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LOCALIZED SINGULARITIES AND CONLEY INDEX

MARIA C. CARBINATTO — KRZYSZTOF P. RYBAKOWSKI

ABSTRACT. We establish some abstract convergence and Conley index con-
tinuation principles for families of singularly perturbed semilinear parabolic
equations and apply them to reaction-diffusion equations with nonlinear
boundary conditions and localized large diffusion. This extends and refines
previous results of [9] and [1].

1. Introduction

Let © be a bounded smooth domain in RY and Qg 4, i € [1..m] be smooth do-
mains whose closures are pairwise disjoint and included in 2. Let Qg = Uzl Qoi,
I'=0QandTy,; = 00, i € [1..m]. Set Q1 = Q\C1€Qg. For each € > 0, consider
the following parabolic problem

uy — Div(de () Vu) + (A + Ve(2)u = pe(z,u), t>0,z€Q,

(Ee)
de(x)0yu + be(x)u = e (z,u), t>0,zel.

Here, A € R and v is the exterior normal vector field on 92. Moreover, d. >m >0,
V. and b, resp. . and 1., are given functions on €2, resp. Q x R satisfying some
regularity assumptions. We assume that, for e — 0, V. — Vi, be — by, v — @0,
e — g and dg|o, — do (in some sense) while d.|Qy — oc.
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Under some general conditions on the functions involved equation (E.) can
be written abstractly as a semilinear problem

(EL) U+ Acu = fo(u)

generating a local semiflow 7. on H' ().
Consider the limit equation

up — Div(dp(z)Vu) + (A + Vo(x)u = ¢o(z,u), >0,z € Qy,
dO(x)aVu+b0(x)u:¢0(xau), t> O, T GF,

’}’O)i(u) = UQo,» on FO,i7 1€ [1 . m],

qu,i + |Q(),i|71/F dO(I)avo,i,UdJ
0,i

+(A+¢ug,, = |Qo,i|71/ wo(r,uq,,)dz, t>0,ic[l.m],
Qo,i

where vy ; is the trace operator on I'g ;, 1, is the interior normal vector field on

0Q0,i, ug,, is the value of u on o ; and ¢; := 190,471 fﬂo Vodx.

Equation (Ey) can similarly be written abstractly as a semilinear problem
(EG) i+ Agu = fo(u)

generating a local semiflow 7o on a closed subspace Hy (Q2) of H'(2). In the
paper [9] the spectral convergence of the family (A;)esq to Ag for e — 0 is proved
while the authors of [1] establish existence and upper semicontinuity results for
global attractors of 7., € > 0, under additional dissipativity conditions on the
nonlinearities.

In this paper, we extend and refine these results. In particular, we prove
that, as ¢ — 0, the semiflows 7. converge in a singular sense to the semiflow
mo and we establish a singular compactness result for the family n., € > 0. As
a consequence of these results, we obtain singular Conley index and homology
index braid continuation principles for this family of semiflows.

In this paper we proceed as in [2] and keep the presentation of our results at
an abstract level. In fact we only assume certain spectral convergence properties
and compactness assumptions on a family of linear operators (A¢)e>0 (see con-
ditions (Spec) and (Comp) in Section 4). We also make an abstract convergence
hypothesis (condition (Conv) in section 5) on a family of nonlinear operators
(fe)ezo0-

Our abstract approach permits applications to some other singular systems
of reaction-diffusion equations. This will be treated in a subsequent publication.

2. Main results

In this section we will introduce some notation and state the main results of
this paper.
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Let N and m be a positive integers and £y be a positive real number. Let
Q be a bounded smooth domain in RY and € ;, i € [1..m] be smooth domains
whose closures are pairwise disjoint and are included in . Let Qg = U:’;l Qo.i,
=00 and I'y; = 0, i € [1..m]. Set Q1 = Q\ ClQy.

For each € € [0,&p], let d.: 2 — R be a smooth function such that

0<my<d.(r) <M. forallz e,
where mg and M., € € [0,&p], are positive constants, and
d.(x) — do(z) as e — 0 uniformly for z €

and

d.(x) — oo as e — 0 uniformly on compact subsets of .

Let V, € L% () and b, € L% (T") be such that
Ve — V()|qu(Q) —0 and |b: — b0|Lq1(r) — 0 ase—0,

where ¢y and ¢; are constants such that

> 1 for N =1; > 1 for N =1;
g { >1 for N = 2; and G >1 for N = 2;
> N/2 for N >3 >N-—-1 for N> 3.

Now let L, (£2) be the set of all functions in L?(€2) which are (almost everywhere)
constant on each Qo, i € [1..m]. Set H () = H'(Q) N L (Q). Tt follows
that HY (Q) (resp. L, (Q)) is a closed subspace of H'(Q) (resp. L*()).

Let v: H'(2) — H'Y?(T) be the trace operator. For A € R and ¢ € ]0, ]
define the bilinear form (.: H'(2) x H*(2) — R by

Ce(u,v) :/§2d€Vqudx+/S2()\+Vs)uvdx+/rbsfy(u)’y(v) do, wu,ve HY(Q).

Here, dx is the N-Lebesgue measure and do is the surface measure on I'.

It follows from results in [9] that (. is defined and continuous on H!(£2) x
H'(Q). Furthermore, define the bilinear form (o: H¢, () x H{, () — R by

Co(u,v) :/ dOVqudx—f—/()\—i—VO)uvdx—i—/ boy(u)y(v)do, wu,v € Hgle(Q)
(o Q r

Results in [9] imply that (o is defined and continuous on H¢, (Q) x Hg, (Q).
Moreover, there are an g € ]0,20), a fi € ]0,00] and a A € R such that for all
A>A

Glunu) = lufiny. < €106, ue H'(Q)

Co(u,u) = ﬁ|u@1§0(sz)v u € Hg, (Q).
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For € € ]0,¢&0] the pair ({, (-, -)r2(q)) defines an operator A.: D(A.) — H® :=
L2(€). Specifically, let D(A.) be the set of all u € H(Q) such that there is
aw=w, € L*(Q) with the property that

CE(U’ U) = <w7 U>L2(Q)

for all v € H*(£2). Then w, is uniquely determined by u, the set D(A.) is a dense
linear subspace both of H(£2) and of L?(f2), and the map

AsD(A) — L2(Q), ur wy

is a linear positive self-adjoint operator in (L2, (-, ) r2(q)) with AZ' compact.

Analogously, the pair ({o, (-, -) 2 O(Q)) defines a linear positive self-adjoint
operator Ay in HC := L?zo (Q) with Aal compact.

It is proved in [9] that, for € € ]0,e0], D(A.) is the set of all u € H(Q)
such that — Div(d.Vu) + Veu € L?(Q2) and d.0,u + bou = 0 in I'. Here, v is the
exterior normal vector field on 99 and d.0,u is the conormal derivative of u in
some generalized sense. The linear operator A, is then given by

Acu = —Div(d:Vu) + (A + Vo)u

for w € D(A,).
Moreover, D(Ag) is the set of all u € H{, (€2) such that — Div(doVu)+Vou €
L?(Qy) with dyd,u + bou = 0 in I'. The linear operator Ay is then given by

Agu = (— Div(doVu) + (A + Vo)u)xa,
+)° <Qo,i|_1/ doOy, ,udo + (A +a‘)“90,i>XQO’“ u € D(Ao).
P To,i

Here, vp; is the interior normal vector field on 9 ;, ugq, ; is the constant value
of uon Qq, ¢ = Q| 7* fQM Vodz, i € [1..m], and xp denotes the character-
istic function of a given set B.

For € € [0,¢e0] the operator A, is sectorial so it defines a family of fractional
power operators A%: D(AP) — He, 3 € [0,00] and we write, for a € [0, 0],
HE = D(A?/z). In particular, H5 = H®. In a canonical way, H is a Hilbert
space and we set H , to be the dual of H,.

Let
2N
—_— if N > 3;
) N -2 =
20 = { an arbitrary p* €]0,00[ if N = 2;
00 ifN=1
and

2(N —1)
_ if N > 3;
) N -2 B =
2r =\ an arbitrary p** €]0,00[ if N = 2;

00 if N =1.
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Now assume the following

HyYPOTHESIS 2.1. For ¢ € [0,e0], 9: 2 X R — R and ¢:T x R — R,
(z,8) — @c(,8), (x,8) — P (x,8), are functions such that
(a) there is a null set Ng in Q with p.(z, -) € C*(R,R) for all x € Q\ Ng;
(b) there is a null set Np in I' (rel. to the surface measure on I') with
Ye(z, -) € CY(R,R) for all z € T\ Nr;
(c) forall s € R, @.(-,s) and Os:(-,s) is measurable on §2;
(d) for all s e R, ¥.(-,s) and Ost( -, s) is measurable on T.

Moreover, g2 € ](1 — (1/25))71, 25, g3 € ](1 — (1/25)) 71, 2%[ and

2¢ 27.q: 2¢ 27
T = 02 r3 = nds ) 62 =2 ]-7 /63 L

) 3
28— q2 2 —q3 g2 q3

There is a constant C' € 0,00] and functions ay € L™ (), by € L92(Q), a3 €
L™ (T"), by € L%=(T") such that, for all e € [0, 0],

|0spe(,8)] < O(a2($) + |S|ﬁ2), for (z,s) € (Q\ Ng) xR,
|9 (,0)] < ba(2), for x € Q\ Ng,

|0,1p= (2, 8)| < Clas(x) +|s|%), for (z,s) € (T'\ Np) x R,
|the(2,0)] < bs(x), forz €T\ Nr.

Finally, as € — 07,

lpe(x,s) — wo(x,s)] =0, for(z,5) € (2\ No) xR
Ws(%s)_iﬁo(%sﬂ _)07 fO’l“ (CE,S) € (F\NF) x R.
Under Hypothesis 2.1, there is an « € ]1/2, 1] such that whenever € € [0, o],

u € Hf and h € H, the functions x — ¢ (z,u(z))-h(z) and x — e (z, y(u)(x))-
~v(h)(x) are integrable on © and T', respectively. (Cf. Section 8 below.) Defining

fo(u)(h) = /Qw u(@)) - h dz+/¢am w)(@)) - y(k)(x) do

we obtain a locally Lipschitzian map f.: Hf — HE .

The linear isometry A.: D(A.) = H§ — H§ can be extended to a unique
linear isometry A D(ﬁs) = H5__ — HZ_. Moreover, A isa positive selfadjoint
operator on HE .

Therefore, we may consider the abstract parabolic equation
(2.1) o= Acu+ fo(u)

on Hf. This equation generates a local semiflow 7. on Hf.
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For each € € ]0,¢¢], equation (2.1) is an abstract formulation of the following
parabolic partial differential equation with localized large diffusion and nonlinear
boundary conditions:

up — Div(de(x)Vu) + (A + Ve(z))u = pe(z,u), t>0,x €,
d.(x)0yu + be(x)u = P (x,u), t>0, €N

For e = 0, (2.1) is an abstract formulation of the following boundary value

problem:
ug — Div(do(z)Vu) + (A + Vo (2))u = ¢o(x, u), t>0, ey,
do(z)0pu + bo(z)u = o(x,u), t>0, zeT,
Yo,i(u) = ugy onTo,, i€[l..m],

qu,i + ‘QO,Z‘|71 - do(x)auo,iUda + ()‘ + /C\i)uﬂo,i
0,i

= Qo

_1/ vo(z, ug, ;) dz, t>0,i€[l..m].
Qo

Here, for i € [1..m], v, is the trace operator on I ;.

It was proved in [9] that, as e — 0, the spectrum of A, converges to the
spectrum of Ag. Using this one can obtain results on convergence of e~ 4= to
e %o Now by using the variation-of-constants formula one suspects that, in
some sense, some families of solutions of 7. converge to solutions of my. This was
proved in [1] for full bounded solutions under some additional dissipativeness
conditions both on the linear and on the nonlinear problem, cf. [1, conditions S,
D, and Dy]. This latter result also implies existence of global attractors of both
e and my and their upper semicontinuity at € = 0.

In this paper we extend and refine these results. More specifically, working
first in an abstract setting, we establish in Sections 4, 5, 6 and 7 various singular
convergence, compactness and Conley index continuation results for abstract
families of equations of type (2.1). These abstract results imply the following
main theorems of this paper:

THEOREM 2.2. Let (), be a sequence in ]0,e0] with e, — 0 and (t,)n be
a sequence in [0, 00| with t, — to, for some ty € [0,00[. Let ug € HY and (up)n
be a sequence with u, € H™ for every n € N and

|un — to|gren — 0 asn — oo.

Assume ugmoto is defined. Then there exists an ng € N such that u,m. t, is
defined for all m > ng and

[tn e, tr — umroto\an —0 asn — oo.
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THEOREM 2.3. Suppose k € ]0,00[, (en)n is a sequence in |0, eo] with e, — 0,
(tn)n is a sequence in [0, oo with t, > K for everyn € N and (un)n is a sequence
with uy, € H™ for every n € N. Assume that there exists a constant C' € ]0, 00|

such that w,m., t, is defined and

|unme, slgen < C for alln € N and for all s € [0,,].

Then there exist a v € HY and a sequence (ng)x in N with n — 0o as k — 00
such that

[Un, e, oy — ’U|H1€nk —0 ask— oo.

THEOREM 2.4. For each € € 10,¢¢], let I. be the identity map on Hf and
Q.: H{ — Hf be the H§-orthogonal projection of HY onto HY. Let N be a closed
and bounded isolating neighbourhood of an invariant set Kq relative to mg. For

e €10,e0] and for every n €0, c0[ set
Ney:={u€ Hf | Qeu € N and |(I. — Q- )ulg: < n}

and K., = Inv, (N ,) ie K., is the largest m.-invariant set in N, ,. Then
for every n € 10,00[ there exists an € = €°(n) € ]0,e0] such that for every
e € 10,e° the set N., is a strongly admissible isolating neighbourhood of K.
relative to w. and

h(me, K¢ ) = h(mo, Ko).

Furthermore, for everyn > 0, the family (K ,)ee(0,cc(n) 0f invariant sets, where
Ko, = Ko, is upper semicontinuous at ¢ = 0 with respect to the family | - |Hf
of norms i.e.

lim sup inf |w—ulgs =0.
1
e—0t weK. u€ Ko

The family (Kcy)eejo,ec(n)) 5 asymptotically independent of 1 i.e. whenever m
and o € ]0,00[ then there is an &' € |0, min(e(n1),e%(n2))] such that K., =
K. ,, fore€]0,¢].

THEOREM 2.5. Assume the hypotheses of Theorem 2.4 and for every n €
10, 00[ let £°(n) €]0,¢&0] be as in that theorem.

Let (P, <) be a finite poset and (M, o)pcp be a <-ordered Morse decomposi-
tion of Ko relative to my. For each p € P, let V,, C N be closed in Xy and such
that Myo = Invy, (Vp) C Intgo (V). (Such sets Vp, p € P, exist.) Fore € ]0,¢e0],
for every n €10,00[ and p € P set My, ., :=Invy_ (Vp.cr), where

Viem ={u € Hi | Qeu €V, and [(I: — Qc)ulm: < n}.

Then for every n € ]0,00[ there is an € = £(n) € ]0,e°(n)] such that for every
e €]0,6]l and p € P, My, C Inty:(Vpe,y) and the family (Mycr)pep is
a <-ordered Morse decomposition of K., relative to . and the (co)homology
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index braids of (mo, Ko, (Mpo)pep) and (me, Ke , (Mpcn)pep)), € € ]0,€], are
isomorphic and so they determine the same collection of C-connection matrices.

Again, for each p € P, the family (My < n)ecf0,2(m)), where My o, = My is
upper semicontinuous at € = 0 with respect to the family | -|us of norms and the
Jamily (My < n)zelo.z0) 15 asymptotically independent of 1.

The above theorems are proved in Section 8.

3. Preliminaries

Suppose H is an infinite dimensional linear space which is complete with
respect to the scalar product (-, - )y and let A: D(A) C H — H be a (densely
defined) positive self-adjoint operator on (H, (-, -)g) with A=1: H — H com-
pact. Let (\;); be the repeated sequence of eigenvalues of A, i.e. the uniquely
determined nondecreasing sequence (\;); containing exactly the eigenvalues of A
and such that the number of occurrences of every eigenvalue of A in this sequence
is equal to its multiplicity. Let (w;); be an H-orthonormal sequence of eigenvec-
tors of A corresponding to (\;);. For a € [0,00], let H, = H,(A) = D(A%/?),
In particular,

Hy=H.
Note that H, is a Hilbert space under the scalar product

(u,v) g, = (AY%u, AY%0) i, w,v € H,.

a/2

For every j € N, w; € H, and the sequence ()\; wyj); is Ha-orthonormal and

H,-complete. If u € H, we have

k
(3.1) u— Y (u,w;)gw; —0 ask— o0
j=1 He
and so
(3:2) Julfr, =Y A7 I(w,wj)al®
j=1

If « €]0,00], let H_, = H], be the dual of H,. It follows that H_, is a Hilbert
space under the dual scalar product

(u,v)g_, = (F; v, F ) u) g u,v € H_,,

where Fp: Hy, — H_, u— (-, u)p,, is the Fréchet—Riesz isomorphism.
Define the map ¢o: H = Hy — H_, by Yo (u) = y, where y: H, — K is
defined by
y(v) = (v,u)g, v € H,.
4 is an injection so that we can (and will) identify elements v € H with v, (u) €
H_,. We thus consider H as a linear subspace of H_,. With this identification,
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the sequence ()\?/210]-)]» is H_,-orthonormal and H_,-complete. If v € H_,
then
(3.3) u— Zu(wj)w] —0 ask—o0
j=1 H_.

and so

(oo}
(3.4) ulzr =N ulw;) .

j=1

For a € ]0, 00| there is a unique continuous extension Al = gglz H_,— Hy
of A=1: H — H,. The map A lisa bijective linear isometry. Let A: Hy o —
H_,, be the inverse of A=!. Then A is a positive densely defined self-adjoint
operator on H_,. Moreover, for 3 € [0, 00] the [-fractional power space Hg(A)
of A is isomorphic (as a Hilbert space) to Hz_o = Hg_qo(A).

The linear semigroup et H H_,,t € ]0,00[ is an extension of the
semigroup e~ *4: H — H, t € [0, 00[. Since, for every j € N and t € [0, oo],

—tA, L —tA_ —thj, .
e wp=e Twj =e Hw;

we conclude that, for every u € H, every 3 € [0, 00[ and every t € |0, oo|

(3.5)

—0 ask — oco.
Hg

k
ety — Z e (u, wj) pw;
j=1
We also conclude that, for every u € H_,,, every 8 € [0, 00[ and every t € ]0, 00|

(3.6)

— 0 ask — oo.
Hg

ety — Z e~ Mu(w;)w;

Jj=1

4. Singular convergence of linear semiflows

In this section we introduce two abstract hypotheses, conditions (Spec) and
(Comp), and we show that condition (Spec) enables us to prove some singular
convergence results for linear semiflows.

First we introduce the following spectral convergence definition for a family
of Hilbert spaces and linear operators.

DEFINITION 4.1. Given g¢ >0 we say that the family (H% (-, - )=, Ac)eeo,0]
satisfies condition (Spec) if the following properties are satisfied:

(a) for every € € [0,e0], (H®, (-, -)me) is an infinite dimensional Hilbert
space and A.:D(A;) C H® — HF® is a densely defined positive self-
adjoint operator on the space (H®, (-, - )y-) with A.=1: H® — H€¢ com-
pact. For a € R write HE := H,(A.). In particular, H§ = H¢;
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(b) for each € € ]0,e0], H? is a linear subspace of H* and HY is a linear
subspace of Hf;
(c) there exists a constant C' € |1, 00 such that

lulgs < Clulgo  and  |ulgo < Clulug

for all u € HY and all € € ]0, &¢];

(d) for every € € ]0,e0] let (Ac j); be the repeated sequence of eigenvalues of
A, and (we ;); be a corresponding He-orthonormal sequence of eigen-
functions. Furthermore, let (Ao ;); be the repeated sequence of eigen-
values of Ag.

Whenever (gy,), is a sequence in ]0, g9] with €, — 0 then

(d1) As, ; — Ao,j as n — oo, for all j € N.

Moreover, there is a sequence (ng)x in N with ny, — oo as k — oo and

there is an H-orthonormal sequence of eigenfunctions (wy ;); of Ao

corresponding to (Ao ;); such that

(d2) |we,, ; — w07j|H15"k —0as k — oo, for all j € N;

(d3) (u,we, ;) gem — (u,wo ;) o as k — oo, for all u € H® and all
jeN

We also require the following definition.

DEFINITION 4.2. Let the family (H®, (-, -)ne, Ac)eco,e,) satisfy condition
(Spec). We say that (H®, (-, -)u<, Ac)zc0,c0] Satisfies condition (Comp) if when-
ever (e,)n is a sequence in ]0,&0] with €, — 0 and (&,), is a sequence with
&, € Hi for every n € N and

sup [§n|gen < 00,
neN

then there exist a v € HY and a sequence (ng), in N with ny, — oo as k — oo
such that

|€n, — v]gene — 0 as k — oo.

Now we will show that condition (Spec) allows us to obtain two singular
convergence theorems for linear semiflows. We start with following preliminary
result.

PROPOSITION 4.3. If (H®, (-, - )<, Ac)eclo,e0] Satisfy condition (Spec), then
for every e €0,q], the subspace HY is closed in (HS,| - |gs).

PROOF. Let € € ]0,&0] and suppose (uy), is a sequence in HY with |u,, —
u|gs — 0 as n — oo for some u € Hf. Part (c) of condition (Spec) implies that
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50 (un)n is a Cauchy sequence in the Banach space (HY, |- |70). Therefore (uy, )y
converges in HY to some v in HY. But part (c) of condition (Spec) implies that

[un — vls < Cluy — v|go.

Hence u = v and thus u € HY. This proves the proposition. |

REMARK 4.4. Note that, for «, t € ]0,00[ and A € [0, 00|
A M < Cla)t™™  with C(a) = (a/e)”.

Let (H®, (-, -)He, Ac)eelo,e,) Satisfy condition (Spec). Let a € [0, 00], € € [0, 0]
and r € |0, 00[. Using the above estimate, we obtain for every u € HE |

oo

e Tully = DAL (e A fu(we )

j=1
= (e )t Re a2 A u(w, ;)|
=1

J
<(C((a+1)/2)%r ) ulfe .
Consequently, we obtain for every v € HZ |
(4.1) |€_EETU|Hf < Cor™ TVl e,

where Cp = C((a +1)/2).
We shall need these estimates in the results to follow.

We now prove our first result on the convergence of the linear semiflows.

THEOREM 4.5. Let (H®, (-, - )He, Ac)eclo,e] Satisfy condition (Spec). Sup-
pose (n)n is a sequence in |0,e0] with e, — 0. Let ug € HY and (u,), be

a sequence such that, for every n € N, u,, € H;" and
[un — to|gen — 0 asm — oo.

Then

—tA

sup |e”"en, — eitA°u0|an —0 asn— .

t€[0,00]
PROOF. Since A\ ; > 0 for all € € ]0, 9] and for all j € N, we have
oo oo
e Aol = D) Aoy we )P < D Al e 2 = o
j=1 j=1
for all v € Hf, € € ]0,e0] and ¢ € [0,00[. Thus we obtain, for all n € N and all
t €0, 00],
e Aen 4y, — e~ 40| e < €0 (i — wg) | gren + e~ An g — e~ HA0ug] e

tA

< un — uglgen + e g — e Hoy, Hen-
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Therefore we only have to prove that

(4.2) sup e tAenqyy — e*tA°u0|Hin —0 asn— oo.

t€[0,00]

Suppose (4.2) is not true. Then there are a o > 0 and a sequence (ny) in N
with ng — 0o as kK — oo such that
(4.3) sup |e_tA5"k- Uy — e_tA°u0|Hsnk > 09 forall ke N.

t€[0,00] 1
Taking a further subsequence, if necessary, and using condition (Spec) we may
also assume that there exists an HY-orthonormal sequence of eigenfunctions
(wo,;); corresponding to (Mg ;); such that, for all j € N and u € H°,

(4.4) |w5nkJ — W05 e — 0 and (u,wgnkﬁHEnk — (u,wo ;) gro

H
as k — oo. For each £ € N and j € N, let P, ;: H*"+ — H* be the

H¢x-orthogonal projection of H®"+ onto the span of {wgnkyl,...,wgnk,j,l}
and let Poyj:HO — HY be the H-orthogonal projection of H° onto the span
of {wo,1,...,woj-1}.

Let ¢ € [0, 00[ be arbitrary. Then for each j € N and each k € N we have
—tA., —tA —tA., —tA
™ e ug—e ™ M0ug| yen < [Py e meug — Po e 0| e,
—tA., —tA
+ |(I — P;w-)e k U0|H15nk + |(I — Pg,j)e t OUO|H:7L)C.
Notice that for each j € N,
(4.5) | Py, juo — POJUO‘Hf"k —0 ask — oo.

Indeed, for each k£ € N we have

1 j—1

(uo, wsnk,i>H5"k We,,, i — Z<UOv Wo,i) HOWo,;
1 i=1

J

|Pk7j’LL0 — P07ju0|ank = on

H,

<.
Il

<.
|
—

< Qw0 we,, i) ens | [wey,, i = wo il gren
=1
J—1

+ ) w0, we, i) pene — (w0, wo,i) mol [wo,il yrens -

i=1
Condition (Spec) and (4.4) now imply (4.5).
Let 6 > 0 be arbitrary. By (3.1), |(I — Po,j)uo|go — 0 as j — oo, so there is
a jo € N such that
(I = Py jo)uolmy < 0.
Since |(I — Py j)uo — (I — Po,j)uol yene = |Pr juo — Pojuolyene for all j € N and
for all k € N, it follows from (4.5) that there is a ko € N such that

(46) ‘(I — Pk,jo)u() — (I — POJO)UO‘HIE”IC < ¢ forall k > ko.
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Hence for all k& > ko,

AEn E”
(47) |(I Py, Jo) k uo‘Hs"k = |€ k (I - Pkyjo)u()'Hf"k
<L = Py ol yeon < 5411 = Po g ol o
<0+ C(I = Pojo)uolme < (14 C)6.
Moreover,
(4.8) (I = Pojo)e " uol yem < C|(I = Pojo)e™Ouo|pry
= Cle™" (I — Py j, Juol g0
< Cl(I = Pojo)uolmy < C0.
We further have
‘PkJo AE”’“UO _POJO A0u0|H15nk
Jo—1
< Z |e Aeny i “(ug, wsnk,i>HE"k We,, i — e troi (w0, Wo,i) HOWo o
Jo—1

< Z |6 snk UO, U)gnk,i>Hs"k (wE"'k’i - wo’i)|H15nk

]01

§ n —tXo,i
+ |6 Ae Kk’ anwET,,k,i>H5"k wo,i — € 0, <U0,w0,i>HO’LU071' Hlﬁnk

Jo—l

< Z |(uo, Wey, i) HE

i=1

|we,,, i = W0l gyens

Jo—1

+C Z le™ e (ug, we,, i) gen — €0 (ug, wo i) ol [wo i -

Since, for every i € N,

sup e et —eTt0i| 50 as k — oo,
t€[0,00]
it follows that
4.9 Py joe” Memug — Py joemtAo 0 ask
(4.9) sup [P j e kug — Py j.e ug|yene — 0 as k — oo.
te[0,00] 1

Since ¢ > 0 is arbitrary, (4.7), (4.8) and (4.9) imply that

(4.10) sup |e e g — (57MOUO|H%,c —0 ask — oo,
te[0,00] 1
but this contradicts (4.3). The proof is complete. O

We also require a second, more technical, theorem on the convergence of the
linear semiflows.
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THEOREM 4.6. Let (H®, (-, - )He, Ac)eclo,e] Satisfy condition (Spec). Sup-
pose (e,)n s a sequence in ]0,eo] with €, — 0. Let a € [0,00[, ug € HY,, be
arbitrary and let (un)n and (vy)n be sequences such that u, and v, € HE", for
n € N. Suppose that

(@) |up —vplge=n — 0 as n — oo.
(b) For all j € N, vy, (we, ;) — uo(wo, ;) as n — oo.
(c) sup,en [vn]gen < oo.

For every e € [0,e0], let A = 1157_(,:}[25_(1 — HE, be the extension of A. to
HE . Then, for every 8 €]0, 0],

e}

sup |e tenq,, — e_tA°u0|Hlsn —0 asn— oo.

te[B,00]

PrOOF. Fix § € ]0,00[. Suppose the theorem is not true. Then there are
a 0o > 0 and a sequence (ng)g in N with ng — oo as k — oo such that

(4.11) sup e e, — e_tZOuO|Hsnk > 9y forall ke N.
te(B,00 !

Taking a further subsequence, if necessary, and using condition (Spec) we may
also assume that there exists an H°-orthonormal sequence of eigenfunctions
(wp ;); corresponding to (Ao ;); such that, for all j € N and u € H°,

(4.12) |w5nk,j _wo’j|Hf"k' —0 and (u, wenk,j>H5"k — (u, wo ;) go

as k — oo. Let 6 > 0 be arbitrary. By Remark 4.4 there is an so = s¢(d,3) > 0
such that s(@+1)/2¢=st < § for s > so and t > 3. Since \g; — 00 as j — o0,
there is a jo = jo(d,8) € N such that Ao j, > s for all j > jo. Thus there is an
ko = ko(d,8) € N such that Ao, jo > S0 for k > ko. Therefore we obtain

(413) Asnk,j > 30(63 5) for k > kO((Sa ﬂ) and ] > jO((Sa ﬁ)

Formula (3.6) implies that, for all € € [0,0], all t € ]0,00[ and all uw € HE ,,

(4.14)

k
e ey — g e Peiu(we jwe ;| — 0 ask — oo.
j=1 HE

Let ¢t > 3 be arbitrary. Then

(4.15) e ey, — e Houg| on,
1
Jo—1
Y . _ )
<D le et (we,, e, 5 — 20 uo(wo,)wo g e
j=1
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Jjo—1
A Ae 5J . .
+ e TR, E e T Uy, (wf'nk)])wa'nk I e
1
Jo—l
—tA t
+ le” " oug — E e” 09y (wo, ;) wo. 4 .
=1 "
Now (4.13) implies that
- Jo—1 2
—tA., —tAen,
(4.16) e kU, — E e Uy (We,, )W, i .
J:l 1

oo

+1)/2 —
Z NOFDReena2aze uy, (we,, )1

<5’ Z AL ltng (e )P < 8l |2 en, < 6°C2,

—a

Jj=Jo

where C := SUPpen |Un, \?{Enk . Note that C' < 0o by our assumptions (a) and (c).

—a

Analogously,
~ jo—1 2
(4.17) e Moug — Y e P0dug(wo )wo |
=1 1
_ Jo—1 2
< CPlem oug = 3 e ug(wo g,
i=1 H
o0
+1 2 —tA
=% 3 OGP )2 S (wo, )
J=Jjo

< C26% Y N Huo(wo ) * < C?6%[ugl3o

J=jo
Let j € [1..jo — 1] be arbitrary. Then

(4.18)  Je™ e Tun, (we,,, )we,, g — €T uo(wo ) wo i o
<1740 (i — 0, ) (W Ve 3]
e v (e, ) (e, 5 = W0.5) o
e (v, (w2, ) — o (wo,5))wo,i e

tA

(e — 0 Yug (g )0 g

S |unk - Uankaj Hi:llk |w5nk 7j|HZ"k ‘wenk7j|ank

+ |vnk |Hi1;k wEw,kale;"’“ : |w5nk J w07j|Hi"’c

15
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+ |vny (we,,, ) = uo(wo )| - [woj] greni

+ |e_t>\5nkxj — e—t)\(],j| : ‘uo(w07])| ’ |w0"7|H15nk ’

v/2

Note that, for every v € [0, 00, |we,, jl o = Al e
- s

Moreover, [wo ;| ene <
1
Clwo,j| o and

—tA

sup e Menkd —emt0d| 50 as k — oo.

te[B,00]

Hence, our assumptions and (4.18) show that

(4.19) b[lﬁlp [|€_tAE"’“’jUnk (W ) We,, 5 — efﬂo’juo(wo,j)wo,j|H15""" -0
te|3,00

as k — oo. Thus formulas (4.15)—(4.17), (4.19) and the fact that 6 > 0 is
arbitrary imply that

—tA, —tA
sup le” ey, —e tA°u0|H5nk —0 ask— o0
te[B,00] !

which contradicts (4.11). The theorem is proved. ]

COROLLARY 4.7. Let (H®, (-, - )<, A:)cclo,e0] Satisfy condition (Spec). Sup-
pose (en)n is a sequence in |0, eq] with €, — 0. Let ug € HO be arbitrary and let
(un)n be a sequence such that u, € He™ for n € N. Suppose that

|un — uo|gen — 0 as n — oo.

Then, for every (8 € )0, 00|,

sup |e tHenq,, — e*tA0u0|Hlsn —0 asn— oo.
te[B,00]
ProoOF. Use Theorem 4.6 with a = 0 and v,, = ug for all n € N. O

5. Singular convergence of nonlinear semiflows

We now introduce a natural condition on a family of nonlinearities, condition
(Conv), and we show that conditions (Spec) and (Conv) imply a general singular

convergence theorem for semiflows.

DEFINITION 5.1. Let g9 > 0 be arbitrary and (H®, (-, -)m<, Ac)eelo,eo] De
a family satisfying condition (Spec). Let o € [0, 1] be given and for every e €
[0,0] let A, = A, _o:H5 , — HF, be the extension of A, to H,. We say
that the family (f:)cc[0,c,) of maps satisfies condition (Conv) if the following
properties are satisfied:

(a) fe:Hf — HE, for every € € [0, &g].

(b) lim._ o+ et fo(u) — e_tZOfO(uHng = 0 for every u € HY and every

t €10, 00].
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(c) For every M € [0, 00][ there is an L = Ly € [0, 00[ such that

|fe(u) = fe()|m= < Llu—v|n;

for all € € [0,e0] and u, v € H{ satisfying |u|gz, |[v|gs < M.
(d) For every u € HY there is an f, € ]0, o] such that

sup |[fo(u)|m=_ < oo.
€€[0,¢p)

The next result shows that the above condition (b) is valid uniformly for ¢
bounded away from zero.

PROPOSITION 5.2. Assume condition (Conv) and let 8 € 10, 00] be arbitrary.
Then, for every u € HY,

lim sup Je~t A fo(u) — €70 fo(u) gz =0
e—0% te[B,00[

PROOF. Let v = e’ﬁgofo(u) € HY. For every t € [3, 0o] we have

o= few) = e fo (o)

< |e—(t—ﬁ)ﬁg (e—ﬂﬁe () — 6_6’Z°f0(u))|H§ + |e—(t—ﬁ)ZEU -~ e—(t—ﬁ)ﬁovmlE
< |675ZE () — 67ﬁg°f0(u)|Hls + |ef(tf,8)ﬁav _ e*(tfﬁ)ﬁovmf

Since, by Theorem 4.5

lim sup |e *4<v — e‘ngU|Hls =0,
€0 5¢[0,00]
the assertion follows from condition (Conv) part (b) (with ¢t = 3). O

For the rest of the paper, if (H®, (-, ) u<, Ac)ze[0,e,] Satisfies condition (Spec)
and (fz)ee(o,c,) satisfies condition (Conv) then we will write, for every € € [0, o],
Te = ma,, . to denote the local semiflow on Hj generated by the abstract
parabolic equation

(5.1) i=—Au+ f-(u).

To prove the theorems of this section we will need the following auxiliary
result.

LEMMA 5.3. Suppose that (H®, (-, <) ue, Az )cejo,e0] Satisfies condition (Spec)
and (f-)cejo,e,) Satisfies condition (Conv). For every u € HY there exist a § >0
and a T > 0 such that for every ag € HY with |ag —a|ge < 4§, aomos, s € [0,7],
is defined and whenever (e,)n s a sequence in |0,eq] with e, — 0 and (ap), is
a sequence with a,, € H{™ for every n € N and

lan —aolgsn — 0 asn — oo,
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then there is an ng € N such that apme, s, s € [0,7], is defined for n > ny.
Moreover there exists an M' € [0, o[ such that |anme, s|gen < M' for alln > ng
and for all s € [0, 7].

PROOF. Let w € HY be arbitrary and C; € ]0, oo[ be such that [l go < Ch.
Let C be as in part (c) of condition (Spec), set

(5.2) M’ :=3C, +3CCy

and let L := Ly be as in Definition 5.1 with M replaced by M’.
Part (d) of Definition 5.1 implies that there is an €, € ]0,¢¢] such that

Cy= sup |fe(@W)|ge < o0.
e€[0,e(]

Now choose 7 and ¢ € |0, o[ such that

(5.3) 201 — a) 1oL =9/2 < 1/2,

(5.4) 2(1 — a) " tCor(I=/2(2LC, + Cy) < C1 /4,
(5.5) 205 < Cy /4

and

(5.6) Cle~ oz — Ulgo < C1/4 fort €0,7],

where the constant Cj is as in Remark 4.4.
For every € € [0,¢(] and a € Hf with

(5.7) la —a|mgs < Ch,
define

Se.q :={u|u0,7] — Hf is continuous

and |u(t) —a|g: < C) for all t € [0, 7]}.

For u € S, , define the map T} ,(u): [0, 7] — Hf by

T o(uw)(t) : = e~teq + /t e (=94 £ (u(s)) ds
0

t ~
=e¢ Mg+ / e*(t*S)AEfE(u(s)) ds.
0

The map T ,(u) is continuous. Moreover, whenever u € S.,, then, for all
te0,7],

lu(t)|gs < C1+ lalgs < C1+ Cy + [ulg: <2C, +C1C < M,
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where the last inequality follows from (5.2). Thus for all u,v € S, arbitrary
and for all ¢ € [0, 7], we have, by (4.1),

(5.8) T (u)(t) v)(t)|

- TE a(
‘ /0 == (£, (u(s)) — f(v(s))) ds

Hi
< Co [ (=9 (o)~ FololoDlae, ds

t
<CoL [ (t=5) @02 ds sup [u(s) = o)
0 s€[0,7]

=2(1—a) G /2 sup |u(s) — v(s)|m:
s€[0,7]

<1/2 sup |u(s) — v(s)|u;-
s€[0,7]
The last inequality follows from (5.3). Moreover, for all u € S, , and ¢ € [0, 7],
t ~
ITealw)(t) = ala; < Je™"a — alns + \ | et rueyas)
0 H
Since for € € [0,(] and s € [0, 7] we have
[fe(uls))|m=, < |fe(u(s)) = fe(a)|ne, + [fe(a)|me=
< Llu(s) = alus + |fe(a) = fe(@)|m= + [ fe(@)]ne,
< LCy+ LCy 4+ Cy =2LCy + Co,

we obtain, by (4.1),

[ s as
0

t
= CO/ (t =)~ T2 f(u(s)) |z ds
H¢ 0
<201 — )t Cur 2200, + Cy) < Oy /4.

In the previous computation we used the fact that |a|g: < Oy + [u|g: < C1 +
CCy < M’ and [ulg: < M'. If ag € HY satisfies |ao —U|go <6, then

—tA tA

[0 — al g <le™A%a — ™| g + | 40Tg — e~ AT
+ e~ u —alps + [@—aolus + |a — ol ms

<lem"a — e_tAO?io\Hf + Cle~ oGy — e_tA0ﬂ|H?
+ Cle™"u — o + Ol — ao|go + |a — do| s

§|e*tA5a — e~ tAog,

He +|a —aglme +C|67tA°ﬁ—ﬂ\H? +2C6

<le™"=a — e G| g + |a — Golm: + C1/2,

where the last inequality follows from (5.5) and (5.6).
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Thus putting things together, we obtain for all € € [0, ], all a € Hf satisfy-
ing (5.7) and all ag € HY with |ag — Ulpgo <0

(59) |T5,a(u)(t) — a|H15 < 301/4 + |e_tA€a - €_tA050|Hf + |Cl — 50|Hf’

u € Seq, t €10,7].

In particular, for all a € HY satisfying |afﬂ|Hlo < d and all u € Sy, we have
|To,a(u)(t) —algo <3C1/4 < Cy forall t € [0,7].

Hence we conclude that Tp ,(S0,4) C So,, and so, by Banach Fixed Point Theo-
rem, there is a unique fixed point of Ty, in Sy .. In particular a mgs is defined
for all s € [0, 7].

Now let (g,), be a sequence in ]0,&¢] with €, — 0. Suppose ay € HY
satisfies |ag — H|H9 < 6 and (ay), is a sequence with a,, € H;" for every n € N
and |a,, — agl HEn = 0. By what we just proved, it follows that agmgs is defined
for all s € [0, 7].

Theorem 4.5 implies that there is an ng € N such that for all n > ng
(5.10) sup le~“ena, — e ag|yen + |an — aglgen < C1 /4.

te[0,7] ! !
Thus, it follows from (5.9) that T; 4, (5S¢, .a,) C Se, a0, for all n > ng. Hence
T.,.a, has a fixed point in S._ ,, . In particular a, 7, s is defined for all s € [0, 7]
and for all n > ng.

Moreover, (5.9) and (5.10) imply that, for s € [0,7] and n > ny,

— — !/
|anTe, 8lpen < |anTe, s — anlgen + lan —Ulgen + [U]gen <201 +CCL < M.
The lemma is proved. O

We can now state our first singular convergence result for semiflows.

THEOREM 5.4. Suppose that the family (H®,(-, -)me-, Ac)eeo,co] Satisfies
condition (Spec), and the family (f:)zc[o,z,] satisfies condition (Conv). Let (€n)n
be a sequence in )0, 0] with &, — 0. Let ug € HY and (u,)n be a sequence with
up, € H{™ for every n € N and

|un — uolgen — 0 as n — oo.

Let b € )0, 00[ and suppose that u,me, t and umgt are defined for allm € N and t €
[0,b]. Moreover suppose there exists an M' € [0, 00[ such that [u,me, s|gen < M’
for alln € N and for all s € [0,b]. Then for every t € ]0,b] and every sequence
(tn)n in]0,b] converging to t

[tn e, b — Uoﬂotn\Hlin —0 asn — oo.
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PROOF. For every t € [0, b] we have, by the variation-of-constants formula,

tA —tAg o

Up e, T — UpTol =€

t -
+ / e~ =9 (. (upro, s) — for (uomos)) ds
0

Uy, — €

t _ -
—|—/ (e (= Aen £ (ugmos) — e~ E=)40 fo (ugmos)) ds.
0
Define the function g,:[0,b] x [0,b] — R as follows: If 0 < s < ¢ then set

gn(t,s) = le” 7 An £ (ugmos) — e~ 740 fo (ugmos)| pren

and set g, (t,s) = 0 otherwise. The function g, restricted to the set of (s,t) with
0 < s < t is continuous. Thus g, is measurable on [0,b] x [0,b]. By Fubini’s
theorem the function

b ¢
en(t) == / gn(t,s)ds = / gn(t,s)ds
0 0
is almost everywhere defined and measurable on [0, b]. Set
an(t) = |eitA€” Uy — €7tAOU,O|H§n + Cn(t) for t € ]O, b]
It follows that a, is measurable on [0,b]. Using (4.1) we obtain for 0 < s < ¢
(5.11) |gn(t, s)] < CoCo(t — )~ FV/2 4 OO Cy(t — 5)~ (12
=: O3(t — s)~(a+D)/2
and so for ¢ € ]0, b
an(t) < M’ + Clug| o + 2C3(1 — a) 711 —0/2 =

where

Cy = max{ sup sup | fz, (uomos)|gen . sup | fo(uomos)|po }
s€[0,b] nEN s€[0,b]
Notice that condition (Conv) implies that Co < co. Now let ¢ € |0, b] be arbitrary
and (t,)n be any sequence in ]0, b] converging to 0. If 0 < s < ¢ then 0 < s < ¢,
for all n large enough and so, by Proposition 5.2 g, (t,,s) — 0 as n — oo. If
0 <t<s,then 0 < t, < s for all n large enough and so g, (t,,s) = 0 for such
n. Again g (tn,s) — 0 as n — co. Thus (5.11) and the dominated convergence
theorem imply that
en(tn) =0 asn — oo.

Thus, using Corollary 4.7 we obtain

(5.12) an(tn) — 0, asn — oo.
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Notice that M := SUP,¢o0,5) |u07r0fv‘H‘f < oo. Hence |ugmos|gen < CM for all
€ [0,b]. Set M" := max{M',CM} and let L := Ly~ be as in Definition 5.1
with M replaced by M". We have, for all r € |0, b]

rA —rAp

UpTe, T — UQTT | gren < €7 TEn Uy — € Ug | pren
n H HE

b 1O (e e, 5) = o (0708 e s
+ /07“ |(e_(r_s)’15n fe,, (uomos) — e_(r_s)gofo(uoﬂos))mlsn ds
<an(r) + Cy /OT(T — )" @HD2| (., s) — fe (uom08))| gr=n ds
<an(r)+ CoL /OT(T — )" s — ugToS|gren ds.
An application of Henry’s Inequality [7, Lemma 7.1.1] implies that
[unme,r — uomor|gen < an(r) + /OT p(r —s)ay(s)ds for r €]0,0],

where

with 8:= (1 — a)/2.
The function p:]0,00] — ]0, co[ is well defined and continuous on 0, co[ and

it satisfies the estimate
p(x) < Csz™@D/2 L Oy for 2 €]0,).

Let ¢t and (t,), be as above. Fix a dg € ]0,¢[ and let 6 € 0, 69/2[ be arbitrary.
There is an ng = ng(d) € N such that |¢, —t| < § for n > ng. Therefore for
all such n € N and all s € [0,¢ — 24] it follows that t, — s > ¢ so p(t, — s) <
Cs6—(@+)/2 4 O Thus

p(tn, — s)an(s) < Cg for s €]0,t — 24].

Therefore (5.12) (with ¢, = s) and the dominated convergence theorem show
that

t—26
/ p(tn — s)an(s)ds — 0 asn — oo.
0

On the other hand,
tn
/ p(tn — 8)an(s)ds < Cr(61/2 1 §).
t—25
Since § € ]0, /2 is arbitrary, it follows that

tn
/ p(tn — s)an(s)ds — 0 asn — oo.
0
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Consequently,
[unTe, tn — ooty gen — 0 as n — oo.

The theorem is proved. O
Our second convergence result reads as follows:

THEOREM 5.5. Suppose that the family (H®,(-, -)me-, Ac)eeo,co] Satisfies
condition (Spec) and the family (f-)ccjo,c,] satisfies condition (Conv). Let (en)n
be a sequence in |0,eq] with e, — 0 and let (tn)n be a sequence in [0, oo with
tn — 0. Let ug € HY and (uy,), be a sequence with u,, € Hi"™ for every n € N
and

|un — to|gren — 0 asm — oo.
Then there exists an ng € N such that uomot, and w,m., t, are defined for all
n > ng and

[unme, tn — womoty|gen — 0 asn — oo.

PROOF. Set u := up in Lemma 5.3 and let 7 > 0 be as in that lemma.
It follows from Lemma 5.3 that ugmes, s € [0,7], is defined and there is an
no € N such that u,7. s, s € [0,7], is defined for n > ny. Moreover there exists
a M’ > 0 such that |u,7e, s|gen < M’ for all n > ng and for all s € [0, 7].

Since t,, — 0 as n — oo, we may assume that ¢, € [0,7] for all n € N. For
every t € [0, 7] we have

t -
UpTe, t —ug = e tHeny, —ug + / e (t=9) Az, fen (upme, ) ds.
0

Notice that M := SUP,¢o0,5) |UO7TOiH§ < oco. Hence |ugmos|gen < CM for all
€ [0,7]. Set M" := max{M’',CM} and let L := Ly be as in Definition 5.1
with M replaced by M”. Tt follows that for all n > ny and for every s € [0, 7]

| fe. (unﬂensﬂHi@ <|fe, (unme, 8) — fEn(uO)‘HiZ + ‘fen(u0)|Hi@
< Llune, s — uo|men + [fe,, (uo) | mren,
< L(M' + Cluolgo) + | fe,, (uo) | g=n -

Part (d) of condition (Conv) now implies
| fen (Unme, 8)ren < C, forall s € [0,7] and for all n > ny,
for some positive constant C. Therefore for all n >ng

|un7r5ntn — uOﬂ'otn|H16n < |Un7Tsntn — uO|H1€n + C|u07r0tn - u0|H?

§|e_t”A5" Uy, — e_t"A°u0|Hlsn + C|e_t”A°uo — u0|H§;

tn
+ COC'/ (tn — 5)7(a+1)/2 ds + Clugmoty, — UO‘H?-
0
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Since |e~tr Aoy, —U()\Hlo — 0 and |ugmoty —HO\HQ — 0 as n — oo, an application

of Theorem 4.5 completes the proof. O
Theorem 5.4 and Theorem 5.5 imply the following corollary.

COROLLARY 5.6. Let (H®, (-, - )nue, Ac)eclo,e,] Satisfy condition (Spec) and
(fe)eelo,e0) Satisfy condition (Conv). Then for every u € HY there exist a § > 0
and a T > 0 such that for every ag € HY with |ag — H|H? < 4, agmps, s € [0,7],
is defined and whenever (e,)y s a sequence in |0,eq] with e, — 0 and (an), is
a sequence with a,, € H{™ for every n € N and

lan —aolgsm — 0 asn — oo,
then there is an ng € N such that apme, s, s € [0,7], is defined for n > ng and

sup |apme, s — CL07T0$|H15n —0 asn — oo.
s€[0,7]
PRrROOF. Lemma 5.3 implies that for every u € HY there exist a § > 0 and
a 7 > 0 such that for every ag € HY with |ag —lgo < 0, agmos, s € [0,7], is
defined and whenever (g,), is a sequence in ]0,eq] with &, — 0 and (a, ), is
a sequence with a,, € H;" for every n € N and

lan —aolgsn — 0 asn — oo,

then there is an ng € N such that a,7., s, s € [0,7], is defined for n > ny.
Moreover there exists a M’ > 0 such that |a,7e, s|gsn < M’ for all n > ng and
for all s € [0, 7].

To complete the proof of the corollary we need to show that

sup |anme, s — aomos|gsn — 0 as n — oo.
s€0,7]

Suppose this is not true. Then there are a g > 0 and a sequence (ng)i in N

with n; — oo as k — oo such that

sup \ank_ﬂsnks — agmo8| en, > 09 for all k € N.
s€[0,7] 1

Thus for each k € N there exists an sy € [0, 7] such that
(5.13) |ankﬂ'enk Sk — a07705k|Hf"k > do.

Without loss of generality we can assume that there is an s € [0, 7] such that
sp — S0 as k — oo. If s9 = 0, it follows from Theorem 5.5 that |a,, 7, sk —
aOTrOSleIE"k — 0 as k — oo which contradicts (5.13). If so > 0, then The-
orem 5.4 implies that |ank7r5nk Sk — a0W08k|ank — 0 as k — oo which again
contradicts (5.13). O

We conclude this section proving our main convergence result for semiflows.
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THEOREM 5.7. Suppose that the family (H®, (-, - )me, Ac)eclo,e,) Satisfies
condition (Spec) and the family (f-)ccjo,c,] satisfies condition (Conv). Let (en)n
be a sequence in |0,e0] with €, — 0 and let (tn)n be a sequence in [0, 0o with
tn, — to, for some tg € [0,00[. Let ug € HY and (u,), be a sequence with
un € H{™ for every n € N and

[un — uolgen — 0 asn — oo.

Assume ugmoto is defined. Then there exists an ng € N such that u,m. t, is
defined for all m > ng and

|upme, tn — Uoﬂoto\an —0 asn — oo.

PROOF. Since ugmoty is defined, there is a b > g, b € |0, 00|, such that ugmot
is defined for all ¢ € [0, b[. Define

I:={t €[0,b] | there exists an ng € N such that u,7., t is defined for n > ng

and sup |unme,s — uomos|gen — 0 as n — oo}
s€[0,t]

It is clear that 0 € I. Furthermore if 0 <t <t and t € I, then ¢’ € I. Let

t:=supl.

It follows that ¢ < b and so [0,¢] C I. An application of Corollary 5.6 with
U := ug shows that ¢ > 0. We claim that ¢ = b. Suppose, on the contrary, that
t < b. It follows that w := wugmot is defined. Let § > 0 and 7 > 0 be as in
Corollary 5.6 with respect to this choice of w.

Choose t € R with 0 <t < <t+ 7 and |ugmot — uomot|go < J. We have
that ¢ € I so there exists an ng € N such that w, 7.t is defined for all n > ng
and
(5.14) sup |upme, § — upmoS|gen — 0 as n — oo.

s€[0,t] !
Set wy, 1= u,me, t and u := ugmot. Applying Corollary 5.6 with a,, replaced by
Uy, and ag replaced by w we thus have that wmy7 is defined and we obtain the
existence of an ny > ng such that u, 7., 7 is defined for all n > n; and
(5.15) sup [ty e, s — umes|gesn — 0 asn — oo.

s€[0,7]
Formulas (5.14) and (5.15) imply that womo(t + 7) is defined, u, 7., (t+7) is also
defined for all n > n; and

sup  [upTe, s — uomoS|gen — 0 as n — oo.
s€[0,t47]

Thus t +7 € I, but t + 7 > ¢, a contradiction, which proves that ¢ = b.



26 M. C. CARBINATTO — K. P. RYBAKOWSKI

Since tg € [0,b], it follows that there is a t € [0,b] with to < ¢ and ¢, < ¢ for
all n large enough. In particular ugmot, and w,m., t, are defined for all n large
enough and

[tn e, b — UOTrOtn|H15" —0 asn — oo.
Since
|u07rotn — uO7T0t0|H1€n S C‘U(ﬂl’otn — UO’IToto|H§)

and |ugmot, — u0w0t0|H§] — 0 as n — oo, the theorem follows. a

6. Singular compactness

In this section we shall prove that under the abstract compactness hypothe-
sis, condition (Comp), on the family (H*, (-, -)#e, Ac)ce(o,e,] the corresponding
family of semiflows satisfies a singular compactness property. This property, to-
gether with the singular convergence result obtained in the previous section, is
crucial for establishing the singular continuation principle for Conley index and
for (co)homology index braid.

We start with the following result.

THEOREM 6.1. Suppose that the family (H,(-, -)ge, Ac)eclo,co] Satisfies
condition (Spec) and the family (f:)ec0,c,] satisfies condition (Conv). Let € €
[0,e0] be arbitrary. Then every closed and bounded set in HY is strongly .-
admissible.

PROOF. Let N be a closed and bounded set in Hf and let M > 0 such that
for all u € N we have [u|g: < M. Let L := Ly be as in Definition 5.1. Let
ug € N. Hence for all u € N

|fe(u)|rre | < [fe(u) = fe(uo)|m=  + | f(uo)|ne
< Llu —uolus + [fe(uo)|me , < 2ML + [fe(uo)|me -
Now the result follows from [11, Theorem IIT 4.4]. O
We can now state the following singular compactness theorem.

THEOREM 6.2. Suppose that the family (HF,(-, -)me-, Ac)eeo,co] Satisfies
conditions (Spec) and (Comp) and the family (f:)zcjo.e,] Satisfies (Conv). Sup-
pose K € ]0,00[, (en)n is a sequence in |0,e0] with e, — 0, (£,)n is a sequence in
[0, 00 with t, > Kk for every n € N and (uy)n s a sequence with w, € H{™ for
every n € N. Assume that there exists a constant C" € |0, 00| such that u,me, ty,
1s defined and

[unTe, slgen <O for alln € N and for all s € [0,t,].

Then there exist a v € HY and a sequence (ng)x in N with n — 0o as k — 00
such that

[Un, e, tny, — 'U|H:nk —0 ask— oo



LOCALIZED SINGULARITIES AND CONLEY INDEX 27

PROOF. Set &, = u,me, (tn, — k) for n € N. Hence
|€nlzn < C" for all n € N.

Condition (Comp) implies that there exist a o € HY and a sequence (n); in N

with np — oo as k — oo such that
[€n, — Ulgene — 0 as k — oo.

We claim that vk is defined. Suppose our claim is not true. Let 8 € [0, 00|
be such that CC"” < 8 and [0|go < 8. By Theorem 6.1 with ¢ = 0 and N =
{u e HY | lulgo < B}, there exists a to € |0, [ such that mgto is defined and
[vmoto| o > 3. Condition (Spec) implies that

(61) |5ﬂ0t0|H16 > /6/0 > C", €E [0,60].

It follows that there exists a kg € N such that vmys and &,, e, S are defined for
all s € [0, 1], for all k > kg and

|£nk7rsnks|ank < " forall s €[0,tp] and for all k > k.
Hence Theorem 5.4 implies that
|§nk7r5nk to — ﬂwoto\ank —0 ask — oo.
This together with formula (6.1) implies that
|&ni e, tO‘Hf"k > C" for all k € N large enough

which is a contradiction. Thus vmgk is defined. Another application of Theo-
rem 5.4 shows that

|£nkﬂ-5nkﬁ: — §7T0/£|Hlsnk —0 ask — oo.

Set v := vmok € HY. Since §nk7r5nk/i = Un,, e, tny for all £ € N, the proof is
complete. O

Recall that Proposition 4.3 implies that for every ¢ € ]0,e0], the set HY is
a closed subspace of Hf. For each € € ]0,g¢], let Q.: Hf — Hf be the Hf-
orthogonal projection of H{ onto HY.

Theorem 6.2 easily implies the following corollary:

COROLLARY 6.3. Let (H®, (-, - )<, Ac)ec(0,e,) Satisfy conditions (Spec) and
(Comp) and suppose the family of maps (f:)ccjo,e,] Satisfies condition (Conv).
Suppose N C HY is a closed and bounded set and (g,,), is a sequence in 0, o)
with €, — 0. Let n > 0 be arbitrary and define

Ny =Ny i={u€ H{" | Qc,u € N and |(I — Qc,)ulg=n <n}.
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Suppose (tn)n is a sequence in [0, 00[ with t, — oo and (uy)y is a sequence with
un, € H{™ for every n € N and

UnTe, [0,t] C N, for alln € N.

Then there exist a v € N and a sequence (ng) in N with ny — oo as k — oo
such that

Uun, e, tny, — U|ank —0 ask— oo.

7. Singular continuation principle for the Conley index
and for (co)homology index braids

In this section, under the conditions (Spec), (Conv) and (Comp), we obtain
a singular continuation principle for the Conley index and for (co)homology index
braids for the class of abstract parabolic equations described in (5.1).

This section is not self-contained, in particular, we use some results estab-
lished in the papers [3], [4], [5]. We will also assume that the reader is familiar
with the Conley index theory for semiflows on (not necessarily locally compact)
metric spaces, as expounded in [10] or [11].

Let (H®, (-, -)ue, Ac)cco,e0] satisfy conditions (Spec) and (Comp) and sup-
pose the family of maps (f:).c[o,c,) satisfies condition (Conv).

Set Xo := HY. For every ¢ € ]0,&¢], define Y. := (I — Q.)H{ and endow
Y. with the norm | - |g restricted to Y.. Define on Z. = Xy x Y. the following
norm:

[[(w, v)|]e := max{|u|go, [v|m;} for (u,v) € Z..
We will denote by I'. the metric on Z. induced by the norm || - ||c. For each
€ €10,¢e0], define 6. := 0.
Let ¥.: Hf — Z. be the linear map defined by

V. (w) == (Qew, (I — Q-)w) for w € Hy.
It follows that W, is a bijective linear map and its inverse map is given by
U Hu,v) =u+wv for (u,v) € Z..

Moreover both ¥, and W,.~! are continuous maps. This fact is a consequence
of the following inequalities:

(7.1) [Ve(w)lle < Clw|ge  for w e Hy,

(7.2) (W (u, ) s < (1 + CHY2||(u, )| for (u,v) € Z.,

where the constant C' € |1, co[ was defined in hypothesis (Spec).
Given (u,v) € Z. and ¢ € [0, 00| define

(u, v)Tot := WU (V. (u,v)m.t)
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whenever W_~1(u,v)n.t is defined. It follows that 7. is a local semiflow on
Z., the conjugate to m. via .. Theorem 5.7 and inequalities (7.1) and (7.2)
immediately imply the following

COROLLARY 7.1. Under the above hypotheses the family (7c)eeo,c,] con-

verges singularly to m. |

Theorem 6.1, Corollary 6.3 and inequalities (7.1) and (7.2) imply the follow-

ing:

COROLLARY 7.2. Let N be a closed and bounded subset of Xo. Then for
every 1 > 0 the set N is singularly strongly admissible with respect to n and the
Jamily (7c)eeo,e,], where To = To.

We can now prove the following Conley index continuation principle for sin-
gular families of abstract parabolic equations:

THEOREM 7.3. Let N be a closed and bounded isolating neighbourhood of an
invariant set Ko relative to mg. For e € ]0,e0] and for every n € 0, 00[ set

Ney:={u€ Hi | Qeu € N and |(I — Qc)ulm: <n}

and K., = Invy_ (Ne,) i.e. K., is the largest m.-invariant set in Ne,. Then
for every n € ]0,00[ there exists an €° = €°(n) € |0,e0] such that for every
e €10,e° the set N., is a strongly admissible isolating neighbourhood of K. ,,
relative to w. and

h(me, Ke ) = h(mo, Ko).
Furthermore, for everyn > 0, the family (K ;)ee(0,cc(n) 0f invariant sets, where
Ko, = Ko, is upper semicontinuous at € = 0 with respect to the family | - |Hf
of norms i.e.

i, s, o=l =0
PROOF. The isomorphism W, conjugates the local semiflow 7. to the local

semiflow 7.. Thus whenever S is a strongly admissible isolating neighbourhood
with respect to 7., then ¥.(S) is a strongly admissible isolating neighbourhood
with respect to 7. and

h(ﬂ—sa S) = h(%sa \115(5))
Corollaries 7.1 and 7.2 imply that the family of semiflows (7. ).¢[o,c,] and the set
N satisfy the hypotheses of [3, Theorem 4.1]. Notice also that any closed ball in
Y. is contractible. Hence [3, Theorem 4.1] and [3, Corollary 4.11] completes the
proof. O

REMARK 7.4. The family (K. ;)ccj0,e¢()) is asymptotically independent of 7

i.e. whenever 77 and 7y € ]0, 0o[ then there is an &’ € |0, min(£°(n;),€°(n2))] such
that K. ,, = K., for e €]0,¢].
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We also prove the following (co)homology index continuation principle:

THEOREM 7.5. Assume the hypotheses of Theorem 7.3 and for every n €
10, 00[ let () € ]0,e0] be as in that theorem. Let (P, <) be a finite poset. Let
(M, 0)pep be a <-ordered Morse decomposition of K relative to mg. For each
p € P, letV,, CN be closed in Xo and such that My = Invy,(Vp) C Intgo(V}).
(Such sets V,, p € P, exist.) For e €0,¢¢], for every n € 10,00 and p € P set
My cn =Inv, (Vpen), where

Voen ={ue€ Hi | Qeu €V, and [(I — Qc)u|m: < n}.

Then for every n € 10,00[ there is an € = £(n) € 10,e°(n)] such that for every
e €]0,e] and p € P, My, C Inty:(Vpcp) and the family (M. p)pep is
a <-ordered Morse decomposition of K., relative to m. and the (co)homology
index braids of (mo, Ko, (Mpo)pep) and (me, Ke p, (Mpcn)pepr)), € € ]0,€], are
isomorphic and so they determine the same collection of C'-connection matrices.

PROOF. Since the isomorphism ¥, conjugates the local semiflow 7. to the lo-
cal semiflow 7., using [5, Proposition 2.7], it follows that whenever S is a strongly
admissible isolating neighbourhood with respect to m. and (M,)pep is a <-
ordered Morse decomposition of S relative to m., then ¥_(S) is a strongly ad-
missible isolating neighbourhood with respect to . and (V. (Mp))pep is a <-
ordered Morse decomposition of S relative to 7. and the (co)homology index
braids of (7., S, (Mp)pep) and (7., U.(S), (Vo (Mp))per)), € € ]0,€0], are iso-
morphic.

Corollaries 7.1 and 7.2 imply that the family of semiflows (7 )-¢c[o,¢,] and the
set N satisfy the hypotheses of [4, Theorem 3.10]. Since any closed ball in Y; is
contractible, an application of [4, Theorem 3.10] completes the proof. |

REMARK 7.6. Again, for each p € P, the family (M., )ce(0,2(y), Where
M0,y = My, is upper semicontinuous at ¢ = 0 with respect to the family |- |z
of norms and the family (M, )-]o0,z(y) is asymptotically independent of .

8. Application to parabolic problems with localized large diffusion

Now let g9 € ]0, 00[ and the operators A., ¢ € [0,£¢], be as in section 2.

For e € ]0,e0[ set H® = L*(Q) and (-, - )y = (-, - )12(0)- Moreover, write
H® =L (Q)and (-, -)go = (-, - ) p2(0). Notice that H§ = H* for all € € [0, o).

For ¢ € [0,50] and « € R write HS = H,(A:). Then, if ¢ € ]0,¢¢], it
follows that Hf = Hi(A.) = H'(Q) and (-, -)g: = ((-, ). Furthermore,
HY = HY,(9) and (-, ho = Gol-, ).

In particular, if u € HY, then, for all € € ]0, &},

|ul s = Julmy-
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It is now easy to conclude that parts (a), (b) and (c) of Condition (Spec) are
satisfied. Moreover, the following result holds:

PROPOSITION 8.1. The above family (H®, (-, - )m=, Ac)eeclo,c,] Satisfies con-
ditions (Spec) and (Comp).

PROOF. [9, Theorem 5.1] implies that part (d) of Condition (Spec) also
holds. Condition (Comp) follows from [9, Theorem 4.4]. O

By interpolation theory (cf. [12]) for every § € [0,1] and every € € [0, 0]
there is a continuous imbedding from H§ to H?(Q) with imbedding constant
Ci9 € ]0,00] independent of € € [0,e0]. Furthermore, there is a continuous
imbedding from H?(Q) into LP?.2(Q) with imbedding constant Cs g € ]0,0c].

Here,
1 0!
=(0=—+(1-0)=) .
o= (0 +01-03)

Moreover, for every p € [0,1] there is a continuous imbedding from H*/2(T) into
LPer(T') with imbedding constant C3 , € ]0,00[. Here,

1 A
—(p—t1-p=) .
Pp,r <p2; + ( P) 2)
Finally, by [8], for every 6 € ]1/2,1] there is a bounded linear trace operator
v = v9: H*(Q) — H~(/2/(T) with a bound Cy ¢ € ]0,00[. Now the continuity
of the functions 6 — pp o and 0 — pag_1 r at @ = 1 implies the following result.

LEMMA 8.2. Let gz € |(1 —(1/2§))7 1, 00[ and g3 € J(1 — (1/25))71, 00| be
arbitrary. Then there is a 0 € |1/2,1[ such that

P2 <ps and p3= < p2g—-1,r-

_ q3
-1 g3 — 1
Set o = 0 and let C5 € ]0,00[ (resp. Cg € ]0,00[) be a bound of the imbedding
LP2(Q) — LP2(Q) (resp. LP2«-2.0(T") — LP3(T)). Then, whenever ® € L92(Q),
U e Le(T), e € [0,60] and h € HE, then ® - h € L(Q2), ¥ -~(h) € LY(T),

/ ® Bl dr < C1.0CoaCsl®] a1l 11
Q
and

/ ‘\IJ : ’Y(h‘)| do < Cl,aC4,aCS,2a7106‘\Ij|ng (F)|h‘H§
r

In particular, there is a unique f. € HE  such that

(e

fe(h)=/Q<I>-hd:c+/F\11-7(h)da, h e HE.

Moreowver,
|felme < Cr.a(|®|La (o) + [¥]Las )
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where C77a = max(Cl,aC’zan,, Cl,ozC4,aC’3,2ozfch)'

The next two theorems describe how to obtain a family of maps that satisfies

hypothesis (Conv).
THEOREM 8.3. For e € [0,g¢], let ®.: H'(Q) — L9=(Q) and ¥.: HY/*(T) —
L% (T") be maps satisfying the following assumptions:
(a) For all M € [0,00[ there is an L = Ly € [0, 00[ such that
(al) for alle € [0,e0] and all u, v € H' () with [u|g (o), [v|g1@) < M,
| @ (u) = @< (v)[Le2 (@) < Llu —v[m1 ()

(a2) for all € € [0,e0] and all u, v € H'/?(T') with [ul g2y, 102y
S M;

[We(u) = We(v)|pasry < Llu = vl
(b) For every u € Hslzo(ﬂ);

|®e(u) — Po(u)|pazi) 0 ase— 0.
(c) For everyu € H'/*(T'),

(W (u) — Yo (u)|pasry = 0 ase— 0%,

Let o € 11/2,1] be as in Lemma 8.2. For e € [0,e0] and w € Hf define, for
heHE,

f-(u)(h) = /Q B, (u) - hdz + / . (1(u)) -y (R) do.
Then f.(u) € HE

¢ o and the family (fz)eeo,co) 0f maps satisfies condition (Conv).

REMARK 8.4. By the definition of 2§ and 2}, we may, for N =1, 2, take ¢
and g3 arbitrary in ]1, ool.

PROOF OF THEOREM 8.3. Lemma 8.2 implies that the family (f:).cjo.c.]
satisfies (a) of condition (Conv). Let M € [0,00[ be arbitrary and L = Lys be
as in assumption (a). If € € [0,e0] and u, v € H{ with |u|gs, |v|g: < M/Cy
then u, v € H'(Q) with |u|g1(q), |v]m1(@) < M so

|fe(w) = fe(V)|me | < Cra(|Pe(u) = Pe(v)|paz (o) + [We(y(w)) = Ve (v(v))|Las (1))
< 077a(L + LC471)‘U — ’U|H1(Q) < 077(1([/ + LC471)0171|U — U‘Hls.

This together with assumption (a) implies part (c) of condition (Conv). If u € HY
then

|fe(u)lme, < Cra(|®e(u)|pa(q) + [We(y(w)|Las(r))-
This together with assumptions (b) and (c) easily implies part (d) of condi-
tion (Conv).
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Now let w € HY be arbitrary and (¢,,), be a sequence in |0, o] with ,, — 0.
Let ¢ € ]0, oo[ be arbitrary. We will show that

(8.1) lim [~ £ (w) — e~ fo(w) g =0,

n—0oo

proving (b) of condition (Conv).

It follows from Proposition 8.1 that the families (H*®, (-, -)n<)cejo,e,] and
(Ac)cefo,e0] satisfy condition (Spec). For n € N set u, = f., (w) and define
vy, € HE") by

vp(h) = / Og(w) - hdx + / Uo(y(w)) - y(h)do, he H.
Q r
Finally, set u = fop(w). Then

[un = valpen < Cra(|®e, (w) = Po(w)[Lez(0) + Ve, (v(w)) = Yo (y(w))]|Las (1))

Notice that the right hand side of this estimate goes to zero as n — oo. Thus
assumption (a) of Theorem 4.6 is satisfied.

Let Cs € ]0,00[ be a bound for the imbedding H*(Q2) — H*(Q2). Then, for
every j € N,

[vn (we,, ) — w(wo ;)| < [@o(w)]paz () |we,, j — wo,j|Lr2 (@)
+ [ Wo(y(w))lres (ry Iy (we, ; — wo)lLes () < Clwe,,,; — wo sl e,
where 5 = 0502,a0801,1 ‘(I)o (w)|Lq2 (Q) +C6‘03,2a—1c4,a0801,1 |\P0('y(w))|Lq3 (T)-
Hence |vy, (we,, ;) —u(wo,;)| — 0 as n — oco. Thus assumption (b) of Theorem 4.6

is satisfied.
Now, for all n € N,

[Vnlaen, < C7a(|Po(w)]Lr2 (@) + [Wo(Y(w))]Lrs (1))

Thus assumption (c¢) of Theorem 4.6 is satisfied. Now (8.1) follows from Theo-
rem 4.6. g

THEOREM 8.4. Assume Hypothesis 2.1. Fore € [0,e0] and u € H*(Q) (resp.

u € HY?(T)) define ®.(u)(z) = @z, u(x)) (resp. Vo(u)(x) = e (2, u(x))) for
x€Q (resp. x €T). Then ®.: HY(Q) — L92(Q) and V.: HY/*(T') — L3(T') are
defined and satisfy the assumptions of Theorem 8.3.

PRrROOF. Use results and arguments in [6, Chapter 2]. O

Finally we obtain the following
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COROLLARY 8.5. For e € [0,g0] let 9c: Q2 xR — R and ¢:T X R — R,
(z,8) — pe(x,s), (x,8) — V(x,s), be functions as in Theorem 8.4. For e €
[0,0] and u € HY(Q) (resp. u € HY*(T')) define ®.(u)(x) = ¢ (x,u(x)) (resp.
U (u)(z) = Ye(z,u(x))) for x € Q (resp. x € T') and let « € |1/2,1] be as in
Lemma 8.2. For e € [0,¢0] and u € Hf define, for h € HE,

fea) ) = [ @) hdo+ [ 03() (b o

Then f-(u) € HE, and the family (f:)zc[o,e,] of maps satisfies condition (Conv).
Proor. This follows from Theorems 8.4 and 8.3. g

We can now prove the results stated in Section 2.

PRrROOF OF THEOREM 2.2. The theorem follows from Proposition 8.1, Corol-

lary 8.5 and Theorem 5.7. ]
PROOF OF THEOREM 2.3. The theorem follows from Proposition 8.1, Corol-
lary 8.5 and Corollary 6.3. O
PRrROOF OF THEOREM 2.4. Proposition 8.1, Corollary 8.5, Theorem 7.3 and
Remark 7.4 imply the theorem. O
PROOF OF THEOREM 2.5. Proposition 8.1, Corollary 8.5, Theorem 7.5 and
Remark 7.6 imply the theorem. O
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