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BIFURCATIONS
IN THE CASE OF TWOFOLD DEGENERATION.

THE QUASI-LINEAR APPROACH

Yakov Dymarskĭı — Dmytrĭı Nepiypa

Abstract. This paper studies typical (in a sense) bifurcations in the case

of twofold degeneration linearized operator. We use an original approach

of quasi-linear representation.

1 Introduction

The small eigenvectors problem of nonlinear operators dates back to the
works of Euler, Poincare, A. M. Lyapunov and E. Schmidt. The important
results were obtained by M. A. Krasnosel’skĭı in late sixties. We focus on non-
linear operators that vanish at zero. Therefore the nonlinear eigenvector problem
is also a problem of bifurcation of zero-solution. Clearly, the various particular
properties of non-linear operator require different methods of studies. Thus one
can apply analytical, topological, variational, and cone methods. The main
results up to the date are presented in the following publications [1], [2], [11],
[14]–[18], [21], [22], [24].

Without going into details we could say that we consider the eigenvector
problem γ(A0x + F (x)) = x, where A0 is linear operator, and a non-linear map
F approaches zero ‖F (x)‖/‖x‖ → 0 at small ‖x‖ → 0. The implicit function the-
orem suggests that the bifurcation point γ0 is the characteristic number γn = γ0
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of the linearized operator A0. There are the following famous results obtained by
Krasnosel’skĭı [16]. Firstly, if map F is variational each characteristic number γn

is a bifurcation point. Secondly, if characteristic number γn has odd multiplicity,
γn is a bifurcation point.

The case of double degeneracy γn = γn+1 is special and leads to a num-
ber of different scenarios. Let us briefly remind here main results for the double
degeneracy case. This was studied by analytical methods in the case when a non-
linearity F is smooth [24]. The work [19] apply cone method assuming the map F

homogeneous. The work [13] focuses on the case when the order of non-linearity
smallness is two: ‖F (x)‖ ∼ O(‖x‖2). Let us note that the above mentioned
results have two common peculiarities. They all assume certain non-degeneracy
conditions and they are based on the Lyapunov–Shmidt ramification equation.
Therefore the main problem is to transform the given infinite-dimensional equa-
tion to the finite-dimensional ramification equation using the non-degeneracy. In
the work we overcome this difficulty by using an original quasi-linear method.

Our approach is to employ the quasi-linear representation of the non-linearity
F , namely F (x) ≡ A(x)x, where A(x) is a small x-dependent operator. The
quasi-linear representation was first used by A. I. Perov, P. P. Zabrĕıko, and
A. I. Povolotskĭı to calculate the Leray–Schauder degree in the sixties (see
§ 21 in [18]). Later P. Fitzpatrick and J. Pejsachowicz developed the theory
of Leray–Schauder degree for some class of quasi-linear Fredholm maps in the
nineties [12]. The quasi-linear representation was first applied to the eigenvector
problem in 1984 by Y. M. Dymarskĭı [8]. Later C. Cosner used a similar method
in 1988 [3]. The quasi-linear eigenvector problem is systematically studied in
the monograph [9] by Y. M. Dymarskĭı. In this work we improve the bifurcation
theorem from [9] (see Chapter 7.1). This theorem is discussed in section six. We
also compare our results with previous works there.

This paper is organized as follows. Next section introduces main notions
and definitions. Third section formulates the main theorem. Fourth section
is devoted to the a priory estimates for eigenvalues and for small eigenvectors.
We continue with the new non-linear projection that compactifies quasi-linear
representation in section five. Section six contains the original bifurcation the-
orem from [9]; it also compares the original theorem with the one from section
three. Seventh section checks that the resulting quasi-linear problem satisfies
the requirements of theorem from [9].

2. Main notions and definitions

Let H be a real separable Hilbert space with an inner product 〈 · , · 〉 and
norm ‖ · ‖. Let also A0:H → H be a linear operator that satisfies the following
conditions.
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(i) A0 is a compact self-adjoint operator.
(ii) A0 is positive definite i.e. for any x 6= 0 the following inequality

〈A0x, x〉 > 0 is satisfied.

Because of the properties mentioned above the operator A0 has a countable
collection of isolated characteristic numbers (i.e. inverse eigenvalues); the char-
acteristic numbers are positive with finite degeneracy; the ordered characteristic
numbers have limiting property γi → ∞ as i → ∞. In what follows, as a pos-
sible bifurcation point, we are interested in the twofold characteristic number
γn = γn+1. In each eigen-space that corresponds to the eigenvalue γi with mi-
degeneracy one can choose mi orthonormal in H eigenvectors. The eigenvectors
that correspond to different eigenvalues are also orthogonal. The union of all
eigenvectors form an orthogonal basis in H {e1, e2, . . . }. (These properties con-
stitute Gilbert–Schmidt theorem [6]). For a twofold degenerate eigenvalue γn

the corresponding eigenvectors span the plane H0 = span{en, en+1} ⊂ H. Let
H1 be an orthogonal complement to H0 in H and π0, π1 the projections on H0

and H1 correspondingly.
Below we shall consider operators from Banach space Lc(H) of linear compact

self-adjoined operators. By | · | denote the common operator norm in Lc(H).
Let nonlinear mapping F satisfies the following conditions.

(i) The mapping F :H → H is completely continuous (i.e. continuous and
compact [16).

(ii) F (0) = 0.
(iii) There are such ε, µ, K > 0 that under the condition ‖x1‖, ‖x2‖ < ε, the

inequality

(2.1) ‖F (x1 + x2)− F (x1)‖ < K(‖x1‖+ ‖x2‖)µ · ‖x2‖

holds.

Lipshitz condition (iii) has the coefficient vanishing as ‖x‖µ. The conditions
(i)–(iii) are natural (for example, see [16]). It follows from (ii) and (iii) that

(2.2) ‖F (x)‖ < K‖x‖1+µ;

Particularly, ‖F (x)‖/‖x‖ → 0 as x → 0.
Consider the nonlinear equation

(2.3) γ(A0(x) + F (x)) = x

in the unknown pair (γ, x) ∈ R×H. If the pair (γ, x) satisfies equation and x 6= 0,
then we say that pair is the solution; the number γ is called the characteristic one
and vector x is called the eigenvector. We focus on small eigenvectors ‖x‖ � 1.
We note that by condition (ii), a pair (γ, 0) satisfies equation (2.3) for any γ.
The pair (γ, 0) is called the trivial solution. Now we give two main definitions.
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Definition 2.1 ([17]). The number γ0 ∈ R is called the bifurcation point
for problem (2.3) if, for any δ > 0, problem (2.3) has a solution (γ, x) satisfying
the inequality

(2.4) |γ − γ0|+ ‖x‖ < δ.

The set of all solutions satisfying condition (2.4) is denoted by Solδ.

Definition 2.2. A solution branch Br ⊂ R ×H of problem (2.3) is a con-
nected component of the set of all its solutions. If the closure Br of a solution
branch contains a trivial solution (γ0, 0), the branch is said to be emanating from
the bifurcation point (γ0, 0).

The concept of a continuous eigenvector branch was introduced by M. A. Kra-
snosel’skĭı [16]. The concept of a global continuous solution branch was intro-
duced by P. Rabinowitz [23]. (Paper [23] contains classical theorem about global
solution branches emanating from the bifurcation point. Rabinowitz theorem
was strengthened by E. Dancer [5]. Elegant statement of Rabinowitz theory is
given in Nirenberg’s lectures [22].) Our definition is close to Rabinowitz defini-
tion. The distinction is that Rabinowitz first takes the closure of set of (non-
trivial) solution, and then the connected components of the obtained set are
investigated.

3. The main theorem

Denote by Sρ = {x ∈ H : ‖x‖ = ρ} the sphere of radius ρ. We shall seek an
eigenvectors x ∈ Sρ, where radius ρ is sufficiently small.

On the plane H0 write vector x by the polar coordinates (r, ϕ) (r ≥ 0,
ϕ ∈ [0, 2π)):

H0 3 x = r · xϕ := r · (en cos ϕ + en+1 sinϕ).

Then we can represent any vector x ∈ H in the unique form

(3.1) x = r · xϕ + v, v ∈ H1, r2 + ||v||2 = ρ2.

Consider the family of operators A(x) ∈ (L)c(H) depending on variable
x ∈ H; by definition, put

(3.2) A(x)u :=
〈x, u〉 · F (x) + 〈F (x), u〉 · x

‖x‖2
− 〈F (x), x〉 · 〈x, u〉 · x

‖x‖4
, if x 6= 0,

A(0) := 0.

Using family (3.2), let us write the mapping F in the quasilinear form:

F (x) ≡ A(x)x.
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Now nonlinear problem (2.3) is quasi-linear one:

(3.3) γ(A0 + A(x))x = x.

Let (γ∗, x∗) be a solution of problem (3.3). Along with quasilinear eigenvector
problem (3.3), let us consider associated linear self-adjoined eigenvector problem
of the form

(3.4) γ(A0 + A(x∗))x = x.

Obviously, the number γ∗ is an eigenvalue of problem (3.4), and, moreover,
among the eigenvectors corresponding to λ∗, there exists the vector x∗.

Definition 3.1. With a solution (γ∗, x∗) of problem (3.3) we associate that
number n and multiplicity m which γ∗ has as an eigenvalue of associated linear
problem (3.4). A solution (γ∗, x∗) of (3.3) is said to be simple or multiple if such
is γ∗ as an eigenvalue of (3.4).

We introduce the following nonlinear functionals

(3.5)
a(x) = 〈A(x)en, en〉, b(x) = 〈A(x)en, en+1〉,

c(x) = 〈A(x)en+1, en+1〉, d(x) =
1
2
(a(x)− c(x)).

Considering (3.1), these functionals depend on variables ϕ, r, v: a(x) =
a(ϕ; r, v) etc. In what follows, let ϕ be an argument belonging to the unit circle
S1

1 , the pair (r, v) ∈ R+×H1 is understood as small parameter. If the inequality

d2(ϕ; r, v) + b2(ϕ; r, v) > 0,

holds for some r, v and for all ϕ ∈ S1
1 then the formulas cos α = d/

√
d2 + b2,

sinα = b/
√

d2 + b2 define a family of mappings α = α(ϕ; r, v) of the circle S1
1 to

the circle S1
2 parametrized by the angle α. The pair (r, v) is understood as small

parameter of family. Denote by deg(α) the oriented degree [22] of this mapping.
Let us formulate the main theorem of paper.

Theorem 3.2. Let there exists such ε > 0 for which the following conditions
hold.

(a) There exists κ > 0 such that

(3.6)
√

d2(ϕ, r, 0) + b2(ϕ, r, 0) ≥ κrµ

whenever 0 < r < ε.
(b) Let, for a certain 0 < r0 < ε, the degree satisfy

(3.7) deg(α(ϕ, r0, 0)) = N 6= 2.
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Then there exists a small constant δ > 0 for which the following assertions hold.

(A) If (γ, x) = (γ, r · xϕ + v) is an arbitrary solution of problem (2.3) satis-
fying inequality (2.4), then there exist constants V,Γ > 0 that

‖v‖ ≤ V · ‖x‖1+µ, |γ − γn| ≤ Γ · ‖x‖µ.

(B) All solutions of problem (2.3) for which inequality (2.4) hold are simple
((2.3) if and only if (3.3)!).

(C) The number γn is a bifurcation point for problem (2.3).
(D) For each ρ < δ, problem (2.3) has no less than |2−N | solutions (γ, x)

with number n for which x ∈ Sρ; the same is true for the solutions with
number n + 1.

(I) In addition, let the function α(ϕ; r, 0) be monotone in ϕ uniformly for
all r ∈ (0, ε). Then no less than |2 − N | branches emanate from the
bifurcation point γn; these branches contain simple solution with num-
ber n. The same is true for the branches containing solutions with
number n + 1.

The conditions and the statements of Theorem 3.2 are discussed in detail in
Section 7.

4. A priori estimates

We first show that the desired set of solutions is compact.

Lemma 4.1. For any fixed δ > 0 the set Solδ of all solutions (γ, x) satisfying
(2.4) is compact in the space R×H.

Proof. First, the set of all characteristic numbers is bounded: |γ−γn|< δ.
Secondly, it follows from equation (2.3) and the compactness of mapping A0 +F

that the image of the ball Ball(δ) = {x : ‖x‖ < δ} is compact subset (A0 +
F )(Ball(δ)) ⊂ H. Hence the solution set belongs to compact set:

Solδ ⊂ (γn − δ, γn + δ)× (γn − δ, γn + δ)(A0 + F )(Ball(δ)). �

Now we obtain an a priori estimates, which characterizes the variation of
solution (γ, x) in plane (γn, span{en, en+1}). At the beginning we show that the
orthogonal component v (see (3.1)) is (1 + µ)-order infinitesimal in comparison
with the small eigenvector x.

Lemma 4.2. There exists δ > 0 such that for all solutions (γ, x) satisfying
inequality (2.4), the component v ∈ H1 of eigenvector x satisfy the inequality

(4.1) ‖v‖ ≤ V ‖x‖1+µ,
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where V > 0 is certain constant.

Proof. The projection of equation (2.3) on subspace H1 ⊂ H is

γA0v + π1F (x) = v.

For sufficiently small δ, the operator

−γA1
0 + E:H1 → H1, (−γA1

0 + E)v := −γA0v + v

acts onto the space H1 and is invertible on H1. Using (2.2), we obtain

γA0v + π1F (x) = v ⇒ v = (−γA1
0 + E)−1(π1F (x))

⇒ ‖v‖ ≤ |(−γA1
0 + E)−1| · |π1| · ‖F (x)‖ ≤ sup

γ
|(−γA1

0 + E)−1| · 3K‖x‖1+µ,

where γ ∈ (γn − δ, γn + δ). (Note that we make the substitution of 3K for
K in (2.2) deliberately; the reason for this will be explained in the proof of
Lemma 6.) �

Now we estimate the variation of characteristic number γ.

Lemma 4.3. There exists δ > 0 such that for all solutions (γ, x) satisfying
inequality (2.4), the variation of characteristic number satisfy the inequality

(4.2) |γ − γn| ≤ Γ‖x‖µ,

where Γ > 0 is certain constant.

Proof. It follows from equality (2.3) and the equality γnA0(x− v) = x− v

that

γnA0v + (γ − γn)
(

x− v

γn
+ A0v

)
+ F (x) = v.

Taking into consideration estimate (4.1), we give the parameter δ such small
that ∥∥∥∥x− v

γn
+ A0v

∥∥∥∥ >
‖x‖
2γn

.

Now, using estimates (2.2) and (4.1), we obtain

|γ − γn|‖x‖ ≤ 2γn(V ‖x‖1+µ + 3K‖x‖1+µ + γn|A0|V ‖x‖1+µ) = Γ‖x‖1+µ.

(Above we make the substitution of 3K for K a second time.) �

Thus, assertion (A) of Theorem 3.2 is proved.
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5. Compactification of quasi-linearity

Our next task is to define an original projection on the compact subset spec-
ified by the a priori estimates. The projection will preserve the desired solutions
invariant. We will use this projection in section six to define quasi-linear repre-
sentation that is a completely continuous map in the space of operators. In turn
the complete continuity of the quasi-linear representation is required to construct
a topological invariant (index of intersection). The latter is used to prove the
existence of the solution of the non-linear problem.

The projection will be introduces in two steps. At first we introduce an
auxiliary projection. We can assume that the radius ρ is small enough that
V ρ1+µ < ρ/2 without loss of generality. Using the orthogonal decomposition of
the eigenvector (3.1) we define a solid torus

(5.1) Tρ := {x = rxϕ + v ∈ Sρ : v ≤ V ρ1+µ}

that is homotopically equivalent to a circle: Tρ ∼ S1. Let Xρ,n be a set of
all eigenvectors of bifurcation problem (2.3), that satisfy the normalization con-
dition x ∈ Sρ. It follows from definition (5.1) and priori estimate (4.1) that
Xρ,n ⊂ Tρ. Moreover equation (2.3) and a priori estimates (4.1) and (4.2) imply
that

(5.2) Xρ,n ⊂ Compρ,n := {[γn − Γρµ, γn + Γρµ](A0 + F )(Tρ)} ∩ Tρ.

Here the subset Compρ,n is absolute compact because of the map A0 + F is
compact. Therefore the projection of Xρ,n on H1 satisfies the condition

(5.3) π1(Xρ,n) ⊂ π1(Compρ,n).

By co(X) denote the closed convex hull of X ⊂ H. It follows from embedding
(5.3) that

π1(Xρ,n) ⊂ co(π1(Compρ,n)) ⊂ H1,

where the convex set co(π1(Compρ,n)) is absolute compact (by Mazur’s theo-
rem [7]).

Let Π be the auxiliary projection of H1 to co(π1(Compρ,n)) such that the set
distance dist(v, co(π1(Compρ,n))) := inf ‖v − x‖, x ∈ co(π1(Compρ,n)), is equal
to ‖Π(v)− v‖. Otherwise, the point Π(v) actualizes the distance between v and
co(π1(Compρ,n)).

Lemma 5.1. The following assertions hold.

(a) The definition of Π is correct: for any v ∈ H1 the image Π(v) is
uniquely defined.

(b) If v ∈ co(π1(Compρ,n)), then Π(v) = v, Π2 = Π.
(c) The mapping Π is completely continuous.
(d) ‖Π(v)‖ ≤ ‖v‖.
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(e) The norm of image satisfies the inequality: ‖ImΠ‖ ≤ V ρ1+µ.

Proof. The correctness of definition follows from the fact that the subset

co(π1(Compρ,n)) ⊂ H1 ⊂ H

is convex and compactness, and the space H1 is a Hilbert one.
The second statement follows directly from the definition of Π.
The compactness of Π follows from the compactness of subset

co(π1(Compρ,n)) ⊂ H1.

It still remains to prove that the projection Π is continuous. Consider the quadri-
lateral ABDC, where A = v1, B = v2, D = Π(v2), C = Π(v1). It follows from
the definition of Π and the convex of subset co(π1(Compρ,n)) ⊂ H1 that the
angles ∠ACD and ∠BDC no less then π/2. Let us note that in a general case
the quadrilateral ABDC is three-dimensional. If we make it flat by unfolding it
around one of the diagonals the resulting angles are going to be not smaller than
the original once. This is before each flat angle in any trihedral angle is smaller
than the sum of the their two. We keep the same notation for the plane quadri-
lateral ABDC. There are two non acute angles adjacent to the side DC of the
quadrilateral ABDC. Therefore ‖Π(v2)−Π(v1)‖ = ‖DC‖ ≤ ‖AB‖ = ‖v2− v1‖.

To prove the fourth statement, consider the triangle ABO, where A = v,
B = Π(v), O = 0 ∈ H. It follows from the definition of Π and the convex of
subset co(π1(Compρ,n)) ⊂ H1 that the angles ∠ABO no less then π/2. This
yields that ‖Π(v)‖ = ‖OB‖ ≤ ‖OA‖ = ‖v‖.

The last statement follows from the definitions of solid torus (5.1) and sub-
set (5.2). �

Let us proceed to the definition of main projection. Consider the solid torus

(5.4) TΠ := {x = rxϕ + v ∈ Sρ : v ∈ co(π1(Compρ,n))} ⊂ Tρ.

Denote by Pr: Tρ → TΠ the projection such that

Pr(x) = Pr(rxϕ + v) :=
√

ρ2 − ‖Π(v)‖2 xϕ + Π(v).

Lemma 5.2. The following assertions hold.

(a) If x ∈ TΠ, then Pr(x) = x; Pr2 = Pr.
(b) ‖Pr(x)‖ = ‖x‖ = ρ.
(c) The mapping Pr is completely continuous.

Proof. The first and the second assertions follow directly from the defini-
tion of Pr. The third assertion follows from the third assertion of Lemma 4 and
the finite dimensionality of the space H0. �
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Using the projection Pr, consider (on the solid torus Tρ) the problem

(5.5) γ(A0(x) + A(Pr(x))x) = x, x ∈ Tρ.

We claim that the bifurcation problems (3.3) and (5.5) are equivalent. For
this purpose, we shall prove that the a priori estimates for solutions of problem
(5.5) coincide with (4.1) and (4.2).

Lemma 5.3. There exist such ε, δ > 0 that under the conditions

|γ − γn| < δ, x ∈ Tρ, ρ ≤ ε,

the inequalities (4.1) and (4.2) hold.

Proof. At first, we estimate the nonlinear term in the problem (5.5) simi-
larly to (2.2). It follows from definition (3.2), property (b) of projection Pr (see
Lemma 5.2), the infinitesimality of ρ and inequality (2.2) that

‖A(Pr(x))x‖ =
∥∥∥∥ 〈Pr(x), x〉F (Pr(x)) + 〈F (Pr(x)), x〉Pr(x)

‖Pr(x)‖2
(5.6)

− 〈F (Pr(x)),Pr(x)〉〈Pr(x), x〉Pr(x)
‖Pr(x)‖4

∥∥∥∥
≤ 3‖F (Pr(x))‖ ≤ 3 ·K‖Pr(x)‖1+µ = 3 ·K‖x‖1+µ.

Now, it suffices to note that estimates (4.1) and (4.2) were obtained using the
substitution of 3K for K in (2.2), and to apply the same arguments and inequal-
ity (5.6). �

From Lemma 5.3, the definition of projection Π and property (A) of projec-
tion Pr (see Lemma 5.2), we get the desired result.

Lemma 5.4. There exists such ε > 0 that bifurcation problem (3.3), (3.1)
and problem (5.5) are equivalent for each ρ < ε.

Proof. Let (γ, x) be the solution of problem (3.3), (3.1). For this solution
the a priori inequalities (4.1) and (4.2) hold. Hence (see definition (5.2)), x =
rxϕ + v ∈ Xρ,n ⊂ Compρ,n. Therefore v ∈ co(π1(Compρ,n)). Now, we have that
Π(v) = v (see assertion (b) of Lemma 5.1 and x = Pr(x) (see (5.4) and assertion
(a) of Lemma 5.2). Thus (γ, x) is the solution of problem (5.5).

Conversely, let (γ, x) be the solution of problem (5.5). Then, by Lemma 5.3,
a priori estimates (4.1) and (4.2) hold. Using previous arguments, we obtain
that Pr(x) = x in this case also. Thus (γ, x) is the solution of problem (3.3). �
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6. Formulation of the theorem for quasi-linear equation

Keeping in mind the equation (5.5), by Ã := A · Pr denote the new quasi-
linear representation. We shall introduce the nonlinear functionals in a way
analogous to (3.5):

ã(x) = 〈Ã(x)en, en〉, b̃(x) = 〈Ã(x)en, en+1〉,

c̃(x) = 〈Ã(x)en+1, en+1〉, d̃(x) =
1
2
(ã(x)− c̃(x)).

Considering (3.1), ã(x) = ã(ϕ; r, v) etc. b̃(x) = b̃(ϕ; r, v), c̃(x) = c̃(ϕ; r, v),
d̃(x) = d̃(ϕ; r, v).

The proof of Theorem 3.2 is based on Theorem 7.1. and Corollary 7.4.1
from [9]. Let us formulate this statement.

Theorem 6.1. Consider equation (5.5). Let there exist positive constants ε

and µ for which the following conditions hold.

(a) For each ρ < ε, the quasi-linear representation Ã:Tρ → Lc(H) is a
completely continuous mapping.

(b) There exists a positive number K̃ such that ‖Ã(x)‖ ≤ K̃‖x‖µ, whenever
‖x‖ = ρ < ε.

(c) For any V > 0, there exists a number κ̃(V ) > 0 such that

(6.1)
√

d̃2(x) + b̃2(x) > κ̃(V )‖x‖µ,

whenever ‖x‖ < ε and ‖v‖ ≤ V ‖x‖1+µ.
(d) The mapping α̃(ϕ; r, 0) is Lipschitz in the variable ϕ uniformly for 0 <

r < ε. Let the degree satisfy

(6.2) deg(α̃(ϕ; r0, 0)) = N 6= 2 for a certain r0 ∈ (0, ε).

Then there exists a small δ > 0 for which the following assertions hold.

(A) All solutions of problem (5.5) for which the inequality |γ−γn|+‖x‖ < δ

hold are simple.
(B) The degree deg(α̃(ϕ; r, 0)) is independent of the choice of the parameter

r ∈ (0, δ).
(C) The number λn is a bifurcation point for equation (5.5).
(D) For each ρ < δ, problem (5.5) has no less than |2−N | solutions (γ, x)

with number n for which x ∈ Tρ; the same is true for the solutions with
number n + 1.

(E) If the function α̃(ϕ; r, 0) is monotone in ϕ uniformly for r ∈ (0, ε), then
no less than |2 − N | branches emanate from the bifurcation point γn;
these branches contain simple solution with number n. The same is true
for the branches containing solutions with number n + 1.
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Now we are ready to compare Theorems 3.2 and 6.1. Firstly the Theorem 6.1
assumes the quasi-linear form of the equation (5.5) while the main Theorem 3.2
deals with the usual non-linear equation (2.3). Moreover, Theorem 6.1 requires
the quasi-linear map Ã is assumed to be completely continuous (see paragraph
(a)). In this work we obtain the quasi-linear form of the equation using (3.2)
while the complete continuity of Ã follows from the properties of the projection
Pr (see below Lemma 7.1). Secondly Theorem 6.1 includes the lower estimate
(6.1) for the solid torus Tρ. In practice it is much less useful than the lower
estimate for the circle (3.6). Lastly the single condition (2.1) is much easier to
check than the condition (b) and (d) from Theorem 6.1.

Note Theorem 6.1 was strengthened already in our paper [22]. But instead
of natural Lipshitz condition (2.1) the following two conditions being satisfied.
Firstly, it is the Lipshitz-type condition that conforms to the vector decomposi-
tion (3.1). Secondly, it is the condition (2.2), which is the corollary of (2.1) in
this paper.

The proof of Theorem 6.1 is quite complex and requires bulky introduction to
the subject (that can be found in [9]). At the same time condition of applicability
of the Theorem 6.1 (moreover, of the Theorem 3.2) is intuitive and easy to check.
It is interesting that these conditions (6.1) and (6.2) for Theorem 6.1 ((3.6) and
(3.7) for Theorem 3.2) are quite unusual. Similarly the complete continuity
condition Ã is also uncommon for the context. It would be interesting to give an
intuitive interpretation for these results. To simply the explanation of the proof
of the Theorem 6.1 we start with a brief overlook of the main steps.

In the direct product Lc(H) × Sρ we consider the subset P of pairs (an
operator, the normalized vector), i.e.:

P := {(A, x) ∈ Lc(H)× Sρ| there exists γ : γAx = x}.

The subset P has a structure of analytic vector bundle over the sphere Sρ. For
definiteness, we are interested only pairs (A, x) ∈ P to which positive charac-
teristic numbers correspond. To each point p = (A, x) ∈ P let us put in corre-
spondence the pair (k,m) of natural numbers, the number and the multiplicity
of the corresponding characteristic number γ. The manifold P is stratified with
respect to the numbers and the multiplicities of its points: P =

⋃
k,m P (k,m).

The formula of codimension codim P (k, m) = m(m−1)/2 is valid. In particular,
the submanifolds P (k, 1) of “simple” points have the codimension zero; they are
open subset of P .

Next, we introduce into consideration the graph

Gr Ã := {(Ã(x), x)} ⊂ Lc(H)× Sρ

of mapping Ã. The following assertion is laid as a base of the our method for
studying the eigenvectors of quasilinear problems.
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Theorem 6.2. A vector x∗ ∈ Sρ is normed eigenvector of problem (5.5)
if and only if Gr Ã(x∗) ∈ P . The number and the multiplicity of the solu-
tion (γ∗, x∗) are defined by the indices (k, m) of the stratum to which the point
Gr Ã(x∗) ∈ P (k,m) ⊂ P belongs.

A quasi-linear representation Ã and corresponding problem (5.5) are said k-
typical if Gr Ã∩(

⋃
m>1 P (k,m)) = ∅. The k-typicality means that problem (5.5)

has no multiple solutions with number k. We proved that the subset of k-typical
quasi-linear representations is open and dense in the space of all completely
continuous mapping from Tρ to Lc(H).

Then, the existence of homotopic invariant for k-typical representations is
proved, namely the invariant is the intersection index χk(Ã) = χ(P (k, 1),Gr Ã)
of the stratum P (k, 1) with graph Gr Ã. (Here we are in need of the complete
continuity of Ã.) If the intersection index χk(Ã) is different from zero, then
problem (5.5) has at least one simple solution with number k.

The calculation of intersection index χk(Ã) runs into severe difficulties. But
in the case of twofold degeneration, we found test condition (6.1) under which all
solutions with numbers k and k + 1 are simple. The meaning of condition (6.1)
is that the image of mapping Ã is far from operators with twofold characteristic
numbers γn = γn+1. Thus, under condition (6.1) indices χk(Ã) and χk+1(Ã)
are determined and it is easy to show χk(Ã) = −χk+1(Ã). To calculate the
index χk(Ã), the problem (5.5) is homotopic to the two-dimensional quasilinear
problem

(6.3) γÃ(2)(ϕ; r)x(ϕ) = x(ϕ)

⇔ γ

(
ã(ϕ; r, 0) b̃(ϕ; r, 0)
c̃(ϕ; r, 0) d̃(ϕ; r, 0)

) (
cos ϕ

sinϕ

)
=

(
cos ϕ

sinϕ

)
.

Actually, problem (6.3) is the restriction of problem (5.5) to the plane H0

and a quasi-linear Lyapunov–Shmidt ramification equation. In addition, we use
the degree of the mapping

Ã(2):S1
1 → L(R2) \ L2(R2),

where L(R2) is the space of two-dimensional self-adjoined operators and L2(R2)
is the submanifold of operators with twofold characteristic number. It turn out
that χk(Ã) = χ1(Ã(2)) = 2−deg(Ã(2)). Finally, by factorization of the mapping
Ã(2), we obtain that deg(Ã(2)) = deg(α̃).

In conclusion let us note that the quasi-linear method employed in this work
requires the linear component of A0 to be a self-adjoint operator. The main
underlying idea is close to those used in theory of analytic perturbation of spec-
trum of the self-adjoint operator [4]. In particular the condition (6.1) is nothing
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but the quasi-linear form of the “non-intersection of terms” law by E. Wigner
and J. von Neumann (see [20, § 79]).

7. The verification of conditions of Theorem 6.1

We show that under conditions of Theorem 3.2, conditions (a) and (b) of
Theorem 6.1 hold.

Lemma 7.1. There exists such ε > 0 that the following assertions hold.

(a) For each x ∈ Tρ, where ‖x‖ = ρ < ε, the inequality |Ã(x)| ≤ 3K · ‖x‖µ

is true.
(b) For each x ∈ Tρ, where ‖x‖ = ρ < ε, the operator Ã(x) : H → H is

two-dimensional.
(c) For each ρ < ε, the mapping Ã : Tρ → Lc(H) is completely continuous.

Proof. For any vector u ∈ H (u 6= 0), by definition (3.2), property (b) of
projection Pr (see Lemma 5.2), the infinitesimality of parameter ε and estimate
(2.2), it follows that

‖Ã(x)u‖ = ‖A(Pr(x))u‖

=
∥∥∥∥ 〈Pr(x), u〉F (Pr(x)) + 〈F (Pr(x)), u〉Pr(x)

‖Pr(x)‖2

− 〈F (Pr(x)),Pr(x)〉〈Pr(x), u〉Pr(x)
‖Pr(x)‖4

∥∥∥∥
≤ 3‖F (Pr(x))‖ · ‖u‖

‖Pr(x)‖
≤ 3K‖Pr(x)‖1+µ · ‖u‖

‖x‖

≤ 3K‖x‖1+µ · ‖u‖
‖x‖

≤ 3K · ‖x‖µ‖u‖.

Estimate (a) is proved.
The second assertion follows from definition (3.2): the image of operator

Ã(x) = A(Pr(x)) belongs to the plane that spans the vectors F (Pr(x)) and
Pr(x).

From definition (3.2), it follows that the mapping Ã is continuous. The
mapping Pr is completely continuous (see assertion (c) of Lemma 5.2). Therefore
the superposition Ã = A(Pr) is completely continuous too. �

Let us verify the condition (c) of Theorem 6.1. First, we show that estimate
(6.1) is valid for the quasi-linear representation A.

Lemma 7.2. Suppose the conditions of Theorem 3.2 are fulfilled. Then there
exists such small ε that under the conditions ‖x‖ = ‖rxϕ + v‖ = ρ < ε and
‖v‖ < V ρ1+µ (V > 0 is some constant), we have

(7.1)
√

b2(ϕ; r, v) + d2(ϕ; r, v) > κ1(V )ρµ,
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where the coefficient κ1(V ) > 0 depends on V .

Proof. First, we note that the estimate |A(x)| ≤ 3K‖x‖µ is true (the proof
repeats the proof of assertion (a) of Lemma 7.1). Therefore,

(7.2) |b(ϕ; r, v)|, |d(ϕ; r, v)| ≤ 3Kρµ.

Let us denote C(V ) to be some positive continuous function (not necessary
the same) of a positive variable V .

Next, two preliminary similar estimates will be established:

|b(ϕ; r, v)− b(ϕ; r, 0)| < C(V )ρ2µ,(7.3)

|d(ϕ; r, v)− d(ϕ; r, 0)| < C(V )ρ2µ.(7.4)

From definitions (3.4) and (3.5), we get the following estimate

|b(ϕ; r, v)− b(ϕ; r, 0)| ≤ |b1(ϕ; r, v)− b1(ϕ; r, 0)|
+ |b2(ϕ; r, v)− b2(ϕ; r, 0)|+ |b3(ϕ; r, v)− b3(ϕ; r, 0)|,

where

b1(x) =
〈F (x), en〉〈x, en+1〉

‖x‖2
, b2(x) =

〈F (x), en+1〉〈x, en〉
‖x‖2

,

b3(x) =
〈F (x), x〉〈x, en+1〉〈x, en〉

‖x‖4
.

We shall show that each of these summands satisfies inequality of the form (7.3).
Let us denote F1(v) := 〈F (ϕ; r, v), en〉, F2(v) := 〈F (ϕ; r, v), en+1〉. Now, by
‖v‖ < V ρ1+µ and estimates (2.2), (2.1),

|b1(ϕ; r, v)− b1(ϕ; r, 0)| =
∣∣∣∣rF1(v) sinϕ

ρ2
− rF1(0) sinϕ

r2

∣∣∣∣
≤ r| sinϕ|

ρ2
|F1(v)− F1(0)|+ r|F1(0) sinϕ|

∣∣∣∣ 1
ρ2
− 1

r2

∣∣∣∣
<KV ρ2µ + KV 2ρ3µ < C(V )ρ2µ.

Analogously, for the second and third summands we obtain:

|b2(ϕ; r, v)− b2(ϕ; r, 0)| =
∣∣∣∣rF2(v) cos ϕ

ρ2
− rF2(0) cos ϕ

r2

∣∣∣∣ < C(V )ρ2µ;

|b3(ϕ; r, v)− b3(ϕ; r, 0)| ≤
∣∣∣∣F1(v)r3 sinϕ cos2 ϕ

ρ4
− F1(0)r3 sinϕ cos2 ϕ

r4

∣∣∣∣
+

∣∣∣∣F2(v)r3 sin2 ϕ cos ϕ

ρ4
−−F2(0)r3 sin2 ϕ cos ϕ

r4

∣∣∣∣
+

∣∣∣∣r2〈F (r, ϕ, v), v〉 sinϕ cos ϕ

ρ4

∣∣∣∣
< 2(KV ρ2µ + 2KV 2ρ3µ) + KV ρ2µ < C(V )ρ2µ.
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Inequality (7.3) is proved. The proof of (7.4) is analogous to that of (7.3).
Finally, we give the proof of Lemma 7.2. From the definition (3.5), the

estimates (2.2) and (3.6), and estimates (7.2)–(7.4) we get:

b2(ϕ; r, v) + d2(ϕ; r, v) = (b2(ϕ; r, v)− b2(ϕ; r, 0))

+ (d2(ϕ; r, v)− d2(ϕ; r, 0)) + (b2(ϕ; r, 0) + d2(ϕ; r, 0))

≥ (b2(ϕ; r, 0) + d2(ϕ; r, 0))

− |b(ϕ; r, v)− b(ϕ; r, 0)| · |b(ϕ; r, v) + b(ϕ; r, 0)|
− |d(ϕ; r, v)− d(ϕ; r, 0)| · |d(ϕ; r, v) + d(ϕ; r, 0)|

≥κ2ρ2µ − C(V )ρ3µ ≥ κ2
1(V )ρ2µ. �

Now, we shall test that estimate of the form (7.1) holds true in the case of
superposition Ã = A(Pr).

Lemma 7.3. Suppose the conditions of Theorem 3.2 are fulfilled. Then there
exists such small ε that under the conditions ‖x‖ = ‖rxϕ +v‖ = ρ < ε and ‖v‖ <

V ρ1+µ (V > 0 is some constant), inequality (6.1) holds with some coefficient
κ̃(V ) > 0.

Proof. By the definition of projection Pr, property (b) of projection Pr
(see Lemma 5.2) and property (d) of projection Π (see Lemma 5.1), we obtain

‖π1(Pr(x))‖ = ‖π1(Pr(rxϕ + v))‖ = ‖Π(v)‖ ≤ V ρ1+µ.

It remains only to use Lemma 7.2. �

Let us show that under the conditions of Theorem 3.2, condition (d) of
Theorem 6.1 and the additional condition in assertion (e) hold.

We first note that mentioned conditions of Theorem 6.1 are formulated under
the assumption v = 0. Hence Pr(x) = x (see assertion (a) of Lemma 5.2).
Therefore an objects with sign “tilde” and similar objects without tilde coincide.
Particularly,

α(ϕ; r, 0) ≡ α̃(ϕ; r, 0), deg(α(ϕ; r, 0)) = deg(α̃(ϕ; r, 0)) 6= 2.

Thus the conditions (3.7) and (6.2) coincide, and the additional conditions of
both theorems from (E) also coincide.

Since a circle is compact, it is sufficient to verify that the mapping α̃ is local
Lipschitz in the variable ϕ with common Lipschitz constant for all 0 < r < ε.
Without loss of generality, it is sufficient to study an neighborhood of point
ϕ = 0 and to assume (see (3.6)) that the functions b and d satisfy the estimates

(7.5) b(ϕ; r, 0) > 0, d(ϕ; r, 0) >
κ

2
rµ.
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Thus,

α̃(ϕ; r, 0) = arctan
(

b(ϕ; r, 0)
d(ϕ; r, 0)

)
.

Since the function arctan is differentiable, it is sufficient to prove that the fraction
b/d is Lipschitz. It follows from definitions (3.2), (3.5) and inequalities (2.1),
(2.2), that

(7.6) |b(ϕ; r, 0)− b(0; r, 0)|, |d(ϕ; r, 0)− d(0; r, 0)| ≤ 5Krµϕ.

By the estimates (7.6), (7.2) and (7.5), we have:∣∣∣∣ b(ϕ; r, 0)
d(ϕ; r, 0)

− b(0; r, 0)
d(0; r, 0)

∣∣∣∣
≤ d(ϕ; r, 0)|b(ϕ; r, 0)− b(0; r, 0)|+ b(ϕ; r, 0)|d(ϕ; r, 0)− d(0; r, 0)|

d(ϕ; r, 0)d(0; r, 0)

≤
(

5Krµ

κrµ/2
+

3Krµ · 5Krµ

(κrµ/2)2

)
ϕ =

(
10K

κ
+

60K2

κ2

)
ϕ.

The verification of all conditions of Theorem 6.1 is completed. Therefore
Theorem 3.2 is proved.
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Department of Informatics

Lugansk State University of Internal Affairs

General Didorenko Street 4
poselok Yubileinoe

Lugansk, 91493, UKRAINE

E-mail address: dymarskii@mail.ru
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