + η)/2).

Proof. Indeed, by (5.3), Vε(u) ≥ (1/2)aε(u, u) + (η/2)|u|2ε −
ˇ̌C, so ‖u‖2ε ≤

(2/η)(Vε(u) + ˇ̌C). Since 2‖u‖ε ≤ ‖u‖2ε + 1, the result follows. �

For ε ∈ [0, 1] let Aε be the union of all full bounded orbits of πε. Corollary 4.6
and Lemmas 5.3 and 5.4 show that all assumptions of [6, Theorem 5.6] are
satisfied. Using that theorem we thus obtain

Theorem 5.5. For every ε ∈ [0, 1], πε is a global semiflow and Aε is a global
attractor of πε.

Lemma 5.6. Let M1 = sup‖v‖2ε≤(Č/η) Vε(v). Then M1 ∈ [0,∞[ and

sup
ε∈[0,1]

sup
u∈Aε

‖u‖2ε ≤
2
η
(M1 + ˇ̌C) =: M2.

Proof. M1 < ∞ by (4.10). If ε ∈ [0, 1] and u ∈ Aε, then there is a full
solution σ: R → Aε of πε with σ(0) = u. σ[R] lies in a compact set so its α- and
ω-limit sets are nonempty. Since πε is gradient-like with respect to Vε, we have
that Vε(σ(t)) ≤ V (v) for each t ∈ R and all v ∈ α(σ), and α(σ) consists only of
equilibria of πε. Thus, by Lemma 5.3, Vε(u) ≤ sup‖v‖2ε≤(Č/η) Vε(v) = M1, thus

‖u‖2ε ≤ (2/η)(M1 + ˇ̌C) by Lemma 5.4. �

Theorem 5.7. The family (Aε)ε∈[0,1] is upper semicontinuous at ε = 0 with
respect to the family ‖ · ‖ε of norms i.e.

lim
ε→0+

sup
w∈Aε

inf
u∈A0

‖w − u‖ε = 0.

Proof. For every ε ∈ ]0, 1] let Qε:Hε
1 → Hε

1 be the 〈〈 · , · 〉〉ε-orthogonal
projection of Hε

1 onto its closed subspace H1
s (Ω) = H0

1 . Let C be as in Proposi-
tion 3.8, part (c). Define N0 to be the set of all u ∈ H0

1 with ‖u‖20 ≤ C2M2 + 1.
For ε ∈ ]0, 1] define Nε to be the set of all u ∈ Hε

1 with Qεu ∈ N0 and
‖(IdHε

1
−Qε)u‖2ε ≤ M2 + 1. For ε ∈ [0, 1] let Kε be the largest πε-invariant

set included in Nε. Since Nε is bounded, Kε ⊂ Aε by the definition of Aε.
We prove the reverse inclusion. Let u ∈ Aε be arbitrary and σ: R → Aε be
a full solution of πε with σ(0) = u. Let t ∈ R be arbitrary. If ε = 0, then
‖σ(t)‖20 ≤ M2 < C2M2 + 1, so σ(t) ∈ N0 = Nε. If ε > 0, then ‖Qεσ(t)‖20 ≤
C2‖Qεσ(t)‖2ε ≤ C2‖σ(t)‖2ε ≤ C2M2 < C2M2 + 1 and ‖(IdHε

1
−Qε)σ(t)‖2ε ≤
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‖σ(t)‖2ε ≤ M2 < M2 + 1, so again σ(t) ∈ Nε. It follows that u ∈ Kε which
proves that Kε = Aε. The above estimates also prove that Nε is an isolating
neighbourhood of Kε, ε ∈ [0, 1].

Now the statement of this theorem follows by an application of [2, Theo-
rem 7.3], which holds in view of Conclusion 4.4. �
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