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NONLINEAR PARABOLIC BOUNDARY VALUE PROBLEMS
OF INFINITE ORDER

Mohamed Housseine Abdou — Moussa Chrif — Said El Manouni

Abstract. In this paper an existence result is presented for solution of

a parabolic boundary value problem under Dirichlet null boundary condi-

tions for a class of general equations of infinite order with strongly nonlinear
perturbation terms.

1. Introduction

Let Ω be a bounded open set of RN , Q = [0, T ]×Ω be a cylinder with lateral
surface S = [0, T ]× Γ, where Γ is the boundary of Ω.

Our purpose is to study, in the cylinder Q, the following strongly nonlinear
parabolic problem of Dirichlet type:

(P)


∂u

∂t
+ Au + g(t, x, u) = f(t, x),

u(0, x) = 0,

Dωu = 0, on S for all |ω| = 0, 1, . . . ,

where A is a nonlinear elliptic operator of infinite order defined by

(1.1) Au =
∞∑

|α|=0

(−1)|α|Dα(Aα(t, x,Dγu)).
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The real functions Aα(t, x, ξ) are required to have polynomial growth in ξ, for
all multi-indices α and g is a nonlinear term which has to fulfil a sign condition.

In the case of infinite order, Dubinskĭı [7] has proved, under some growth
and certain monotonicity conditions, the existence of solutions for the Dirich-
let problem associated with the equation Au = f in some general functional
Sobolev spaces of infinite order W∞

0 (aα, pα), with variable exponents pα, where
α is a multi-indice. The same author has investigated the existence result for
parabolic elliptic problems governed by operators of infinite orders. In fact, also
in [7], Dubinskĭı has proved by considering, further, the monotonicity of the op-
erator A that the problem ∂u

∂t + Au = f has a solution in Lp(0, T, W∞
0 (aα, p)),

p > 1, in the dual case. Our purpose in this paper is to prove the existence
of solutions for strongly parabolic nonlinear equations of infinite order related
to the problem ∂u

∂t + Au + g(t, x, u) = f . More precisely, we will assume more
less restrictions on the operator A (no monotonicity condition) and deal with
a different approach by involving a truncation of the perturbations g. Next,
we use the monotonicity of a part of the approximate operator which contains
a linear term of higher order of derivation that satisfies the monotonicity con-
dition and prove the existence of solutions in the framework of function spaces
Lp(0, T, W∞

0 (aα, p)), p > 1.
Let us mention that an interesting result concerning the stationary counter-

part of the problem (P) has been proved in [2].

2. Preliminaries

Let Ω be a bounded domain in RN , aα ≥ 0, p > 1 are real numbers for all
multi-indices α, and ‖ · ‖p is the usual Lebesgue norm in the space Lp(Ω). The
Sobolev space of infinite order is the functional space defined by

W∞(aα, p)(Ω) =
{

u ∈ C∞(Ω) : ‖u‖p
∞ =

∞∑
|α|=0

aα‖Dαu‖p
p < ∞

}
.

Here

Dα =
∂|α|

(∂x1)α1 . . . (∂xN )αN
.

We denote by C∞
0 (Ω) the space of all functions with compact support in Ω with

continuous derivatives of arbitrary order.
Since we shall deal with the Dirichlet problem, we will use the functional

space W∞
0 (aα, p)(Ω) defined by

W∞
0 (aα, p)(Ω) =

{
u ∈ C∞

0 (Ω) : ‖u‖p
∞ =

∞∑
|α|=0

aα‖Dαu‖p
p < ∞

}
.
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In contrast with the finite order Sobolev space, the very first question, which
arises in the study of W∞(aα, p)(Ω), is the question of their nontriviality (or non-
emptiness), i.e. the question of the existence of a function u such that ‖u‖∞ < ∞.

Definition 2.1 ([7]). The space W∞
0 (aα, p)(Ω) is called nontrivial space if

it contains at least one function which not identically equal to zero, i.e. there is
a function u ∈ C∞

0 (Ω) such that ‖u‖∞ < ∞.

It turns out that the answer of this question depends not only on the given
parameters aα and p of the spaces W∞(aα, p)(Ω), but also on the domain Ω.

The dual space of W∞
0 (aα, p)(Ω) is defined as follows

W−∞(aα, p′)(Ω) =
{

f : f =
∞∑

|α|=0

(−1)|α|Dαfα, ‖f‖p′

−∞ =
∞∑

|α|=0

aα‖fα‖p′

p′ < ∞
}

,

where fα ∈ Lp′
(Ω) for all multi-indices α and p′ is the conjugate of p, i.e.

p′ = p/(p− 1) (for more details about these spaces, see [7] and [8]).
By the definition, the duality of W−∞(aα, p′)(Ω) and W∞

0 (aα, p)(Ω) is given
by the relation

〈f, v〉 =
∞∑

|α|=0

aα

∫
Ω

fα(x)Dαv(x) dx,

which, as it is not difficult to verify, is correct.
Let us denote by Lp(0, T,W∞

0 (aα, p)) the space of functions u(t, x) which
has finite norm

‖u‖p,∞ =
( ∫ T

0

‖u‖p
∞ dt

)1/p

and are equal to zero together with all derivatives Dωu on the lateral surface S.
In other word one has

Lp(0, T, W∞
0 (aα, p)) =

{
u(t, x) : ‖u‖p

p,∞ =
∞∑

|α|=0

aα

∫ T

0

‖Dαu‖p
p dt < ∞,

Dωu|S = 0, |ω| = 0, 1, . . .

}
.

Further, let Lp′
(0, T, W−∞(aα, p′)) be the dual space of Lp(0, T, W∞

0 (aα, p)),
that is, the space of generalized functions f(t, x) having a form

f(t, x) =
∞∑

|α|=0

(−1)|α|aαDαfα(t, x),

where fα(t, x) ∈ Lp′
(Q) and

ρ′(f) =
∞∑

|α|=0

aα

∫ T

0

‖fα(t, x)‖p′

p′ dt < ∞.
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The value of f(t, x) ∈ Lp′
(0, T, W−∞(aα, p′)) on an element v(t, x) ∈ Lp(0, T,

W∞
0 (aα, p)) is defined by the formula∫ T

0

〈f, v〉 dt =
∞∑

|α|=0

aα

∫ T

0

∫
Ω

fα(t, x)Dαv(t, x) dx dt,

which, as easy to see, is correct.
Sobolev spaces of infinite order have extensive applications to the theory of

partial differential equations and, among their number, in mathematical physics.
The basis of these applications is the non-formal algebra of differential operators
of infinite orders as the operators, acting in the corresponding Sobolev spaces
of infinite order. This makes it possible, by considering ∂

∂x as a parameter, to
solve a partial equation as ordinary differential equation, to which are adjoined
the initial or boundary conditions.

More explicitly, we cite the following examples of operators of infinite order
which are closely inspired from the ones used in Dubinskĭı [7].

Example 2.2. Let us consider the operator

Au = [cos D]u(x), x ∈ RN , N ≥ 2.

Formally we have

Au(x) =
∞∑

n=0

(−1)n

2n!
D2nu(x).

The functional space corresponding to the Dirichlet type problem, is the Sobolev
space of infinite order W∞

0 (1/(2n!), 2)(RN ), which is nontrivial.
Consequently, if f ∈ W−∞(1/(2n!), 2)(RN ), then there exists a weak solution

u ∈ W∞
0 (1/(2n!), 2)(RN ) for the problem

∞∑
n=0

(−1)n

2n!
D2nu = f, x ∈ RN .

Moreover, for any f ∈ L2(0, T, W−∞(1/(2n!), 2)(RN )), the parabolic problem

∂u

∂t
+

∞∑
n=0

(−1)n

2n!
D2nu = f, x ∈ RN ,

has a solution u ∈ L2(0, T, W∞
0 (1/(2n!), 2)(RN )), in the variational sense.

Example 2.3. In the half plane R+ = {t > 0, x ∈ R} we consider the heat
equation

(2.1)
∂u

∂t
− ∂2u

∂x2
= 0

under the initial condition

(2.2) u(0, x) = ϕ(x).



Nonlinear Parabolic Boundary Value Problems of Infinite Order 455

Putting p = ∂2

∂x2 , we have
u(t, x) = etpc(x),

where c(x) is an arbitrary function. From the condition (2.2) it follows that
c(x) = ϕ(x) and consequently, the desired solution has the form

(2.3) u(t, x) = et ∂2

∂x2 ϕ(x).

For any t > 0 the operator

(2.4) et ∂2

∂x2 =
∞∑

n=0

tn

n!
∂2n

∂x2n
,

is an elliptic differential operator of infinite order. It is obvious that the formula
(2.4) is correct in L2(R) for any ϕ(x) ∈ W∞, where

W∞ =
{

ϕ ∈ C∞
0 (R) :

∞∑
n=0

tn

n!
‖D2nϕ‖2 < ∞

}
.

The nontriviality of the functional space W∞ follows from Theorem 2.1, Chap-
ter I in [7].

3. Main result

In this section we formulate and prove the main result. Let A be the nonlinear
operator of infinite order defined in (1.1) satisfying:

(A1) Aα(t, x, ξγ) is a Carathéodory function for all α, |γ| ≤ |α|.
(A2) For almost every (t, x) ∈ Q, all m ∈ N∗, all ξγ , ηα, |γ| ≤ |α| and some

constant c0 > 0, we assume that∣∣∣∣ m∑
|α|=0

Aα(t, x, ξγ)ηα

∣∣∣∣ ≤ c0

m∑
|α|=0

aα|ξα|p−1|ηα|,

where p > 1, aα ≥ 0 are reals numbers for all multi-indices α.
(A3) There exist constants c1 > 0, c2 ≥ 0 such that

m∑
|α|=0

Aα(t, x, ξγ)ξα ≥ c1

m∑
|α|=0

aα|ξα|p − c2,

for all m ∈ N∗, for all ξγ , ξα; |γ| ≤ |α|.
(A4) The space W∞

0 (aα, p)(Ω) is nontrivial.

As regard to the nonlinear term g, we assume that g satisfies the following
natural growth on |u| and the classical sign condition:

(G) g:Q× R → R is a Carathéodory function satisfying

|g(t, x, s)| ≤ |s|p−1 + 1, g(t, x, s)s ≥ 0

for almost every (t, x) ∈ Q and all s ∈ R.
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Theorem 3.1. Under assumptions (A1)–(A4) and (G), for any f ∈ Lp′
(0, T,

W−∞(aα, p′)), there exists u ∈ Lp(0, T,W∞
0 (aα, p)) such that∫ T

0

〈
∂u

∂t
, v

〉
dt +

∞∑
|α|=0

aα

∫ T

0

∫
Ω

Aα(t, x,Dγu)Dαv dx dt

+
∫ T

0

∫
Ω

g(t, x, u)v dx dt =
∫ T

0

〈f, v〉 dt,

for all v ∈ Lp(0, T, W∞
0 (aα, p)).

Proof. Set, for almost every (t, x) ∈ Q, gk(t, x, u) = Tkg(t, x, u), where Tk

is the usual truncation given by

Tkη =

 η if |η| ≤ k,

kη

|η|
if |η| > k,

and let the operator of order 2k + 2 defined by

A2k+2u =
∑

|α|=k+1

(−1)k+1cαD2αu +
k∑

|α|=0

(−1)|α|Dα(Aα(t, x,Dγu)).

Note that cα are constants small enough such that they fulfil the conditions of
the following lemma introduced in [7]. In fact, such a condition imposed on each
cα is required to ensure the non-triviality of the space W∞

0 (cα, 2).

Lemma 3.2 (cf. [7]). For any nontrivial space W∞
0 (aα, pα), there exists

a nontrivial space W∞
0 (cα, 2) such that W∞

0 (aα, pα) ⊂ W∞
0 (cα, 2).

The operator A2k+2 is clearly monotone since the term of higher order of
derivation is linear and satisfies the monotonicity condition (see [2] and [7]).
Moreover, as in [15], thanks to the truncation Tk and from assumptions (A1)–
(A3), we deduce that the operator A2k+2 + gk is bounded, coercive and pseudo-
monotone. Then, it is well known (see J.L. Lions [14]), that there exists uk ∈
Lp(0, T, W k+1,p

0 (Ω)) such that

(Pk)

{ ∂uk

∂t
+ A2k+2uk + gk(t, x, uk) = fk(t, x),

uk(0, x) = 0

where

fk(t, x) =
k∑

|α|=0

(−1)|α|aαDαfα(t, x),

with fα ∈ Lp′
(Q) for all |α| ≤ k. In the variational formulation, we get∫ T

0

〈
∂uk

∂t
, v

〉
dt+

∫ T

0

〈A2k+2uk, v〉 dt+
∫ T

0

∫
Ω

gk(t, x, uk)v dx dt =
∫ T

0

〈fk, v〉 dt,

for any v ∈ Lp(0, T, W k+1
0 (Ω)).
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Let us choose v = uk as a test function. Using the sign condition, one has
the estimates

(3.1)
∑

|α|=k+1

cα

∫ T

0

‖Dαuk‖2
2 dt +

k∑
|α|=0

aα

∫ T

0

‖Dαuk‖p
p dt ≤ c2,

and

(3.2)
∫

Q

gk(t, x, uk)uk dx dt ≤ c2.

In the sequel c2, c3, . . . designate arbitrary constants not depending on k.
From the first equality in (Pk) and estimates (3.1) and (3.2), we remark that

∂uk

∂t
∈ Lp′

(0, T,W−k+1,p′

0 (Ω)).

In addition, for any v ∈ Lp(0, T, W∞
0 (aα, p)), the following equality is valid

(3.3)
∫ T

0

∣∣∣∣〈∂uk

∂t
, v

〉∣∣∣∣ dt ≤ Q1 + Q2 + Q3,

where

Q1 =
k∑

|α|=0

aα

∫ T

0

∫
Ω

|fαDαv|dx dt, Q2 =
∫ T

0

∫
Ω

|gk(t, x, uk)v| dx dt,

Q3 =
∑

|α|=k+1

cα

∫ T

0

∫
Ω

|Dαuk||Dαv| dx dt +
k∑

|α|=0

aα

∫ T

0

∫
Ω

|Dαuk|p−1|Dαv| dx dt.

Regarding the quantity Q1, one has

Q1 ≤
( k∑
|α|=0

aα

∫ T

0

‖fα‖p′

p′ dt

)1/p′( k∑
|α|=0

aα

∫ T

0

‖Dαv‖p
p dt

)1/p

≤ (ρ′(f))1/p′
‖v‖p,∞,

and so

(3.4) Q1 ≤ c3 ‖v‖p,∞.

Concerning Q2. we have

Q2 ≤
∫ T

0

∫
Ω

(|uk|p−1|v|+ |v|) dx dt

≤
∫ T

0

‖uk‖p−1
p ‖v‖p dt + c4

( ∫ T

0

‖v‖p
p dt

)1/p

≤
( ∫ T

0

‖uk‖p
p dt

)1/p′( ∫ T

0

‖v‖p
p dt

)1/p

+ c4

( ∫ T

0

‖v‖p
p dt

)1/p

≤ (c2 + c4)‖v‖p,∞,



458 M.H. Abdou — M. Chrif — S. El Manouni

where c2 is the constant of the estimate (3.1). Then one gets

(3.5) Q2 ≤ c5 ‖v‖p,∞.

Moreover, for the last term Q3, one has Q3 = J1 + J2, where

J1 =
∑

|α|=k+1

cα

∫ T

0

∫
Ω

|Dαuk||Dαv| dx dt

≤
( ∑
|α|=k+1

cα

∫ T

0

‖Dαuk‖2
2 dt

)1/2( ∑
|α|=k+1

cα

∫ T

0

‖Dαv‖2
2 dt

)1/2

≤ (c2)1/2‖v‖p,∞,

J2 =
k∑

|α|=0

aα

∫ T

0

∫
Ω

|Dαuk|p−1|Dαv| dx dt

≤
( k∑
|α|=0

aα

∫ T

0

‖Dαuk‖p
p dt

)1/p′( k∑
|α|=0

aα

∫ T

0

‖Dαv‖p
p dt

)1/p

≤ (c2)1/p′
‖v‖p,∞.

Then one deduces that

(3.6) Q3 ≤ c6‖v‖p,∞.

Combining (3.3)–(3.6), it follows that

(3.7)
∫ T

0

∣∣∣∣〈∂uk

∂t
, v

〉∣∣∣∣ dt ≤ c7‖v‖p,∞.

This implies that

(3.8)
∥∥∥∥∂uk

∂t

∥∥∥∥
p′ −∞

≤ c8,

i.e. the derivatives ∂uk

∂t form a bounded set in the space Lp′
(0, T,W−∞(aα, p′)).

Now, estimates (3.1) and (3.8) permit us to apply the well known lemma of
compactness (see J.L. Lions [13]).

Let B0, B and B1 be Banach spaces. Let us set

Y = {u : u ∈ Lp0(0, T, Bo), u′ ∈ Lp1(0, T,B1)}

where p0 > 1, p1 > 1 are reals numbers.

Lemma 3.3 (cf. [7]). Let the imbeddings B0 ⊂ B ⊂ B1 hold; moreover, let
the imbedding B0 ⊂ B be compact. Then Y ⊂ Lp0(0, T, B) and this imbedding is
compact.
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In order to apply this lemma, define

B0 = WS+1(aα, p) =
{

u(x) :
S∑

|α|=0

aα‖Dαu‖p
p < ∞

}
,

B = WS(aα, p), B1 = W−∞(aα, p′); p0 = p, p1 = p′,

where S ≥ 0 is arbitrary and p′ = p/(p− 1).
Then in view of estimates (3.1) and (3.8), we deduce that the family uk of

solutions of problems (Pk) is compact in the space Lp(0, T, WS(aα, p)), (where S

is arbitrary). Consequently, by similar argument as in the elliptic case (using the
diagonal process), see [2] or [7], one gets that the sequence uk converges strongly
together with all derivatives Dωuk to a function u ∈ Lp(0, T, W∞

0 (aα, p)) in the
space Lp(Q).

Let now m > 0 fixed, E a measurable subset of Q and ε > 0, we have∫
E

gk(t, x, uk) dx dt

≤
∫

E∩{|uk|≤m}
gk(t, x, uk) dx dt +

1
m

∫
E∩{|uk|>m}

gk(t, x, uk)uk dx dt

≤
∫

E∩{|uk|≤m}
(|uk|p−1 + 1) dx dt +

1
m

∫
Q

gk(t, x, uk)uk dx dt

≤ (|m|p−1 + 1)|E|+ c2

m
,

where c2 is the constant of (3.2) which is independent of k.
For |E| sufficiently small and c2/m < ε/2, we obtain∫

E

gk(t, x, uk) dx dt ≤ ε.

Using Vitali’s theorem we get

(3.9) gk(x, t, uk) → g(x, t, u) in L1(Q).

On the other hand, in view of Fatou’s lemma and (3.2), we obtain∫
Q

g(x, t, u)u ds ≤ lim
k→+∞

∫
Q

gk(x, t, uk)uk ds ≤ c2,

this implies that

(3.10) g(x, t, u)u ∈ L1(Q).

Now, we shall prove that

lim
k→+∞

∫ T

0

〈A2k+2(uk), v〉 dt =
∫ T

0

〈A(u), v〉 dt
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for all v ∈ Lp(0, T, W∞
0 (aα, p)). Indeed, let k0 be a fixed number sufficiently

large and let v ∈ Lp(0, T, W∞
0 (aα, p)). Set∫ T

0

〈A(u)−A2k+2(uk), v〉 dt = I1 + I2 + I3,

where

I1 =
k0∑

|α|=0

∫ T

0

〈Aα(t, x, Dγu)−Aα(t, x,Dγuk), Dαv〉 dt,

I2 =
∞∑

|α|=k0+1

∫ T

0

〈Aα(t, x,Dγu), Dαv〉 dt,

I3 = −
k∑

|α|=k0+1

∫ T

0

〈Aα(t, x,Dγuk), Dαv〉 −
∑

|α|=k+1

cα〈Dαu, Dαv〉 dt,

or in another form,

I3 = −
k+1∑

|α|=k0+1

∫ T

0

〈Aα(t, x,Dγuk), Dαv〉 dt,

with Aα(t, x, ξγ) = cαξα and cα ≥ 0 for |α| = k + 1, (cα are constants given in
Lemma 3.2).

The aim is to prove that I1, I2 and I3 tend to 0. Indeed, on one hand, since
A(t, x, ξγ) is of Carathéodory type, then I1 → 0, and the term I2 is the remainder
of a convergence series, hence I2 → 0. On the other hand, for all ε > 0, there
holds k(ε) > 0 (see [5, p. 56]) such that∣∣∣∣ k+1∑

|α|=k0+1

∫ T

0

〈Aα(t, x,Dγuk), Dαv〉 dt

∣∣∣∣
≤

k+1∑
|α|=k0+1

∫ T

0

|〈Aα(t, x,Dγuk), Dαv〉| dt

≤ c0

k+1∑
|α|=k0+1

aα

∫ T

0

∫
Ω

|Dαuk|p−1|Dαv| dx dt

≤ c0

k+1∑
|α|=k0+1

aα

∫ T

0

‖Dαuk‖p−1
p ‖Dαv‖p dt

≤ εc0

k+1∑
|α|=k0+1

aα

∫ T

0

‖Dαuk‖p
p dt + c0k(ε)

k+1∑
|α|=k0+1

aα

∫ T

0

‖Dαv‖p
p dt

≤ εc0c2 + c0k(ε)
∞∑

|α|=k0+1

aα

∫ T

0

‖Dαv‖p
p dt,
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where c2 is the constant given in the estimate (3.1). Moreover, the term

∞∑
|α|=k0+1

aα

∫ T

0

‖Dαv‖p
p dt

is the remainder of a convergent series, therefore I3 → 0 holds. Finally, we
conclude that

(3.11)
∫ T

0

〈A2k+2(uk), v〉 dt →
∫ T

0

〈A(u), v〉 dt

for all v ∈ Lp(0, T, W∞
0 (aα, p)). Moreover, it is clear that∫ T

0

〈fk, v〉 dt →
∫ T

0

〈f, v〉 dt

as k → +∞. Consequently, by passing to the limit in (Pk), we obtain∫ T

0

〈
∂u

∂t
, v

〉
dt +

∫ T

0

〈A(u), v〉 dt +
∫

Q

g(t, x, u)v dx dt =
∫ T

0

〈f, v〉 dt,

for all v ∈ Lp(0, T,W∞
0 (aα, p)). This archived the proof. �

4. Example

The following example of an operator of infinite order is closely related to
the one used in [8].

Let us consider the operator:

Au =
∞∑

|α|=0

(−1)αDα(aα|Dαu|p−2Dαu)

where aα ≥ 0 is a sequence of numbers, p > 1 is a number such that the
space W∞(aα, p)(Ω) is not trivial (for example, if aα = [(2α)!]−p, p > 1 and
dim Ω = 1), then the conditions (A1)–(A3) are satisfied. As regards to a function
g that satisfies the condition (G), let us consider

g(t, x, s) = s|s|rh(x), with r > 0,

where h ∈ L1(Ω), h(x) ≥ 0, almost everywhere. Consequently, for the described
the nonlinear term g, the existence result of such a problem of type (P) follows
immediately from Theorem 3.1.
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