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LOCALIZED SINGULARITIES AND CONLEY INDEX

Maria C. Carbinatto — Krzysztof P. Rybakowski

Abstract. We establish some abstract convergence and Conley index con-

tinuation principles for families of singularly perturbed semilinear parabolic
equations and apply them to reaction-diffusion equations with nonlinear

boundary conditions and localized large diffusion. This extends and refines

previous results of [9] and [1].

1. Introduction

Let Ω be a bounded smooth domain in RN and Ω0,i, i ∈ [1. .m] be smooth do-
mains whose closures are pairwise disjoint and included in Ω. Let Ω0 =

⋃m
i=1 Ω0,i,

Γ = ∂Ω and Γ0,i = ∂Ω0,i, i ∈ [1. .m]. Set Ω1 = Ω\Cl Ω0. For each ε > 0, consider
the following parabolic problem

(Eε)

{
ut −Div(dε(x)∇u) + (λ+ Vε(x))u = ϕε(x, u), t > 0, x ∈ Ω,

dε(x)∂νu+ bε(x)u = ψε(x, u), t > 0, x ∈ Γ.

Here, λ ∈ R and ν is the exterior normal vector field on ∂Ω. Moreover, dε≥m>0,
Vε and bε, resp. ϕε and ψε, are given functions on Ω, resp. Ω×R satisfying some
regularity assumptions. We assume that, for ε→ 0, Vε → V0, bε → b0, ϕε → ϕ0,
ψε → ψ0 and dε|Ω1 → d0 (in some sense) while dε|Ω0 →∞.
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Under some general conditions on the functions involved equation (Eε) can
be written abstractly as a semilinear problem

(E′ε) u̇+Aεu = fε(u)

generating a local semiflow πε on H1(Ω).
Consider the limit equation

(E0)



ut −Div(d0(x)∇u) + (λ+ V0(x))u = ϕ0(x, u), t > 0, x ∈ Ω1,

d0(x)∂νu+ b0(x)u = ψ0(x, u), t > 0, x ∈ Γ,

γ0,i(u) = uΩ0,i
, on Γ0,i, i ∈ [1. .m],

u̇Ω0,i
+ |Ω0,i|−1

∫
Γ0,i

d0(x)∂ν0,i
u dσ

+(λ+ ĉi)uΩ0,i
= |Ω0,i|−1

∫
Ω0,i

ϕ0(x, uΩ0,i
) dx, t > 0, i ∈ [1. .m],

where γ0,i is the trace operator on Γ0,i, ν0,i is the interior normal vector field on
∂Ω0,i, uΩ0,i

is the value of u on Ω0,i and ĉi := |Ω0,i|−1
∫
Ω0,i

V0 dx.
Equation (E0) can similarly be written abstractly as a semilinear problem

(E′0) u̇+A0u = f0(u)

generating a local semiflow π0 on a closed subspace H1
Ω0

(Ω) of H1(Ω). In the
paper [9] the spectral convergence of the family (Aε)ε>0 to A0 for ε→ 0 is proved
while the authors of [1] establish existence and upper semicontinuity results for
global attractors of πε, ε ≥ 0, under additional dissipativity conditions on the
nonlinearities.

In this paper, we extend and refine these results. In particular, we prove
that, as ε → 0, the semiflows πε converge in a singular sense to the semiflow
π0 and we establish a singular compactness result for the family πε, ε ≥ 0. As
a consequence of these results, we obtain singular Conley index and homology
index braid continuation principles for this family of semiflows.

In this paper we proceed as in [2] and keep the presentation of our results at
an abstract level. In fact we only assume certain spectral convergence properties
and compactness assumptions on a family of linear operators (Aε)ε≥0 (see con-
ditions (Spec) and (Comp) in Section 4). We also make an abstract convergence
hypothesis (condition (Conv) in section 5) on a family of nonlinear operators
(fε)ε≥0.

Our abstract approach permits applications to some other singular systems
of reaction-diffusion equations. This will be treated in a subsequent publication.

2. Main results

In this section we will introduce some notation and state the main results of
this paper.
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Let N and m be a positive integers and ε̃0 be a positive real number. Let
Ω be a bounded smooth domain in RN and Ω0,i, i ∈ [1. .m] be smooth domains
whose closures are pairwise disjoint and are included in Ω. Let Ω0 =

⋃m
i=1 Ω0,i,

Γ = ∂Ω and Γ0,i = ∂Ω0,i, i ∈ [1. .m]. Set Ω1 = Ω \ Cl Ω0.
For each ε ∈ [0, ε̃0], let dε: Ω → R be a smooth function such that

0 < m0 ≤ dε(x) ≤Mε for all x ∈ Ω,

where m0 and Mε, ε ∈ [0, ε̃0], are positive constants, and

dε(x) → d0(x) as ε→ 0 uniformly for x ∈ Ω1

and
dε(x) →∞ as ε→ 0 uniformly on compact subsets of Ω0.

Let Vε ∈ Lq0(Ω) and bε ∈ Lq1(Γ) be such that

|Vε − V0|Lq0 (Ω) → 0 and |bε − b0|Lq1 (Γ) → 0 as ε→ 0,

where q0 and q1 are constants such that

q0


> 1 for N = 1;

> 1 for N = 2;

> N/2 for N ≥ 3

and q1


> 1 for N = 1;

> 1 for N = 2;

> N − 1 for N ≥ 3.

Now let L2
Ω0

(Ω) be the set of all functions in L2(Ω) which are (almost everywhere)
constant on each Ω0,i, i ∈ [1. .m]. Set H1

Ω0
(Ω) = H1(Ω) ∩ L2

Ω0
(Ω). It follows

that H1
Ω0

(Ω) (resp. L2
Ω0

(Ω)) is a closed subspace of H1(Ω) (resp. L2(Ω)).
Let γ:H1(Ω) → H1/2(Γ) be the trace operator. For λ ∈ R and ε ∈ ]0, ε̃0]

define the bilinear form ζε:H1(Ω)×H1(Ω) → R by

ζε(u, v) =
∫

Ω

dε∇u∇v dx+
∫

Ω

(λ+ Vε)uv dx+
∫

Γ

bεγ(u)γ(v) dσ, u, v ∈ H1(Ω).

Here, dx is the N -Lebesgue measure and dσ is the surface measure on Γ.
It follows from results in [9] that ζε is defined and continuous on H1(Ω) ×

H1(Ω). Furthermore, define the bilinear form ζ0:H1
Ω0

(Ω)×H1
Ω0

(Ω) → R by

ζ0(u, v) =
∫

Ω1

d0∇u∇v dx+
∫

Ω

(λ+V0)uv dx+
∫

Γ

b0γ(u)γ(v) dσ, u, v ∈ H1
Ω0

(Ω).

Results in [9] imply that ζ0 is defined and continuous on H1
Ω0

(Ω) × H1
Ω0

(Ω).
Moreover, there are an ε0 ∈ ]0, ε̃0], a µ̃ ∈ ]0,∞[ and a λ̃ ∈ R such that for all
λ ≥ λ̃

ζε(u, u) ≥ µ̃|u|2H1(Ω), ε ∈ ]0, ε0] , u ∈ H1(Ω)

ζ0(u, u) ≥ µ̃|u|2H1
Ω0

(Ω), u ∈ H1
Ω0

(Ω).
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For ε ∈ ]0, ε0] the pair (ζε, 〈 · , · 〉L2(Ω)) defines an operator Aε:D(Aε) → Hε :=
L2(Ω). Specifically, let D(Aε) be the set of all u ∈ H1(Ω) such that there is
a w = wu ∈ L2(Ω) with the property that

ζε(u, v) = 〈w, v〉L2(Ω)

for all v ∈ H1(Ω). Then wu is uniquely determined by u, the set D(Aε) is a dense
linear subspace both of H1(Ω) and of L2(Ω), and the map

Aε:D(Aε) → L2(Ω), u 7→ wu

is a linear positive self-adjoint operator in (L2, 〈 · , · 〉L2(Ω)) with A−1
ε compact.

Analogously, the pair (ζ0, 〈 · , · 〉L2
Ω0

(Ω)) defines a linear positive self-adjoint

operator A0 in H0 := L2
Ω0

(Ω) with A−1
0 compact.

It is proved in [9] that, for ε ∈ ]0, ε0], D(Aε) is the set of all u ∈ H1(Ω)
such that −Div(dε∇u) + Vεu ∈ L2(Ω) and dε∂νu+ bεu = 0 in Γ. Here, ν is the
exterior normal vector field on ∂Ω and dε∂νu is the conormal derivative of u in
some generalized sense. The linear operator Aε is then given by

Aεu = −Div(dε∇u) + (λ+ Vε)u

for u ∈ D(Aε).
Moreover, D(A0) is the set of all u ∈ H1

Ω0
(Ω) such that −Div(d0∇u)+V0u ∈

L2(Ω1) with d0∂νu+ b0u = 0 in Γ. The linear operator A0 is then given by

A0u =(−Div(d0∇u) + (λ+ V0)u)χΩ1

+
m∑

i=1

(
|Ω0,i|−1

∫
Γ0,i

d0∂ν0,iu dσ + (λ+ ĉi)uΩ0,i

)
χΩ0,i , u ∈ D(A0).

Here, ν0,i is the interior normal vector field on ∂Ω0,i, uΩ0,i
is the constant value

of u on Ω0,i, ĉi := |Ω0,i|−1
∫
Ω0,i

V0 dx, i ∈ [1. .m], and χB denotes the character-
istic function of a given set B.

For ε ∈ [0, ε0] the operator Aε is sectorial so it defines a family of fractional
power operators Aβ

ε :D(Aβ
ε ) → Hε, β ∈ [0,∞[ and we write, for α ∈ [0,∞[,

Hε
α := D(Aα/2

ε ). In particular, Hε
0 = Hε. In a canonical way, Hε

α is a Hilbert
space and we set Hε

−α to be the dual of Hε
α.

Let

2∗Ω =


2N
N − 2

if N ≥ 3;

an arbitrary p∗ ∈ ]0,∞[ if N = 2;

∞ if N = 1
and

2∗Γ =


2(N − 1)
N − 2

if N ≥ 3;

an arbitrary p∗∗ ∈ ]0,∞[ if N = 2;

∞ if N = 1.
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Now assume the following

Hypothesis 2.1. For ε ∈ [0, ε0], ϕε: Ω × R → R and ψε: Γ × R → R,
(x, s) 7→ ϕε(x, s), (x, s) 7→ ψε(x, s), are functions such that

(a) there is a null set NΩ in Ω with ϕε(x, · ) ∈ C1(R,R) for all x ∈ Ω \NΩ;
(b) there is a null set NΓ in Γ (rel. to the surface measure on Γ) with

ψε(x, · ) ∈ C1(R,R) for all x ∈ Γ \NΓ;
(c) for all s ∈ R, ϕε( · , s) and ∂sϕε( · , s) is measurable on Ω;
(d) for all s ∈ R, ψε( · , s) and ∂sψε( · , s) is measurable on Γ.

Moreover, q2 ∈ ](1− (1/2∗Ω))−1, 2∗Ω[, q3 ∈ ](1− (1/2∗Γ))−1, 2∗Γ[ and

r2 =
2∗Ωq2

2∗Ω − q2
, r3 =

2∗Γq3
2∗Γ − q3

, β2 =
2∗Ω
q2

− 1, β3 =
2∗Γ
q3

− 1.

There is a constant C̃ ∈ ]0,∞[ and functions a2 ∈ Lr2(Ω), b2 ∈ Lq2(Ω), a3 ∈
Lr3(Γ), b3 ∈ Lq3(Γ) such that, for all ε ∈ [0, ε0],

|∂sϕε(x, s)| ≤ C̃(a2(x) + |s|β2), for (x, s) ∈ (Ω \NΩ)× R,

|ϕε(x, 0)| ≤ b2(x), for x ∈ Ω \NΩ,

|∂sψε(x, s)| ≤ C̃(a3(x) + |s|β3), for (x, s) ∈ (Γ \NΓ)× R,

|ψε(x, 0)| ≤ b3(x), for x ∈ Γ \NΓ.

Finally, as ε→ 0+,

|ϕε(x, s)− ϕ0(x, s)| → 0, for (x, s) ∈ (Ω \NΩ)× R

|ψε(x, s)− ψ0(x, s)| → 0, for (x, s) ∈ (Γ \NΓ)× R.

Under Hypothesis 2.1, there is an α ∈ ]1/2, 1[ such that whenever ε ∈ [0, ε0],
u ∈ Hε

1 and h ∈ Hε
α, the functions x 7→ ϕε(x, u(x))·h(x) and x 7→ ψε(x, γ(u)(x))·

γ(h)(x) are integrable on Ω and Γ, respectively. (Cf. Section 8 below.) Defining

fε(u)(h) =
∫

Ω

ϕε(x, u(x)) · h(x) dx+
∫

Γ

ψε(x, γ(u)(x)) · γ(h)(x) dσ

we obtain a locally Lipschitzian map fε:Hε
1 → Hε

−α.
The linear isometry Aε:D(Aε) = Hε

2 → Hε
0 can be extended to a unique

linear isometry Ãε:D(Ãε) = Hε
2−α → Hε

−α. Moreover, Ãε is a positive selfadjoint
operator on Hε

−α.
Therefore, we may consider the abstract parabolic equation

(2.1) u̇ = Ãεu+ fε(u)

on Hε
1 . This equation generates a local semiflow πε on Hε

1 .
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For each ε ∈ ]0, ε0], equation (2.1) is an abstract formulation of the following
parabolic partial differential equation with localized large diffusion and nonlinear
boundary conditions:{

ut −Div(dε(x)∇u) + (λ+ Vε(x))u = ϕε(x, u), t > 0, x ∈ Ω,

dε(x)∂νu+ bε(x)u = ψε(x, u), t > 0, x ∈ ∂Ω.

For ε = 0, (2.1) is an abstract formulation of the following boundary value
problem:

ut −Div(d0(x)∇u) + (λ+ V0(x))u = ϕ0(x, u), t > 0, x ∈ Ω1,

d0(x)∂νu+ b0(x)u = ψ0(x, u), t > 0, x ∈ Γ,

γ0,i(u) = uΩ0,i , on Γ0,i, i ∈ [1. .m] ,

u̇Ω0,i + |Ω0,i|−1

∫
Γ0,i

d0(x)∂ν0,iu dσ + (λ+ ĉi)uΩ0,i

= |Ω0,i|−1

∫
Ω0,i

ϕ0(x, uΩ0,i) dx, t > 0, i ∈ [1. .m] .

Here, for i ∈ [1. .m], γ0,i is the trace operator on Γ0,i.
It was proved in [9] that, as ε → 0, the spectrum of Aε converges to the

spectrum of A0. Using this one can obtain results on convergence of e−tAε to
e−tA0 . Now by using the variation-of-constants formula one suspects that, in
some sense, some families of solutions of πε converge to solutions of π0. This was
proved in [1] for full bounded solutions under some additional dissipativeness
conditions both on the linear and on the nonlinear problem, cf. [1, conditions S,
Dε and D0]. This latter result also implies existence of global attractors of both
πε and π0 and their upper semicontinuity at ε = 0.

In this paper we extend and refine these results. More specifically, working
first in an abstract setting, we establish in Sections 4, 5, 6 and 7 various singular
convergence, compactness and Conley index continuation results for abstract
families of equations of type (2.1). These abstract results imply the following
main theorems of this paper:

Theorem 2.2. Let (εn)n be a sequence in ]0, ε0] with εn → 0 and (tn)n be
a sequence in [0,∞[ with tn → t0, for some t0 ∈ [0,∞[. Let u0 ∈ H0

1 and (un)n

be a sequence with un ∈ Hεn
1 for every n ∈ N and

|un − u0|Hεn
1
→ 0 as n→∞.

Assume u0π0t0 is defined. Then there exists an n0 ∈ N such that unπεn
tn is

defined for all n ≥ n0 and

|unπεn
tn − u0π0t0|Hεn

1
→ 0 as n→∞.
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Theorem 2.3. Suppose κ ∈ ]0,∞[, (εn)n is a sequence in ]0, ε0] with εn → 0,
(tn)n is a sequence in [0,∞[ with tn ≥ κ for every n ∈ N and (un)n is a sequence
with un ∈ Hεn

1 for every n ∈ N. Assume that there exists a constant C ∈ ]0,∞[
such that unπεn

tn is defined and

|unπεn
s|Hεn

1
≤ C for all n ∈ N and for all s ∈ [0, tn].

Then there exist a v ∈ H0
1 and a sequence (nk)k in N with nk → ∞ as k → ∞

such that
|unk

πεnk
tnk

− v|
H

εnk
1

→ 0 as k →∞.

Theorem 2.4. For each ε ∈ ]0, ε0], let Iε be the identity map on Hε
1 and

Qε:Hε
1 → Hε

1 be the Hε
1 -orthogonal projection of Hε

1 onto H0
1 . Let N be a closed

and bounded isolating neighbourhood of an invariant set K0 relative to π0. For
ε ∈ ]0, ε0] and for every η ∈ ]0,∞[ set

Nε,η := {u ∈ Hε
1 | Qεu ∈ N and |(Iε −Qε)u|Hε

1
≤ η}

and Kε,η := Invπε
(Nε,η) i.e. Kε,η is the largest πε-invariant set in Nε,η. Then

for every η ∈ ]0,∞[ there exists an εc = εc(η) ∈ ]0, ε0] such that for every
ε ∈ ]0, εc] the set Nε,η is a strongly admissible isolating neighbourhood of Kε,η

relative to πε and
h(πε,Kε,η) = h(π0,K0).

Furthermore, for every η > 0, the family (Kε,η)ε∈[0,εc(η)] of invariant sets, where
K0,η = K0, is upper semicontinuous at ε = 0 with respect to the family | · |Hε

1

of norms i.e.
lim

ε→0+
sup

w∈Kε,η

inf
u∈K0

|w − u|Hε
1

= 0.

The family (Kε,η)ε∈]0,εc(η)] is asymptotically independent of η i.e. whenever η1
and η2 ∈ ]0,∞[ then there is an ε′ ∈ ]0,min(εc(η1), εc(η2))] such that Kε,η1 =
Kε,η2 for ε ∈ ]0, ε′].

Theorem 2.5. Assume the hypotheses of Theorem 2.4 and for every η ∈
]0,∞[ let εc(η) ∈ ]0, ε0] be as in that theorem.

Let (P,≺) be a finite poset and (Mp,0)p∈P be a ≺-ordered Morse decomposi-
tion of K0 relative to π0. For each p ∈ P , let Vp ⊂ N be closed in X0 and such
that Mp,0 = Invπ0(Vp) ⊂ IntH0

1
(Vp). (Such sets Vp, p ∈ P , exist.) For ε ∈ ]0, ε0],

for every η ∈ ]0,∞[ and p ∈ P set Mp,ε,η := Invπε
(Vp,ε,η), where

Vp,ε,η := {u ∈ Hε
1 | Qεu ∈ Vp and |(Iε −Qε)u|Hε

1
≤ η}.

Then for every η ∈ ]0,∞[ there is an ε̃ = ε̃(η) ∈ ]0, εc(η)] such that for every
ε ∈ ]0, ε̃] and p ∈ P , Mp,ε,η ⊂ IntHε

1
(Vp,ε,η) and the family (Mp,ε,η)p∈P is

a ≺-ordered Morse decomposition of Kε,η relative to πε and the (co)homology
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index braids of (π0,K0, (Mp,0)p∈P ) and (πε,Kε,η, (Mp,ε,η)p∈P )), ε ∈ ]0, ε̃], are
isomorphic and so they determine the same collection of C-connection matrices.

Again, for each p ∈ P , the family (Mp,ε,η)ε∈[0,eε(η)], where Mp,0,η = Mp,0 is
upper semicontinuous at ε = 0 with respect to the family | · |Hε

1
of norms and the

family (Mp,ε,η)ε∈]0,eε(η)] is asymptotically independent of η.

The above theorems are proved in Section 8.

3. Preliminaries

Suppose H is an infinite dimensional linear space which is complete with
respect to the scalar product 〈 · , · 〉H and let A:D(A) ⊂ H → H be a (densely
defined) positive self-adjoint operator on (H, 〈 · , · 〉H) with A−1:H → H com-
pact. Let (λj)j be the repeated sequence of eigenvalues of A, i.e. the uniquely
determined nondecreasing sequence (λj)j containing exactly the eigenvalues of A
and such that the number of occurrences of every eigenvalue of A in this sequence
is equal to its multiplicity. Let (wj)j be an H-orthonormal sequence of eigenvec-
tors of A corresponding to (λj)j . For α ∈ [0,∞[, let Hα = Hα(A) = D(Aα/2).
In particular,

H0 = H.

Note that Hα is a Hilbert space under the scalar product

〈u, v〉Hα = 〈Aα/2u,Aα/2v〉H , u, v ∈ Hα.

For every j ∈ N, wj ∈ Hα and the sequence (λ−α/2
j wj)j is Hα-orthonormal and

Hα-complete. If u ∈ Hα we have

(3.1)
∣∣∣∣u− k∑

j=1

〈u,wj〉Hwj

∣∣∣∣
Hα

→ 0 as k →∞

and so

(3.2) |u|2Hα
=

∞∑
j=1

λα
j |〈u,wj〉H |2.

If α ∈ ]0,∞[, let H−α = H ′
α be the dual of Hα. It follows that H−α is a Hilbert

space under the dual scalar product

〈u, v〉H−α = 〈F−1
α v, F−1

α u〉Hα , u, v ∈ H−α,

where Fα:Hα → H−α, u 7→ 〈 · , u〉Hα , is the Fréchet–Riesz isomorphism.
Define the map ψα:H = H0 → H−α by ψα(u) = y, where y:Hα → K is

defined by
y(v) = 〈v, u〉H , v ∈ Hα.

ψα is an injection so that we can (and will) identify elements u ∈ H with ψα(u) ∈
H−α. We thus consider H as a linear subspace of H−α. With this identification,
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the sequence (λα/2
j wj)j is H−α-orthonormal and H−α-complete. If u ∈ H−α

then

(3.3)
∣∣∣∣u− k∑

j=1

u(wj)wj

∣∣∣∣
H−α

→ 0 as k →∞

and so

(3.4) |u|2H−α
=

∞∑
j=1

λ−α
j |u(wj)|2.

For α ∈ ]0,∞[ there is a unique continuous extension Ã−1 = Ã−1
α :H−α → H2−α

of A−1:H → H2. The map Ã−1 is a bijective linear isometry. Let Ã:H2−α →
H−α be the inverse of Ã−1. Then Ã is a positive densely defined self-adjoint
operator on H−α. Moreover, for β ∈ [0,∞] the β-fractional power space Hβ(Ã)
of Ã is isomorphic (as a Hilbert space) to Hβ−α = Hβ−α(A).

The linear semigroup e−t eA:H−α → H−α, t ∈ [0,∞[, is an extension of the
semigroup e−tA:H → H, t ∈ [0,∞[. Since, for every j ∈ N and t ∈ [0,∞[,

e−tAwj = e−t eAwj = e−tλjwj

we conclude that, for every u ∈ H, every β ∈ [0,∞[ and every t ∈ ]0,∞[

(3.5)
∣∣∣∣e−tAu−

k∑
j=1

e−tλj 〈u,wj〉Hwj

∣∣∣∣
Hβ

→ 0 as k →∞.

We also conclude that, for every u ∈ H−α, every β ∈ [0,∞[ and every t ∈ ]0,∞[

(3.6)
∣∣∣∣e−t eAu−

k∑
j=1

e−tλju(wj)wj

∣∣∣∣
Hβ

→ 0 as k →∞.

4. Singular convergence of linear semiflows

In this section we introduce two abstract hypotheses, conditions (Spec) and
(Comp), and we show that condition (Spec) enables us to prove some singular
convergence results for linear semiflows.

First we introduce the following spectral convergence definition for a family
of Hilbert spaces and linear operators.

Definition 4.1. Given ε0>0 we say that the family (Hε, 〈 · , · 〉Hε , Aε)ε∈[0,ε0]

satisfies condition (Spec) if the following properties are satisfied:

(a) for every ε ∈ [0, ε0], (Hε, 〈 · , · 〉Hε) is an infinite dimensional Hilbert
space and Aε:D(Aε) ⊂ Hε → Hε is a densely defined positive self-
adjoint operator on the space (Hε, 〈 · , · 〉Hε) with Aε

−1:Hε → Hε com-
pact. For α ∈ R write Hε

α := Hα(Aε). In particular, Hε
0 = Hε;
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(b) for each ε ∈ ]0, ε0], H0 is a linear subspace of Hε and H0
1 is a linear

subspace of Hε
1 ;

(c) there exists a constant C ∈ ]1,∞[ such that

|u|Hε
1
≤ C|u|H0

1
and |u|H0

1
≤ C|u|Hε

1

for all u ∈ H0
1 and all ε ∈ ]0, ε0];

(d) for every ε ∈ ]0, ε0] let (λε,j)j be the repeated sequence of eigenvalues of
Aε and (wε,j)j be a corresponding Hε-orthonormal sequence of eigen-
functions. Furthermore, let (λ0,j)j be the repeated sequence of eigen-
values of A0.
Whenever (εn)n is a sequence in ]0, ε0] with εn → 0 then
(d1) λεn,j → λ0,j as n→∞, for all j ∈ N.
Moreover, there is a sequence (nk)k in N with nk → ∞ as k → ∞ and
there is an H0-orthonormal sequence of eigenfunctions (w0,j)j of A0

corresponding to (λ0,j)j such that
(d2) |wεnk

,j − w0,j |Hεnk
1

→ 0 as k →∞, for all j ∈ N;
(d3) 〈u,wεnk

,j〉Hεnk → 〈u,w0,j〉H0 as k →∞, for all u ∈ H0 and all
j ∈ N.

We also require the following definition.

Definition 4.2. Let the family (Hε, 〈 · , · 〉Hε , Aε)ε∈[0,ε0] satisfy condition
(Spec). We say that (Hε, 〈 · , · 〉Hε , Aε)ε∈[0,ε0] satisfies condition (Comp) if when-
ever (εn)n is a sequence in ]0, ε0] with εn → 0 and (ξn)n is a sequence with
ξn ∈ Hεn

1 for every n ∈ N and

sup
n∈N

|ξn|Hεn
1
<∞,

then there exist a v ∈ H0
1 and a sequence (nk)k in N with nk → ∞ as k → ∞

such that
|ξnk

− v|Hεnk → 0 as k →∞.

Now we will show that condition (Spec) allows us to obtain two singular
convergence theorems for linear semiflows. We start with following preliminary
result.

Proposition 4.3. If (Hε, 〈 · , · 〉Hε , Aε)ε∈[0,ε0] satisfy condition (Spec), then
for every ε ∈ ]0, ε0], the subspace H0

1 is closed in (Hε
1 , | · |Hε

1
).

Proof. Let ε ∈ ]0, ε0] and suppose (un)n is a sequence in H0
1 with |un −

u|Hε
1
→ 0 as n→∞ for some u ∈ Hε

1 . Part (c) of condition (Spec) implies that

|un − um|H0
1
≤ C|un − um|Hε

1
,
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so (un)n is a Cauchy sequence in the Banach space (H0
1 , | · |H0

1
). Therefore (un)n

converges in H0
1 to some v in H0

1 . But part (c) of condition (Spec) implies that

|un − v|Hε
1
≤ C|un − v|H0

1
.

Hence u = v and thus u ∈ H0
1 . This proves the proposition. �

Remark 4.4. Note that, for α, t ∈ ]0,∞[ and λ ∈ [0,∞[

λαe−λt ≤ C(α)t−α with C(α) = (α/e)α.

Let (Hε, 〈 · , · 〉Hε , Aε)ε∈[0,ε0] satisfy condition (Spec). Let α ∈ [0,∞[, ε ∈ [0, ε0]
and r ∈ ]0,∞[. Using the above estimate, we obtain for every u ∈ Hε

−α

|e− eAεru|2Hε
1

=
∞∑

j=1

λα+1
ε,j (e−λε,jr)2λ−α

ε,j |u(wε,j)|2

=
∞∑

j=1

((λε,j)(α+1)/2e−λε,jr)2λ−α
ε,j |u(wε,j)|2

≤ (C((α+ 1)/2)2r−(α+1))|u|2Hε
−α
.

Consequently, we obtain for every u ∈ Hε
−α

(4.1) |e− eAεru|Hε
1
≤ C0r

−(α+1)/2|u|Hε
−α
,

where C0 = C((α+ 1)/2).
We shall need these estimates in the results to follow.

We now prove our first result on the convergence of the linear semiflows.

Theorem 4.5. Let (Hε, 〈 · , · 〉Hε , Aε)ε∈[0,ε0] satisfy condition (Spec). Sup-
pose (εn)n is a sequence in ]0, ε0] with εn → 0. Let u0 ∈ H0

1 and (un)n be
a sequence such that, for every n ∈ N, un ∈ Hεn

1 and

|un − u0|Hεn
1
→ 0 as n→∞.

Then
sup

t∈[0,∞[

|e−tAεnun − e−tA0u0|Hεn
1
→ 0 as n→∞.

Proof. Since λε,j > 0 for all ε ∈ ]0, ε0] and for all j ∈ N, we have

|e−tAεv|2Hε
1

=
∞∑

j=1

(e−tλε,j )2λε,j |〈v, wε,j〉Hε |2 ≤
∞∑

j=1

λε,j |〈v, wε,j〉Hε |2 = |v|2Hε
1
,

for all v ∈ Hε
1 , ε ∈ ]0, ε0] and t ∈ [0,∞[. Thus we obtain, for all n ∈ N and all

t ∈ [0,∞[,

|e−tAεnun − e−tA0u0|Hεn
1
≤ |e−tAεn (un − u0)|Hεn

1
+ |e−tAεnu0 − e−tA0u0|Hεn

1

≤ |un − u0|Hεn
1

+ |e−tAεnu0 − e−tA0u0|Hεn
1
.
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Therefore we only have to prove that

(4.2) sup
t∈[0,∞[

|e−tAεnu0 − e−tA0u0|Hεn
1
→ 0 as n→∞.

Suppose (4.2) is not true. Then there are a δ0 > 0 and a sequence (nk)k in N
with nk →∞ as k →∞ such that

(4.3) sup
t∈[0,∞[

|e−tAεnk u0 − e−tA0u0|Hεnk
1

≥ δ0 for all k ∈ N.

Taking a further subsequence, if necessary, and using condition (Spec) we may
also assume that there exists an H0-orthonormal sequence of eigenfunctions
(w0,j)j corresponding to (λ0,j)j such that, for all j ∈ N and u ∈ H0,

(4.4) |wεnk
,j − w0,j |Hεnk

1
→ 0 and 〈u,wεnk

,j〉Hεnk → 〈u,w0,j〉H0

as k → ∞. For each k ∈ N and j ∈ N, let Pk,j :Hεnk → Hεnk be the
Hεnk -orthogonal projection of Hεnk onto the span of {wεnk

,1, . . . , wεnk
,j−1 }

and let P0,j :H0 → H0 be the H0-orthogonal projection of H0 onto the span
of {w0,1, . . . , w0,j−1 }.

Let t ∈ [0,∞[ be arbitrary. Then for each j ∈ N and each k ∈ N we have

|e−tAεnk u0−e−tA0u0|Hεnk
1

≤ |Pk,je
−tAεnk u0 − P0,je

−tA0u0|Hεnk
1

+ |(I − Pk,j)e
−tAεnk u0|Hεnk

1
+ |(I − P0,j)e−tA0u0|Hεnk

1
.

Notice that for each j ∈ N,

(4.5) |Pk,ju0 − P0,ju0|Hεnk
1

→ 0 as k →∞.

Indeed, for each k ∈ N we have

|Pk,ju0 − P0,ju0|Hεnk
1

=
∣∣∣∣ j−1∑

i=1

〈u0, wεnk
,i〉Hεnk wεnk

,i −
j−1∑
i=1

〈u0, w0,i〉H0w0,i

∣∣∣∣
H

εnk
1

≤
j−1∑
i=1

|〈u0, wεnk
,i〉Hεnk | |wεnk

,i − w0,i|Hεnk
1

+
j−1∑
i=1

|〈u0, wεnk
,i〉Hεnk − 〈u0, w0,i〉H0 | |w0,i|Hεnk

1
.

Condition (Spec) and (4.4) now imply (4.5).
Let δ > 0 be arbitrary. By (3.1), |(I − P0,j)u0|H0

1
→ 0 as j →∞, so there is

a j0 ∈ N such that
|(I − P0,j0)u0|H0

1
< δ.

Since |(I −Pk,j)u0− (I −P0,j)u0|Hεnk
1

= |Pk,ju0−P0,ju0|Hεnk
1

for all j ∈ N and
for all k ∈ N, it follows from (4.5) that there is a k0 ∈ N such that

(4.6) |(I − Pk,j0)u0 − (I − P0,j0)u0|Hεnk
1

< δ for all k ≥ k0.
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Hence for all k ≥ k0,

(4.7) |(I − Pk,j0)e
−tAεnk u0|Hεnk

1
= |e−tAεnk (I − Pk,j0)u0|Hεnk

1

≤ |(I − Pk,j0)u0|Hεnk
1

≤ δ+|(I − P0,j0)u0|Hεnk
1

≤ δ + C|(I − P0,j0)u0|H0
1
≤ (1 + C)δ.

Moreover,

(4.8) |(I − P0,j0)e
−tA0u0|Hεnk

1
≤ C|(I − P0,j0)e

−tA0u0|H0
1

= C|e−tA0(I − P0,j0)u0|H0
1

≤ C|(I − P0,j0)u0|H0
1
≤ Cδ.

We further have

|Pk,j0e
−tAεnk u0 − P0,j0e

−tA0u0|Hεnk
1

≤
j0−1∑
i=1

|e−tλεnk
,i〈u0, wεnk

,i〉Hεnk wεnk
,i − e−tλ0,i〈u0, w0,i〉H0w0,i|Hεnk

1

≤
j0−1∑
i=1

|e−tλεnk
,i〈u0, wεnk

,i〉Hεnk (wεnk
,i − w0,i)|Hεnk

1

+
j0−1∑
i=1

|e−tλεnk
,i〈u0, wεnk

,i〉Hεnk w0,i − e−tλ0,i〈u0, w0,i〉H0w0,i|Hεnk
1

≤
j0−1∑
i=1

|〈u0, wεnk
,i〉Hεnk | |wεnk

,i − w0,i|Hεnk
1

+ C

j0−1∑
i=1

|e−tλεnk
,i〈u0, wεnk

,i〉Hεnk − e−tλ0,i〈u0, w0,i〉H0 | |w0,i|H0
1
.

Since, for every i ∈ N,

sup
t∈[0,∞[

|e−tλεnk
,i − e−tλ0,i | → 0 as k →∞,

it follows that

(4.9) sup
t∈[0,∞[

|Pk,j0e
−tAεnk u0 − P0,j0e

−tA0u0|Hεnk
1

→ 0 as k →∞.

Since δ > 0 is arbitrary, (4.7), (4.8) and (4.9) imply that

(4.10) sup
t∈[0,∞[

|e−tAεnk u0 − e−tA0u0|Hεnk
1

→ 0 as k →∞,

but this contradicts (4.3). The proof is complete. �

We also require a second, more technical, theorem on the convergence of the
linear semiflows.
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Theorem 4.6. Let (Hε, 〈 · , · 〉Hε , Aε)ε∈[0,ε0] satisfy condition (Spec). Sup-
pose (εn)n is a sequence in ]0, ε0] with εn → 0. Let α ∈ [0,∞[, u0 ∈ H0

−α be
arbitrary and let (un)n and (vn)n be sequences such that un and vn ∈ Hεn

−α for
n ∈ N. Suppose that

(a) |un − vn|Hεn
−α

→ 0 as n→∞.
(b) For all j ∈ N, vn(wεn,j) → u0(w0,j) as n→∞.
(c) supn∈N |vn|Hεn

−α
<∞.

For every ε ∈ [0, ε0], let Ãε = Ãε,−α:Hε
2−α → Hε

−α be the extension of Aε to
Hε
−α. Then, for every β ∈ ]0,∞[,

sup
t∈[β,∞[

|e−t eAεnun − e−t eA0u0|Hεn
1
→ 0 as n→∞.

Proof. Fix β ∈ ]0,∞[. Suppose the theorem is not true. Then there are
a δ0 > 0 and a sequence (nk)k in N with nk →∞ as k →∞ such that

(4.11) sup
t∈[β,∞[

|e−t eAεnk unk
− e−t eA0u0|Hεnk

1
≥ δ0 for all k ∈ N.

Taking a further subsequence, if necessary, and using condition (Spec) we may
also assume that there exists an H0-orthonormal sequence of eigenfunctions
(w0,j)j corresponding to (λ0,j)j such that, for all j ∈ N and u ∈ H0,

(4.12) |wεnk
,j − w0,j |Hεnk

1
→ 0 and 〈u,wεnk

,j〉Hεnk → 〈u,w0,j〉H0

as k →∞. Let δ > 0 be arbitrary. By Remark 4.4 there is an s0 = s0(δ, β) > 0
such that s(α+1)/2e−st < δ for s ≥ s0 and t ≥ β. Since λ0,j → ∞ as j → ∞,
there is a j0 = j0(δ, β) ∈ N such that λ0,j0 > s0 for all j ≥ j0. Thus there is an
k0 = k0(δ, β) ∈ N such that λεnk

,j0 > s0 for k ≥ k0. Therefore we obtain

(4.13) λεnk
,j ≥ s0(δ, β) for k ≥ k0(δ, β) and j ≥ j0(δ, β).

Formula (3.6) implies that, for all ε ∈ [0, ε0], all t ∈ ]0,∞[ and all u ∈ Hε
−α,

(4.14)
∣∣∣∣e−t eAεu−

k∑
j=1

e−tλε,ju(wε,j)wε,j

∣∣∣∣
Hε

1

→ 0 as k →∞.

Let t ≥ β be arbitrary. Then

(4.15) |e−t eAεnk unk
− e−t eA0u0|Hεnk

1

≤
j0−1∑
j=1

|e−tλεnk
,junk

(wεnk
,j)wεnk

,j − e−tλ0,ju0(w0,j)w0,j |Hεnk
1
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+
∣∣∣∣e−t eAεnk unk

−
j0−1∑
j=1

e−tλεnk
,junk

(wεnk
,j)wεnk

,j

∣∣∣∣
H

εnk
1

+
∣∣∣∣e−t eA0u0 −

j0−1∑
j=1

e−tλ0,ju0(w0,j)w0,j

∣∣∣∣
H

εnk
1

.

Now (4.13) implies that

(4.16)
∣∣∣∣e−t eAεnk unk

−
j0−1∑
j=1

e−tλεnk
,junk

(wεnk
,j)wεnk

,j

∣∣∣∣2
H

εnk
1

=
∞∑

j=j0

(λ(α+1)/2
εnk

,j e−tλεnk
,j )2λ−α

εnk
,j |unk

(wεnk
,j)|2

≤δ2
∞∑

j=j0

λ−α
εnk

,j |unk
(wεnk

,j)|2 ≤ δ2|unk
|2
H

εnk
−α

≤ δ2C̃2,

where C̃ := supk∈N |unk
|2
H

εnk
−α

. Note that C̃ <∞ by our assumptions (a) and (c).

Analogously,

(4.17)
∣∣∣∣e−t eA0u0 −

j0−1∑
j=1

e−tλ0,ju0(w0,j)w0,j

∣∣∣∣2
H

εnk
1

≤ C2

∣∣∣∣e−t eA0u0 −
j0−1∑
j=1

e−tλ0,ju0(w0,j)w0,j

∣∣∣∣2
H0

1

= C2
∞∑

j=j0

(λ(α+1)/2
0,j e−tλ0,j )2λ−α

0,j |u0(w0,j)|2

≤ C2δ2
∞∑

j=j0

λ−α
0,j |u0(w0,j)|2 ≤ C2δ2|u0|2H0

−α
.

Let j ∈ [1. . j0 − 1] be arbitrary. Then

(4.18) |e−tλεnk
,junk

(wεnk
,j)wεnk

,j − e−tλ0,ju0(w0,j)w0,j |Hεnk
1

≤ |e−tλεnk
,j (unk

− vnk
)(wεnk

,j)wεnk
,j |Hεnk

1

+ |e−tλεnk
,jvnk

(wεnk
,j)(wεnk

,j − w0,j)|Hεnk
1

+ |e−tλεnk
,j (vnk

(wεnk
,j)− u0(w0,j))w0,j |Hεnk

1

+ |(e−tλεnk
,j − e−tλ0,j )u0(w0,j)w0,j |Hεnk

1

≤ |unk
− vεnk

,j |Hεnk
−α

|wεnk
,j |Hεnk

α
|wεnk

,j |Hεnk
1

+ |vnk
|
H

εnk
−α

|wεnk
,j |Hεnk

α
· |wεnk

,j − w0,j |Hεnk
1
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+ |vnk
(wεnk

,j)− u0(w0,j)| · |w0,j |Hεnk
1

+ |e−tλεnk
,j − e−tλ0,j | · |u0(w0,j)| · |w0,j |Hεnk

1
.

Note that, for every γ ∈ [0,∞[, |wεnk
,j |Hεnk

γ
= λ

γ/2
εnk

,j . Moreover, |w0,j |Hεnk
1

≤
C|w0,j |H0

1
and

sup
t∈[β,∞[

|e−tλεnk
,j − e−tλ0,j | → 0 as k →∞.

Hence, our assumptions and (4.18) show that

(4.19) sup
t∈[β,∞[

|e−tλεnk
,junk

(wεnk
,j)wεnk

,j − e−tλ0,ju0(w0,j)w0,j |Hεnk
1

→ 0

as k → ∞. Thus formulas (4.15)–(4.17), (4.19) and the fact that δ > 0 is
arbitrary imply that

sup
t∈[β,∞[

|e−t eAεnk unk
− e−t eA0u0|Hεnk

1
→ 0 as k →∞

which contradicts (4.11). The theorem is proved. �

Corollary 4.7. Let (Hε, 〈 · , · 〉Hε , Aε)ε∈[0,ε0] satisfy condition (Spec). Sup-
pose (εn)n is a sequence in ]0, ε0] with εn → 0. Let u0 ∈ H0 be arbitrary and let
(un)n be a sequence such that un ∈ Hεn for n ∈ N. Suppose that

|un − u0|Hεn → 0 as n→∞.

Then, for every β ∈ ]0,∞[,

sup
t∈[β,∞[

|e−tAεnun − e−tA0u0|Hεn
1
→ 0 as n→∞.

Proof. Use Theorem 4.6 with α = 0 and vn = u0 for all n ∈ N. �

5. Singular convergence of nonlinear semiflows

We now introduce a natural condition on a family of nonlinearities, condition
(Conv), and we show that conditions (Spec) and (Conv) imply a general singular
convergence theorem for semiflows.

Definition 5.1. Let ε0 > 0 be arbitrary and (Hε, 〈 · , · 〉Hε , Aε)ε∈[0,ε0] be
a family satisfying condition (Spec). Let α ∈ [0, 1[ be given and for every ε ∈
[0, ε0] let Ãε = Ãε,−α:Hε

2−α → Hε
−α be the extension of Aε to Hε

−α. We say
that the family (fε)ε∈[0,ε0] of maps satisfies condition (Conv) if the following
properties are satisfied:

(a) fε:Hε
1 → Hε

−α for every ε ∈ [0, ε0].
(b) limε→0+ |e−t eAεfε(u) − e−t eA0f0(u)|Hε

1
= 0 for every u ∈ H0

1 and every
t ∈ ]0,∞[.
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(c) For every M ∈ [0,∞[ there is an L = LM ∈ [0,∞[ such that

|fε(u)− fε(v)|Hε
−α

≤ L|u− v|Hε
1

for all ε ∈ [0, ε0] and u, v ∈ Hε
1 satisfying |u|Hε

1
, |v|Hε

1
≤M .

(d) For every u ∈ H0
1 there is an ε′0 ∈ ]0, ε0] such that

sup
ε∈[0,ε′0]

|fε(u)|Hε
−α

<∞.

The next result shows that the above condition (b) is valid uniformly for t
bounded away from zero.

Proposition 5.2. Assume condition (Conv) and let β ∈ ]0,∞] be arbitrary.
Then, for every u ∈ H0

1 ,

lim
ε→0+

sup
t∈[β,∞[

|e−t eAεfε(u)− e−t eA0f0(u)|Hε
1

= 0

Proof. Let v = e−β eA0f0(u) ∈ H0
1 . For every t ∈ [β,∞[ we have

|e−t eAεfε(u)− e−t eA0f0(u)|Hε
1

≤ |e−(t−β) eAε(e−β eAεfε(u)− e−β eA0f0(u))|Hε
1

+ |e−(t−β) eAεv − e−(t−β) eA0v|Hε
1

≤ |e−β eAεfε(u)− e−β eA0f0(u)|Hε
1

+ |e−(t−β) eAεv − e−(t−β) eA0v|Hε
1

Since, by Theorem 4.5

lim
ε→0

sup
s∈[0,∞[

|e−s eAεv − e−s eA0v|Hε
1

= 0,

the assertion follows from condition (Conv) part (b) (with t = β). �

For the rest of the paper, if (Hε, 〈 · , · 〉Hε , Aε)ε∈[0,ε0] satisfies condition (Spec)
and (fε)ε∈[0,ε0] satisfies condition (Conv) then we will write, for every ε ∈ [0, ε0],
πε := πAε,fε

to denote the local semiflow on Hε
1 generated by the abstract

parabolic equation

(5.1) u̇ = −Ãεu+ fε(u).

To prove the theorems of this section we will need the following auxiliary
result.

Lemma 5.3. Suppose that (Hε, 〈 · , · 〉Hε , Aε)ε∈[0,ε0] satisfies condition (Spec)
and (fε)ε∈[0,ε0] satisfies condition (Conv). For every u ∈ H0

1 there exist a δ > 0
and a τ > 0 such that for every a0 ∈ H0

1 with |a0 − u|H0
1
≤ δ, a0π0s, s ∈ [0, τ ],

is defined and whenever (εn)n is a sequence in ]0, ε0] with εn → 0 and (an)n is
a sequence with an ∈ Hεn

1 for every n ∈ N and

|an − a0|Hεn
1
→ 0 as n→∞,
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then there is an n0 ∈ N such that anπεn
s, s ∈ [0, τ ], is defined for n ≥ n0.

Moreover there exists an M ′ ∈ [0,∞[ such that |anπεn
s|Hεn

1
≤M ′ for all n ≥ n0

and for all s ∈ [0, τ ].

Proof. Let u ∈ H0
1 be arbitrary and C1 ∈ ]0,∞[ be such that |u|H0

1
≤ C1.

Let C be as in part (c) of condition (Spec), set

(5.2) M ′ := 3C1 + 3CC1

and let L := LM ′ be as in Definition 5.1 with M replaced by M ′.
Part (d) of Definition 5.1 implies that there is an ε′0 ∈ ]0, ε0] such that

C2 = sup
ε∈[0,ε′0]

|fε(u)|Hε <∞.

Now choose τ and δ ∈ ]0,∞[ such that

(5.3) 2(1− α)−1C0Lτ
(1−α)/2 ≤ 1/2,

(5.4) 2(1− α)−1C0τ
(1−α)/2(2LC1 + C2) ≤ C1/4,

(5.5) 2Cδ ≤ C1/4

and

(5.6) C|e−tA0u− u|H0
1
≤ C1/4 for t ∈ [0, τ ],

where the constant C0 is as in Remark 4.4.
For every ε ∈ [0, ε′0] and a ∈ Hε

1 with

(5.7) |a− u|Hε
1
≤ C1,

define

Sε,a := {u | u: [0, τ ] → Hε
1 is continuous

and |u(t)− a|Hε
1
≤ C1 for all t ∈ [0, τ ]}.

For u ∈ Sε,a define the map Tε,a(u): [0, τ ] → Hε
1 by

Tε,a(u)(t) : = e−t eAεa+
∫ t

0

e−(t−s) eAεfε(u(s)) ds

= e−tAεa+
∫ t

0

e−(t−s) eAεfε(u(s)) ds.

The map Tε,a(u) is continuous. Moreover, whenever u ∈ Sε,a, then, for all
t ∈ [0, τ ],

|u(t)|Hε
1
≤ C1 + |a|Hε

1
≤ C1 + C1 + |u|Hε

1
≤ 2C1 + C1C ≤M ′,
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where the last inequality follows from (5.2). Thus for all u, v ∈ Sε,a arbitrary
and for all t ∈ [0, τ ], we have, by (4.1),

(5.8) |Tε,a(u)(t)− Tε,a(v)(t)|Hε
1

=
∣∣∣∣ ∫ t

0

e−(t−s) eAε(fε(u(s))− fε(v(s))) ds
∣∣∣∣
Hε

1

≤ C0

∫ t

0

(t− s)−(α+1)/2|fε(u(s))− fε(v(s))|Hε
−α
ds

≤ C0L

∫ t

0

(t− s)−(α+1)/2 ds sup
s∈[0,τ ]

|u(s)− v(s)|Hε
1

= 2(1− α)−1C0Lτ
(1−α)/2 sup

s∈[0,τ ]

|u(s)− v(s)|Hε
1

≤ 1/2 sup
s∈[0,τ ]

|u(s)− v(s)|Hε
1
.

The last inequality follows from (5.3). Moreover, for all u ∈ Sε,a and t ∈ [0, τ ],

|Tε,a(u)(t)− a|Hε
1
≤ |e−tAεa− a|Hε

1
+

∣∣∣∣ ∫ t

0

e−(t−s) eAεfε(u(s)) ds
∣∣∣∣
Hε

1

.

Since for ε ∈ [0, ε′0] and s ∈ [0, τ ] we have

|fε(u(s))|Hε
−α

≤ |fε(u(s))− fε(a)|Hε
−α

+ |fε(a)|Hε
−α

≤ L|u(s)− a|Hε
1

+ |fε(a)− fε(u)|Hε
−α

+ |fε(u)|Hε
−α

≤ LC1 + LC1 + C2 = 2LC1 + C2,

we obtain, by (4.1),∣∣∣∣ ∫ t

0

e−(t−s) eAεfε(u(s)) ds
∣∣∣∣
Hε

1

≤ C0

∫ t

0

(t− s)−(α+1)/2|fε(u(s))|Hε
−α
ds

≤ 2(1− α)−1C0τ
(1−α)/2(2LC1 + C2) ≤ C1/4.

In the previous computation we used the fact that |a|Hε
1
≤ C1 + |u|Hε

1
≤ C1 +

CC1 ≤M ′ and |u|Hε
1
≤M ′. If ã0 ∈ H0

1 satisfies |ã0 − u|H0
1
≤ δ, then

|e−tAεa− a|Hε
1
≤|e−tAεa− e−tA0 ã0|Hε

1
+ |e−tA0 ã0 − e−tA0u|Hε

1

+ |e−tA0u− u|Hε
1

+ |u− ã0|Hε
1

+ |a− ã0|Hε
1

≤ |e−tAεa− e−tA0 ã0|Hε
1

+ C|e−tA0 ã0 − e−tA0u|H0
1

+ C|e−tA0u− u|H0
1

+ C|u− ã0|H0
1

+ |a− ã0|Hε
1

≤|e−tAεa− e−tA0 ã0|Hε
1

+ |a− ã0|Hε
1

+ C|e−tA0u− u|H0
1

+ 2Cδ

≤|e−tAεa− e−tA0 ã0|Hε
1

+ |a− ã0|Hε
1

+ C1/2,

where the last inequality follows from (5.5) and (5.6).
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Thus putting things together, we obtain for all ε ∈ [0, ε′0], all a ∈ Hε
1 satisfy-

ing (5.7) and all ã0 ∈ H0
1 with |ã0 − u|H0

1
≤ δ

(5.9) |Tε,a(u)(t)− a|Hε
1
≤ 3C1/4 + |e−tAεa− e−tA0 ã0|Hε

1
+ |a− ã0|Hε

1
,

u ∈ Sε,a, t ∈ [0, τ ].
In particular, for all a ∈ H0

1 satisfying |a−u|H0
1
≤ δ and all u ∈ S0,a we have

|T0,a(u)(t)− a|H0
1
≤ 3C1/4 ≤ C1 for all t ∈ [0, τ ].

Hence we conclude that T0,a(S0,a) ⊂ S0,a and so, by Banach Fixed Point Theo-
rem, there is a unique fixed point of T0,a in S0,a. In particular a π0s is defined
for all s ∈ [0, τ ].

Now let (εn)n be a sequence in ]0, ε0] with εn → 0. Suppose a0 ∈ H0
1

satisfies |a0 − u|H0
1
≤ δ and (an)n is a sequence with an ∈ Hεn

1 for every n ∈ N
and |an − a0|Hεn

1
→ 0. By what we just proved, it follows that a0π0s is defined

for all s ∈ [0, τ ].
Theorem 4.5 implies that there is an n0 ∈ N such that for all n ≥ n0

(5.10) sup
t∈[0,τ ]

|e−tAεnan − e−tA0a0|Hεn
1

+ |an − a0|Hεn
1
≤ C1/4.

Thus, it follows from (5.9) that Tεn,an
(Sεn,an

) ⊂ Sεn,an
for all n ≥ n0. Hence

Tεn,an
has a fixed point in Sεn,an

. In particular anπεn
s is defined for all s ∈ [0, τ ]

and for all n ≥ n0.
Moreover, (5.9) and (5.10) imply that, for s ∈ [0, τ ] and n ≥ n0,

|anπεn
s|Hεn

1
≤ |anπεn

s− an|Hεn
1

+ |an − u|Hεn
1

+ |u|Hεn
1
≤ 2C1 + CC1 ≤M ′.

The lemma is proved. �

We can now state our first singular convergence result for semiflows.

Theorem 5.4. Suppose that the family (Hε, 〈 · , · 〉Hε , Aε)ε∈[0,ε0] satisfies
condition (Spec), and the family (fε)ε∈[0,ε0] satisfies condition (Conv). Let (εn)n

be a sequence in ]0, ε0] with εn → 0. Let u0 ∈ H0
1 and (un)n be a sequence with

un ∈ Hεn
1 for every n ∈ N and

|un − u0|Hεn → 0 as n→∞.

Let b ∈ ]0,∞[ and suppose that unπεn
t and uπ0t are defined for all n ∈ N and t ∈

[0, b]. Moreover suppose there exists an M ′ ∈ [0,∞[ such that |unπεn
s|Hεn

1
≤M ′

for all n ∈ N and for all s ∈ [0, b]. Then for every t ∈ ]0, b] and every sequence
(tn)n in ]0, b] converging to t

|unπεn
tn − u0π0tn|Hεn

1
→ 0 as n→∞.
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Proof. For every t ∈ [0, b] we have, by the variation-of-constants formula,

unπεn
t− u0π0t =e−tAεnun − e−tA0u0

+
∫ t

0

e−(t−s) eAεn (fεn
(unπεn

s)− fεn
(u0π0s)) ds

+
∫ t

0

(e−(t−s) eAεn fεn(u0π0s)− e−(t−s) eA0f0(u0π0s)) ds.

Define the function gn: [0, b]× [0, b] → R as follows: If 0 < s < t then set

gn(t, s) = |e−(t−s) eAεn fεn
(u0π0s)− e−(t−s) eA0f0(u0π0s)|Hεn

1

and set gn(t, s) = 0 otherwise. The function gn restricted to the set of (s, t) with
0 < s < t is continuous. Thus gn is measurable on [0, b] × [0, b]. By Fubini’s
theorem the function

cn(t) :=
∫ b

0

gn(t, s) ds =
∫ t

0

gn(t, s) ds

is almost everywhere defined and measurable on [0, b]. Set

an(t) := |e−tAεnun − e−tA0u0|Hεn
1

+ cn(t) for t ∈ ]0, b].

It follows that an is measurable on [0, b]. Using (4.1) we obtain for 0 < s < t

(5.11) |gn(t, s)| ≤ C2C0(t− s)−(α+1)/2 + CC2C0(t− s)−(α+1)/2

=: C3(t− s)−(α+1)/2

and so for t ∈ ]0, b]

an(t) ≤M ′ + C|u0|H0
1

+ 2C3(1− α)−1b(1−α)/2 =: C4,

where

C2 := max
{

sup
s∈[0,b]

sup
n∈N

|fεn
(u0π0s)|Hεn

−α
, sup
s∈[0,b]

|f0(u0π0s)|H0
−α

}
.

Notice that condition (Conv) implies that C2 <∞. Now let t ∈ ]0, b] be arbitrary
and (tn)n be any sequence in ]0, b] converging to 0. If 0 < s < t then 0 < s < tn
for all n large enough and so, by Proposition 5.2 gn(tn, s) → 0 as n → ∞. If
0 < t < s, then 0 < tn < s for all n large enough and so gn(tn, s) = 0 for such
n. Again gn(tn, s) → 0 as n→∞. Thus (5.11) and the dominated convergence
theorem imply that

cn(tn) → 0 as n→∞.

Thus, using Corollary 4.7 we obtain

(5.12) an(tn) → 0, as n→∞.
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Notice that M̃ := sups∈[0,b] |u0π0s|H0
1
< ∞. Hence |u0π0s|Hεn

1
≤ CM̃ for all

s ∈ [0, b]. Set M ′′ := max{M ′, CM̃} and let L := LM ′′ be as in Definition 5.1
with M replaced by M ′′. We have, for all r ∈ ]0, b]

|unπεn
r − u0π0r|Hεn

1
≤ |e−rAεnun − e−rA0u0|Hεn

1

+
∫ r

0

|e−(r−s) eAεn (fεn
(unπεn

s)− fεn
(u0π0s))|Hεn

1
ds

+
∫ r

0

|(e−(r−s) eAεn fεn
(u0π0s)− e−(r−s) eA0f0(u0π0s))|Hεn

1
ds

≤an(r) + C0

∫ r

0

(r − s)−(α+1)/2|fεn(unπεns)− fεn(u0π0s))|Hεn
−α
ds

≤an(r) + C0L

∫ r

0

(r − s)−(α+1)/2|unπεn
s− u0π0s|Hεn

1
ds.

An application of Henry’s Inequality [7, Lemma 7.1.1] implies that

|unπεn
r − u0π0r|Hεn

1
≤ an(r) +

∫ r

0

ρ(r − s)an(s) ds for r ∈ ]0, b],

where

ρ(x) :=
∞∑

n=1

(C0LΓ(β))n

Γ(nβ)
xnβ−1

with β := (1− α)/2.
The function ρ: ]0,∞[ → ]0,∞[ is well defined and continuous on ]0,∞[ and

it satisfies the estimate

ρ(x) ≤ C5x
−(α+1)/2 + C5 for x ∈ ]0, b].

Let t and (tn)n be as above. Fix a δ0 ∈ ]0, t[ and let δ ∈ ]0, δ0/2[ be arbitrary.
There is an n0 = n0(δ) ∈ N such that |tn − t| < δ for n ≥ n0. Therefore for
all such n ∈ N and all s ∈ [0, t − 2δ] it follows that tn − s > δ so ρ(tn − s) ≤
C5δ

−(α+1)/2 + C5. Thus

ρ(tn − s)an(s) ≤ C6 for s ∈ ]0, t− 2δ].

Therefore (5.12) (with tn ≡ s) and the dominated convergence theorem show
that ∫ t−2δ

0

ρ(tn − s)an(s) ds→ 0 as n→∞.

On the other hand,∫ tn

t−2δ

ρ(tn − s)an(s) ds ≤ C7(δ(1−α)/2 + δ).

Since δ ∈ ]0, δ0/2[ is arbitrary, it follows that∫ tn

0

ρ(tn − s)an(s) ds→ 0 as n→∞.
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Consequently,
|unπεn

tn − u0π0tn|Hεn
1
→ 0 as n→∞.

The theorem is proved. �

Our second convergence result reads as follows:

Theorem 5.5. Suppose that the family (Hε, 〈 · , · 〉Hε , Aε)ε∈[0,ε0] satisfies
condition (Spec) and the family (fε)ε∈[0,ε0] satisfies condition (Conv). Let (εn)n

be a sequence in ]0, ε0] with εn → 0 and let (tn)n be a sequence in [0,∞[ with
tn → 0. Let u0 ∈ H0

1 and (un)n be a sequence with un ∈ Hεn
1 for every n ∈ N

and
|un − u0|Hεn

1
→ 0 as n→∞.

Then there exists an n0 ∈ N such that u0π0tn and unπεn
tn are defined for all

n ≥ n0 and
|unπεn

tn − u0π0tn|Hεn
1
→ 0 as n→∞.

Proof. Set u := u0 in Lemma 5.3 and let τ > 0 be as in that lemma.
It follows from Lemma 5.3 that u0π0s, s ∈ [0, τ ], is defined and there is an
n0 ∈ N such that unπεn

s, s ∈ [0, τ ], is defined for n ≥ n0. Moreover there exists
a M ′ ≥ 0 such that |unπεn

s|Hεn
1
≤M ′ for all n ≥ n0 and for all s ∈ [0, τ ].

Since tn → 0 as n → ∞, we may assume that tn ∈ [0, τ ] for all n ∈ N. For
every t ∈ [0, τ ] we have

unπεn
t− u0 = e−tAεnun − u0 +

∫ t

0

e−(t−s) eAεn fεn
(unπεn

s) ds.

Notice that M̃ := sups∈[0,b] |u0π0s|H0
1
< ∞. Hence |u0π0s|Hεn

1
≤ CM̃ for all

s ∈ [0, τ ]. Set M ′′ := max{M ′, CM̃} and let L := LM ′′ be as in Definition 5.1
with M replaced by M ′′. It follows that for all n ≥ n0 and for every s ∈ [0, τ ]

|fεn(unπεns)|Hεn
−α

≤ |fεn(unπεns)− fεn(u0)|Hεn
−α

+ |fεn(u0)|Hεn
−α

≤ L|unπεns− u0|Hεn
1

+ |fεn(u0)|Hεn
−α

≤ L(M ′ + C|u0|H0
1
) + |fεn

(u0)|Hεn
−α
.

Part (d) of condition (Conv) now implies

|fεn(unπεns)|Hεn
−α

≤ C̃, for all s ∈ [0, τ ] and for all n ≥ n0,

for some positive constant C̃. Therefore for all n ≥ n0

|unπεn
tn − u0π0tn|Hεn

1
≤ |unπεntn − u0|Hεn

1
+ C|u0π0tn − u0|H0

1

≤|e−tnAεnun − e−tnA0u0|Hεn
1

+ C|e−tnA0u0 − u0|H0
1

+ C0C̃

∫ tn

0

(tn − s)−(α+1)/2 ds+ C|u0π0tn − u0|H0
1
.
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Since |e−tnA0u0−u0|H0
1
→ 0 and |u0π0tn−u0|H0

1
→ 0 as n→∞, an application

of Theorem 4.5 completes the proof. �

Theorem 5.4 and Theorem 5.5 imply the following corollary.

Corollary 5.6. Let (Hε, 〈 · , · 〉Hε , Aε)ε∈[0,ε0] satisfy condition (Spec) and
(fε)ε∈[0,ε0] satisfy condition (Conv). Then for every u ∈ H0

1 there exist a δ > 0
and a τ > 0 such that for every a0 ∈ H0

1 with |a0 − u|H0
1
≤ δ, a0π0s, s ∈ [0, τ ],

is defined and whenever (εn)n is a sequence in ]0, ε0] with εn → 0 and (an)n is
a sequence with an ∈ Hεn

1 for every n ∈ N and

|an − a0|Hεn
1
→ 0 as n→∞,

then there is an n0 ∈ N such that anπεns, s ∈ [0, τ ], is defined for n ≥ n0 and

sup
s∈[0,τ ]

|anπεn
s− a0π0s|Hεn

1
→ 0 as n→∞.

Proof. Lemma 5.3 implies that for every u ∈ H0
1 there exist a δ > 0 and

a τ > 0 such that for every a0 ∈ H0
1 with |a0 − u|H0

1
≤ δ, a0π0s, s ∈ [0, τ ], is

defined and whenever (εn)n is a sequence in ]0, ε0] with εn → 0 and (an)n is
a sequence with an ∈ Hεn

1 for every n ∈ N and

|an − a0|Hεn
1
→ 0 as n→∞,

then there is an n0 ∈ N such that anπεns, s ∈ [0, τ ], is defined for n ≥ n0.
Moreover there exists a M ′ ≥ 0 such that |anπεn

s|Hεn
1
≤ M ′ for all n ≥ n0 and

for all s ∈ [0, τ ].
To complete the proof of the corollary we need to show that

sup
s∈[0,τ ]

|anπεn
s− a0π0s|Hεn

1
→ 0 as n→∞.

Suppose this is not true. Then there are a δ0 > 0 and a sequence (nk)k in N
with nk →∞ as k →∞ such that

sup
s∈[0,τ ]

|ank
πεnk

s− a0π0s|Hεnk
1

≥ δ0 for all k ∈ N.

Thus for each k ∈ N there exists an sk ∈ [0, τ ] such that

(5.13) |ank
πεnk

sk − a0π0sk|Hεnk
1

≥ δ0.

Without loss of generality we can assume that there is an s0 ∈ [0, τ ] such that
sk → s0 as k → ∞. If s0 = 0, it follows from Theorem 5.5 that |ank

πεnk
sk −

a0π0sk|Hεnk
1

→ 0 as k → ∞ which contradicts (5.13). If s0 > 0, then The-
orem 5.4 implies that |ank

πεnk
sk − a0π0sk|Hεnk

1
→ 0 as k → ∞ which again

contradicts (5.13). �

We conclude this section proving our main convergence result for semiflows.
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Theorem 5.7. Suppose that the family (Hε, 〈 · , · 〉Hε , Aε)ε∈[0,ε0] satisfies
condition (Spec) and the family (fε)ε∈[0,ε0] satisfies condition (Conv). Let (εn)n

be a sequence in ]0, ε0] with εn → 0 and let (tn)n be a sequence in [0,∞[ with
tn → t0, for some t0 ∈ [0,∞[. Let u0 ∈ H0

1 and (un)n be a sequence with
un ∈ Hεn

1 for every n ∈ N and

|un − u0|Hεn
1
→ 0 as n→∞.

Assume u0π0t0 is defined. Then there exists an n0 ∈ N such that unπεntn is
defined for all n ≥ n0 and

|unπεn
tn − u0π0t0|Hεn

1
→ 0 as n→∞.

Proof. Since u0π0t0 is defined, there is a b > t0, b ∈ ]0,∞[, such that u0π0t

is defined for all t ∈ [0, b[. Define

I := {t ∈ [0, b[ | there exists an n0 ∈ N such that unπεnt is defined for n ≥ n0

and sup
s∈[0,t]

|unπεns− u0π0s|Hεn
1
→ 0 as n→∞}.

It is clear that 0 ∈ I. Furthermore if 0 ≤ t′ < t and t ∈ I, then t′ ∈ I. Let

t := sup I.

It follows that t ≤ b and so [0, t[ ⊂ I. An application of Corollary 5.6 with
u := u0 shows that t > 0. We claim that t = b. Suppose, on the contrary, that
t < b. It follows that u := u0π0t is defined. Let δ > 0 and τ > 0 be as in
Corollary 5.6 with respect to this choice of u.

Choose t ∈ R with 0 < t < t < t + τ and |u0π0t − u0π0t|H0
1
< δ. We have

that t ∈ I so there exists an n0 ∈ N such that unπεnt is defined for all n ≥ n0

and

(5.14) sup
s∈[0,t]

|unπεn
s− u0π0s|Hεn

1
→ 0 as n→∞.

Set ũn := unπεnt and ũ := u0π0t. Applying Corollary 5.6 with an replaced by
ũn and a0 replaced by ũ we thus have that ũπ0τ is defined and we obtain the
existence of an n1 ≥ n0 such that ũnπεn

τ is defined for all n ≥ n1 and

(5.15) sup
s∈[0,τ ]

|ũnπεns− ũπ0s|Hεn
1
→ 0 as n→∞.

Formulas (5.14) and (5.15) imply that u0π0(t+ τ) is defined, unπεn(t+ τ) is also
defined for all n ≥ n1 and

sup
s∈[0,t+τ ]

|unπεn
s− u0π0s|Hεn

1
→ 0 as n→∞.

Thus t+ τ ∈ I, but t+ τ > t, a contradiction, which proves that t = b.
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Since t0 ∈ [0, b[, it follows that there is a t ∈ [0, b[ with t0 < t and tn < t for
all n large enough. In particular u0π0tn and unπεn

tn are defined for all n large
enough and

|unπεn
tn − u0π0tn|Hεn

1
→ 0 as n→∞.

Since
|u0π0tn − u0π0t0|Hεn

1
≤ C|u0π0tn − u0π0t0|H0

1

and |u0π0tn − u0π0t0|H0
1
→ 0 as n→∞, the theorem follows. �

6. Singular compactness

In this section we shall prove that under the abstract compactness hypothe-
sis, condition (Comp), on the family (Hε, 〈 · , · 〉Hε , Aε)ε∈[0,ε0] the corresponding
family of semiflows satisfies a singular compactness property. This property, to-
gether with the singular convergence result obtained in the previous section, is
crucial for establishing the singular continuation principle for Conley index and
for (co)homology index braid.

We start with the following result.

Theorem 6.1. Suppose that the family (Hε, 〈 · , · 〉Hε , Aε)ε∈[0,ε0] satisfies
condition (Spec) and the family (fε)ε∈[0,ε0] satisfies condition (Conv). Let ε ∈
[0, ε0] be arbitrary. Then every closed and bounded set in Hε

1 is strongly πε-
admissible.

Proof. Let N be a closed and bounded set in Hε
1 and let M > 0 such that

for all u ∈ N we have |u|Hε
1
≤ M . Let L := LM be as in Definition 5.1. Let

u0 ∈ N . Hence for all u ∈ N
|fε(u)|Hε

−α
≤ |fε(u)− fε(u0)|Hε

−α
+ |fε(u0)|Hε

−α

≤ L|u− u0|Hε
1

+ |fε(u0)|Hε
−α

≤ 2ML+ |fε(u0)|Hε
−α
.

Now the result follows from [11, Theorem III 4.4]. �

We can now state the following singular compactness theorem.

Theorem 6.2. Suppose that the family (Hε, 〈 · , · 〉Hε , Aε)ε∈[0,ε0] satisfies
conditions (Spec) and (Comp) and the family (fε)ε∈[0,ε0] satisfies (Conv). Sup-
pose κ ∈ ]0,∞[, (εn)n is a sequence in ]0, ε0] with εn → 0, (tn)n is a sequence in
[0,∞[ with tn ≥ κ for every n ∈ N and (un)n is a sequence with un ∈ Hεn

1 for
every n ∈ N. Assume that there exists a constant C ′′ ∈ ]0,∞[ such that unπεn

tn
is defined and

|unπεn
s|Hεn

1
≤ C ′′ for all n ∈ N and for all s ∈ [0, tn].

Then there exist a v ∈ H0
1 and a sequence (nk)k in N with nk → ∞ as k → ∞

such that
|unk

πεnk
tnk

− v|
H

εnk
1

→ 0 as k →∞.
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Proof. Set ξn = unπεn
(tn − κ) for n ∈ N. Hence

|ξn|Hεn
1
≤ C ′′ for all n ∈ N.

Condition (Comp) implies that there exist a ṽ ∈ H0
1 and a sequence (nk)k in N

with nk →∞ as k →∞ such that

|ξnk
− ṽ|Hεnk → 0 as k →∞.

We claim that ṽπ0κ is defined. Suppose our claim is not true. Let β ∈ [0,∞[
be such that CC ′′ < β and |ṽ|H0

1
< β. By Theorem 6.1 with ε = 0 and N =

{u ∈ H0
1 | |u|H0

1
≤ β}, there exists a t0 ∈ ]0, κ[ such that ṽπ0t0 is defined and

|ṽπ0t0|H0
1
> β. Condition (Spec) implies that

(6.1) |ṽπ0t0|Hε
1
≥ β/C > C ′′, ε ∈ [0, ε0].

It follows that there exists a k0 ∈ N such that ṽπ0s and ξnk
πεnk

s are defined for
all s ∈ [0, t0], for all k ≥ k0 and

|ξnk
πεnk

s|
H

εnk
1

≤ C ′′ for all s ∈ [0, t0] and for all k ≥ k0.

Hence Theorem 5.4 implies that

|ξnk
πεnk

t0 − ṽπ0t0|Hεnk
1

→ 0 as k →∞.

This together with formula (6.1) implies that

|ξnk
πεnk

t0|Hεnk
1

> C ′′ for all k ∈ N large enough

which is a contradiction. Thus ṽπ0κ is defined. Another application of Theo-
rem 5.4 shows that

|ξnk
πεnk

κ− ṽπ0κ|Hεnk
1

→ 0 as k →∞.

Set v := ṽπ0κ ∈ H0
1 . Since ξnk

πεnk
κ = unk

πεnk
tnk

for all k ∈ N, the proof is
complete. �

Recall that Proposition 4.3 implies that for every ε ∈ ]0, ε0], the set H0
1 is

a closed subspace of Hε
1 . For each ε ∈ ]0, ε0], let Qε:Hε

1 → Hε
1 be the Hε

1 -
orthogonal projection of Hε

1 onto H0
1 .

Theorem 6.2 easily implies the following corollary:

Corollary 6.3. Let (Hε, 〈 · , · 〉Hε , Aε)ε∈[0,ε0] satisfy conditions (Spec) and
(Comp) and suppose the family of maps (fε)ε∈[0,ε0] satisfies condition (Conv).
Suppose N ⊂ H0

1 is a closed and bounded set and (εn)n is a sequence in ]0, ε0]
with εn → 0. Let η > 0 be arbitrary and define

Nn = Nn,η := {u ∈ Hεn
1 | Qεn

u ∈ N and |(I −Qεn
)u|Hεn

1
≤ η}.
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Suppose (tn)n is a sequence in [0,∞[ with tn →∞ and (un)n is a sequence with
un ∈ Hεn

1 for every n ∈ N and

unπεn [0, tn] ⊂ Nn for all n ∈ N.

Then there exist a v ∈ N and a sequence (nk)k in N with nk → ∞ as k → ∞
such that

|unk
πεnk

tnk
− v|

H
εnk
1

→ 0 as k →∞.

7. Singular continuation principle for the Conley index
and for (co)homology index braids

In this section, under the conditions (Spec), (Conv) and (Comp), we obtain
a singular continuation principle for the Conley index and for (co)homology index
braids for the class of abstract parabolic equations described in (5.1).

This section is not self-contained, in particular, we use some results estab-
lished in the papers [3], [4], [5]. We will also assume that the reader is familiar
with the Conley index theory for semiflows on (not necessarily locally compact)
metric spaces, as expounded in [10] or [11].

Let (Hε, 〈 · , · 〉Hε , Aε)ε∈[0,ε0] satisfy conditions (Spec) and (Comp) and sup-
pose the family of maps (fε)ε∈[0,ε0] satisfies condition (Conv).

Set X0 := H0
1 . For every ε ∈ ]0, ε0], define Yε := (I − Qε)Hε

1 and endow
Yε with the norm | · |Hε

1
restricted to Yε. Define on Zε = X0 × Yε the following

norm:
||(u, v)||ε := max{|u|H0

1
, |v|Hε

1
} for (u, v) ∈ Zε.

We will denote by Γε the metric on Zε induced by the norm || · ||ε. For each
ε ∈ ]0, ε0], define θε := 0.

Let Ψε:Hε
1 → Zε be the linear map defined by

Ψε(w) := (Qεw, (I −Qε)w) for w ∈ Hε
1 .

It follows that Ψε is a bijective linear map and its inverse map is given by

Ψε
−1(u, v) = u+ v for (u, v) ∈ Zε.

Moreover both Ψε and Ψε
−1 are continuous maps. This fact is a consequence

of the following inequalities:

(7.1) ‖Ψε(w)‖ε ≤ C|w|Hε
1

for w ∈ Hε
1 ,

(7.2) |Ψε
−1(u, v)|Hε

1
≤ (1 + C2)1/2||(u, v)||ε for (u, v) ∈ Zε,

where the constant C ∈ ]1,∞[ was defined in hypothesis (Spec).
Given (u, v) ∈ Zε and t ∈ [0,∞[ define

(u, v)π̃εt := Ψε(Ψε
−1(u, v)πεt)
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whenever Ψε
−1(u, v)πεt is defined. It follows that π̃ε is a local semiflow on

Zε, the conjugate to πε via Ψε. Theorem 5.7 and inequalities (7.1) and (7.2)
immediately imply the following

Corollary 7.1. Under the above hypotheses the family (π̃ε)ε∈]0,ε0] con-
verges singularly to π0. �

Theorem 6.1, Corollary 6.3 and inequalities (7.1) and (7.2) imply the follow-
ing:

Corollary 7.2. Let N be a closed and bounded subset of X0. Then for
every η > 0 the set N is singularly strongly admissible with respect to η and the
family (π̃ε)ε∈[0,ε0], where π̃0 = π0.

We can now prove the following Conley index continuation principle for sin-
gular families of abstract parabolic equations:

Theorem 7.3. Let N be a closed and bounded isolating neighbourhood of an
invariant set K0 relative to π0. For ε ∈ ]0, ε0] and for every η ∈ ]0,∞[ set

Nε,η := {u ∈ Hε
1 | Qεu ∈ N and |(I −Qε)u|Hε

1
≤ η}

and Kε,η := Invπε
(Nε,η) i.e. Kε,η is the largest πε-invariant set in Nε,η. Then

for every η ∈ ]0,∞[ there exists an εc = εc(η) ∈ ]0, ε0] such that for every
ε ∈ ]0, εc] the set Nε,η is a strongly admissible isolating neighbourhood of Kε,η

relative to πε and
h(πε,Kε,η) = h(π0,K0).

Furthermore, for every η > 0, the family (Kε,η)ε∈[0,εc(η)] of invariant sets, where
K0,η = K0, is upper semicontinuous at ε = 0 with respect to the family | · |Hε

1

of norms i.e.
lim

ε→0+
sup

w∈Kε,η

inf
u∈K0

|w − u|Hε
1

= 0.

Proof. The isomorphism Ψε conjugates the local semiflow πε to the local
semiflow π̃ε. Thus whenever S is a strongly admissible isolating neighbourhood
with respect to πε, then Ψε(S) is a strongly admissible isolating neighbourhood
with respect to π̃ε and

h(πε, S) = h(π̃ε,Ψε(S)).

Corollaries 7.1 and 7.2 imply that the family of semiflows (π̃ε)ε∈[0,ε0] and the set
N satisfy the hypotheses of [3, Theorem 4.1]. Notice also that any closed ball in
Yε is contractible. Hence [3, Theorem 4.1] and [3, Corollary 4.11] completes the
proof. �

Remark 7.4. The family (Kε,η)ε∈]0,εc(η)] is asymptotically independent of η
i.e. whenever η1 and η2 ∈ ]0,∞[ then there is an ε′ ∈ ]0,min(εc(η1), εc(η2))] such
that Kε,η1 = Kε,η2 for ε ∈ ]0, ε′].
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We also prove the following (co)homology index continuation principle:

Theorem 7.5. Assume the hypotheses of Theorem 7.3 and for every η ∈
]0,∞[ let εc(η) ∈ ]0, ε0] be as in that theorem. Let (P,≺) be a finite poset. Let
(Mp,0)p∈P be a ≺-ordered Morse decomposition of K0 relative to π0. For each
p ∈ P , let Vp ⊂ N be closed in X0 and such that Mp,0 = Invπ0(Vp) ⊂ IntH0

1
(Vp).

(Such sets Vp, p ∈ P , exist.) For ε ∈ ]0, ε0], for every η ∈ ]0,∞[ and p ∈ P set
Mp,ε,η := Invπε

(Vp,ε,η), where

Vp,ε,η := {u ∈ Hε
1 | Qεu ∈ Vp and |(I −Qε)u|Hε

1
≤ η}.

Then for every η ∈ ]0,∞[ there is an ε̃ = ε̃(η) ∈ ]0, εc(η)] such that for every
ε ∈ ]0, ε̃] and p ∈ P , Mp,ε,η ⊂ IntHε

1
(Vp,ε,η) and the family (Mp,ε,η)p∈P is

a ≺-ordered Morse decomposition of Kε,η relative to πε and the (co)homology
index braids of (π0,K0, (Mp,0)p∈P ) and (πε,Kε,η, (Mp,ε,η)p∈P )), ε ∈ ]0, ε̃], are
isomorphic and so they determine the same collection of C-connection matrices.

Proof. Since the isomorphism Ψε conjugates the local semiflow πε to the lo-
cal semiflow π̃ε, using [5, Proposition 2.7], it follows that whenever S is a strongly
admissible isolating neighbourhood with respect to πε and (Mp)p∈P is a ≺-
ordered Morse decomposition of S relative to πε, then Ψε(S) is a strongly ad-
missible isolating neighbourhood with respect to π̃ε and (Ψε(Mp))p∈P is a ≺-
ordered Morse decomposition of S relative to π̃ε and the (co)homology index
braids of (πε, S, (Mp)p∈P ) and (π̃ε,Ψε(S), (Ψε(Mp))p∈P )), ε ∈ ]0, ε0], are iso-
morphic.

Corollaries 7.1 and 7.2 imply that the family of semiflows (π̃ε)ε∈[0,ε0] and the
set N satisfy the hypotheses of [4, Theorem 3.10]. Since any closed ball in Yε is
contractible, an application of [4, Theorem 3.10] completes the proof. �

Remark 7.6. Again, for each p ∈ P , the family (Mp,ε,η)ε∈[0,eε(η)], where
Mp,0,η = Mp,0 is upper semicontinuous at ε = 0 with respect to the family | · |Hε

1

of norms and the family (Mp,ε,η)ε∈]0,eε(η)] is asymptotically independent of η.

8. Application to parabolic problems with localized large diffusion

Now let ε0 ∈ ]0,∞[ and the operators Aε, ε ∈ [0, ε0], be as in section 2.
For ε ∈ ]0, ε0[ set Hε = L2(Ω) and 〈 · , · 〉Hε = 〈 · , · 〉L2(Ω). Moreover, write

H0 = L2
Ω0

(Ω) and 〈 · , · 〉H0 = 〈 · , · 〉L2(Ω). Notice that Hε
0 = Hε for all ε ∈ [0, ε0].

For ε ∈ [0, ε0] and α ∈ R write Hε
α = Hα(Aε). Then, if ε ∈ ]0, ε0], it

follows that Hε
1 = H1(Aε) = H1(Ω) and 〈 · , · 〉Hε

1
= ζε( · , · ). Furthermore,

H0
1 = H1

Ω0
(Ω) and 〈 · , · 〉H0

1
= ζ0( · , · ).

In particular, if u ∈ H0
1 , then, for all ε ∈ ]0, ε0],

|u|Hε
1

= |u|H0
1
.
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It is now easy to conclude that parts (a), (b) and (c) of Condition (Spec) are
satisfied. Moreover, the following result holds:

Proposition 8.1. The above family (Hε, 〈 · , · 〉Hε , Aε)ε∈[0,ε0] satisfies con-
ditions (Spec) and (Comp).

Proof. [9, Theorem 5.1] implies that part (d) of Condition (Spec) also
holds. Condition (Comp) follows from [9, Theorem 4.4]. �

By interpolation theory (cf. [12]) for every θ ∈ [0, 1] and every ε ∈ [0, ε0]
there is a continuous imbedding from Hε

θ to Hθ(Ω) with imbedding constant
C1,θ ∈ ]0,∞[ independent of ε ∈ [0, ε0]. Furthermore, there is a continuous
imbedding from Hθ(Ω) into Lpθ,Ω(Ω) with imbedding constant C2,θ ∈ ]0,∞[.
Here,

pθ,Ω =
(
θ

1
2∗Ω

+ (1− θ)
1
2

)−1

.

Moreover, for every ρ ∈ [0, 1] there is a continuous imbedding from Hρ/2(Γ) into
Lpρ,Γ(Γ) with imbedding constant C3,ρ ∈ ]0,∞[. Here,

pρ,Γ =
(
ρ

1
2∗Γ

+ (1− ρ)
1
2

)−1

.

Finally, by [8], for every θ ∈ ]1/2, 1] there is a bounded linear trace operator
γ = γθ:Hθ(Ω) → Hθ−(1/2)(Γ) with a bound C4,θ ∈ ]0,∞[. Now the continuity
of the functions θ 7→ pθ,Ω and θ 7→ p2θ−1,Γ at θ = 1 implies the following result.

Lemma 8.2. Let q2 ∈ ](1− (1/2∗Ω))−1,∞[ and q3 ∈ ](1− (1/2∗Γ))−1,∞[ be
arbitrary. Then there is a θ ∈ ]1/2, 1[ such that

p2 =
q2

q2 − 1
< pθ,Ω and p3 =

q3
q3 − 1

< p2θ−1,Γ.

Set α = θ and let C5 ∈ ]0,∞[ (resp. C6 ∈ ]0,∞[) be a bound of the imbedding
Lpα,Ω(Ω) → Lp2(Ω) (resp. Lp2α−1,Γ(Γ) → Lp3(Γ)). Then, whenever Φ ∈ Lq2(Ω),
Ψ ∈ Lq3(Γ), ε ∈ [0, ε0] and h ∈ Hε

α, then Φ · h ∈ L1(Ω), Ψ · γ(h) ∈ L1(Γ),∫
Ω

|Φ · h| dx ≤ C1,αC2,αC5|Φ|Lq2 (Ω)|h|Hε
α
,

and ∫
Γ

|Ψ · γ(h)| dσ ≤ C1,αC4,αC3,2α−1C6|Ψ|Lq3 (Γ)|h|Hε
α
.

In particular, there is a unique fε ∈ Hε
−α such that

fε(h) =
∫

Ω

Φ · h dx+
∫

Γ

Ψ · γ(h) dσ, h ∈ Hε
α.

Moreover,
|fε|Hε

−α
≤ C7,α(|Φ|Lq2 (Ω) + |Ψ|Lq3 (Γ))
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where C7,α = max(C1,αC2,αC5, C1,αC4,αC3,2α−1C6).

The next two theorems describe how to obtain a family of maps that satisfies
hypothesis (Conv).

Theorem 8.3. For ε ∈ [0, ε0], let Φε:H1(Ω) → Lq2(Ω) and Ψε:H1/2(Γ) →
Lq3(Γ) be maps satisfying the following assumptions:

(a) For all M ∈ [0,∞[ there is an L = LM ∈ [0,∞[ such that
(a1) for all ε ∈ [0, ε0] and all u, v ∈ H1(Ω) with |u|H1(Ω), |v|H1(Ω) ≤M ,

|Φε(u)− Φε(v)|Lq2 (Ω) ≤ L|u− v|H1(Ω)

(a2) for all ε ∈ [0, ε0] and all u, v ∈ H1/2(Γ) with |u|H1/2(Γ), |v|H1/2(Γ)

≤M ,

|Ψε(u)−Ψε(v)|Lq3 (Γ) ≤ L|u− v|H1/2(Γ).

(b) For every u ∈ H1
Ω0

(Ω),

|Φε(u)− Φ0(u)|Lq2 (Ω) → 0 as ε→ 0+.

(c) For every u ∈ H1/2(Γ),

|Ψε(u)−Ψ0(u)|Lq3 (Γ) → 0 as ε→ 0+.

Let α ∈ ]1/2, 1[ be as in Lemma 8.2. For ε ∈ [0, ε0] and u ∈ Hε
1 define, for

h ∈ Hε
α,

fε(u)(h) =
∫

Ω

Φε(u) · h dx+
∫

Γ

Ψε(γ(u)) · γ(h) dσ.

Then fε(u) ∈ Hε
−α and the family (fε)ε∈[0,ε0] of maps satisfies condition (Conv).

Remark 8.4. By the definition of 2∗Ω and 2∗Γ we may, for N = 1, 2, take q2
and q3 arbitrary in ]1,∞[.

Proof of Theorem 8.3. Lemma 8.2 implies that the family (fε)ε∈[0,ε0]

satisfies (a) of condition (Conv). Let M ∈ [0,∞[ be arbitrary and L = LM be
as in assumption (a). If ε ∈ [0, ε0] and u, v ∈ Hε

1 with |u|Hε
1
, |v|Hε

1
≤ M/C1,1

then u, v ∈ H1(Ω) with |u|H1(Ω), |v|H1(Ω) ≤M so

|fε(u)−fε(v)|Hε
−α

≤ C7,α(|Φε(u)−Φε(v)|Lq2 (Ω) + |Ψε(γ(u))−Ψε(γ(v))|Lq3 (Γ))

≤ C7,α(L+ LC4,1)|u− v|H1(Ω) ≤ C7,α(L+ LC4,1)C1,1|u− v|Hε
1
.

This together with assumption (a) implies part (c) of condition (Conv). If u ∈ H0
1

then
|fε(u)|Hε

−α
≤ C7,α(|Φε(u)|Lq2 (Ω) + |Ψε(γ(u))|Lq3 (Γ)).

This together with assumptions (b) and (c) easily implies part (d) of condi-
tion (Conv).
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Now let w ∈ H0
1 be arbitrary and (εn)n be a sequence in ]0, ε0] with εn → 0.

Let t ∈ ]0,∞[ be arbitrary. We will show that

(8.1) lim
n→∞

|e−t eAεn fεn
(w)− e−t eA0f0(w)|Hεn

1
= 0,

proving (b) of condition (Conv).
It follows from Proposition 8.1 that the families (Hε, 〈 · , · 〉Hε)ε∈[0,ε0] and

(Aε)ε∈[0,ε0] satisfy condition (Spec). For n ∈ N set un = fεn
(w) and define

vn ∈ Hεn
−α by

vn(h) =
∫

Ω

Φ0(w) · h dx+
∫

Γ

Ψ0(γ(w)) · γ(h) dσ, h ∈ Hεn
α .

Finally, set u = f0(w). Then

|un − vn|Hεn
−α

≤ C7,α(|Φεn
(w)− Φ0(w)|Lq2 (Ω) + |Ψεn

(γ(w))−Ψ0(γ(w))|Lq3 (Γ))

Notice that the right hand side of this estimate goes to zero as n → ∞. Thus
assumption (a) of Theorem 4.6 is satisfied.

Let C8 ∈ ]0,∞[ be a bound for the imbedding H1(Ω) → Hα(Ω). Then, for
every j ∈ N,

|vn(wεn,j)− u(w0,j)| ≤ |Φ0(w)|Lq2 (Ω)|wεn,j − w0,j |Lp2 (Ω)

+ |Ψ0(γ(w))|Lq3 (Γ)|γ(wεn,j − w0,j)|Lp3 (Γ) ≤ C̃|wεn,j − w0,j |Hεn
1
,

where C̃ := C5C2,αC8C1,1|Φ0(w)|Lq2 (Ω)+C6C3,2α−1C4,αC8C1,1|Ψ0(γ(w))|Lq3 (Γ).
Hence |vn(wεn,j)−u(w0,j)| → 0 as n→∞. Thus assumption (b) of Theorem 4.6
is satisfied.

Now, for all n ∈ N,

|vn|Hεn
−α

≤ C7,α(|Φ0(w)|Lp2 (Ω) + |Ψ0(γ(w))|Lp3 (Γ)).

Thus assumption (c) of Theorem 4.6 is satisfied. Now (8.1) follows from Theo-
rem 4.6. �

Theorem 8.4. Assume Hypothesis 2.1. For ε ∈ [0, ε0] and u ∈ H1(Ω) (resp.
u ∈ H1/2(Γ)) define Φε(u)(x) = ϕε(x, u(x)) (resp. Ψε(u)(x) = ψε(x, u(x))) for
x ∈ Ω (resp. x ∈ Γ). Then Φε:H1(Ω) → Lq2(Ω) and Ψε:H1/2(Γ) → Lq3(Γ) are
defined and satisfy the assumptions of Theorem 8.3.

Proof. Use results and arguments in [6, Chapter 2]. �

Finally we obtain the following
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Corollary 8.5. For ε ∈ [0, ε0] let ϕε: Ω × R → R and ψε: Γ × R → R,
(x, s) 7→ ϕε(x, s), (x, s) 7→ ψε(x, s), be functions as in Theorem 8.4. For ε ∈
[0, ε0] and u ∈ H1(Ω) (resp. u ∈ H1/2(Γ)) define Φε(u)(x) = ϕε(x, u(x)) (resp.
Ψε(u)(x) = ψε(x, u(x))) for x ∈ Ω (resp. x ∈ Γ) and let α ∈ ]1/2, 1] be as in
Lemma 8.2. For ε ∈ [0, ε0] and u ∈ Hε

1 define, for h ∈ Hε
α,

fε(u)(h) =
∫

Ω

Φε(u) · h dx+
∫

Γ

Ψε(γ(u)) · γ(h) dσ.

Then fε(u) ∈ Hε
−α and the family (fε)ε∈[0,ε0] of maps satisfies condition (Conv).

Proof. This follows from Theorems 8.4 and 8.3. �

We can now prove the results stated in Section 2.

Proof of Theorem 2.2. The theorem follows from Proposition 8.1, Corol-
lary 8.5 and Theorem 5.7. �

Proof of Theorem 2.3. The theorem follows from Proposition 8.1, Corol-
lary 8.5 and Corollary 6.3. �

Proof of Theorem 2.4. Proposition 8.1, Corollary 8.5, Theorem 7.3 and
Remark 7.4 imply the theorem. �

Proof of Theorem 2.5. Proposition 8.1, Corollary 8.5, Theorem 7.5 and
Remark 7.6 imply the theorem. �
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