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APPROXIMATE CONTROLLABILITY
OF FRACTIONAL FUNCTIONAL EQUATIONS

WITH INFINITE DELAY

Ramakrishnan Ganesh

Rathinasamy Sakthivel∗ — Nazim I. Mahmudov

Abstract. Fractional differential equations have been used for construct-
ing many mathematical models in science and engineering. In this paper,

we study the approximate controllability results for a class of impulsive

fractional differential equations with infinite delay. A new set of sufficient
conditions are formulated and proved for achieving the required result. In

particular, the results are established under the natural assumptions that

the corresponding linear system is approximately controllable. The re-
sults are obtained by using the fractional calculus, solution operators and

fixed point technique. An example is also provided to illustrate the the-

ory. Further, as a corollary, exact controllability result is discussed without
assuming compactness of characteristic solution operators.

1. Introduction

The concept of controllability plays an important role in many control prob-
lems such as stabilization of unstable systems by feedback control. The exact
controllability of various kinds of nonlinear evolution equations in infinite di-
mensional spaces by the method of fixed point theory have been investigated by
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many authors [1], [6], [7], [10]. The existence and controllability results for first
and second order semilinear differential inclusions in Banach spaces with non-
local conditions has been reported in [11], [12]. Klamka [15], [17] derived a set
of sufficient conditions for the constrained controllability for semilinear ordinary
differential state equations with multiple point delays in control by using the
generalized open mapping theorem.

Exact controllability enables to steer the system to arbitrary final state while
approximate controllability means that the system can be steered to arbitrary
small neighborhood of final state. The approximate controllability is more appro-
priate for control systems instead of exact controllability. Moreover, approximate
controllable systems are more prevalent and very often approximate controllabil-
ity is completely adequate in applications. In particular, it is difficult to realize
the conditions of exact controllability for infinite-dimensional systems and thus
the approximate controllability becomes a very important topic. The approxi-
mate controllability results for nonlinear evolution equations for various kind of
problems have been studied in [31], [19], [20].

Fractional differential equations has emerged as a new branch of applied
mathematics, which has been used for constructing many mathematical models
in various fields of science and engineering [23]. The reason for this is that a
realistic model of a physical phenomenon having dependence not only at the
time instant, but also the previous time history can be successfully achieved
by using fractional calculus. The theory of existence of solutions for fractional
differential equations has been extensively studied by many authors [2], [22], [29].

Recently, many researchers pay attention to study of the controllability of
nonlinear fractional evolution systems [3]–[5], [16], [36], [9], [33]. Wang et al [32]
established a set of sufficient conditions for nonlocal controllability of fractional
evolution systems without assuming compactness of solution operators by using
Mönch fixed point theorems. However, in the present literature, there are only
limited number of papers on the approximate controllability of fractional differ-
ential systems [30], [26], [27]. Sakthivel et al [26], [27] studied the approximate
controllability results for deterministic and stochastic fractional differential sys-
tems by using fixed point technique and fractional calculations. The approximate
controllability of nonlinear control systems governed by a class of partial neutral
functional differential systems of fractional order with state-dependent delay in
an abstract space has been investigated in [35]. Kumar and Sukavanam [18]
derived a new set of sufficient conditions for the approximate controllability of
a class of semilinear delayed control systems of fractional order by using contrac-
tion principle and the Schauder fixed point theorem.

Meanwhile, an impulsive perturbation occurs very often in many practical
models [28], [29]. The controllability problems for several kinds of nonlinear
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problems with impulses has been studied in [25], [24]. Dabas et al [8] considered
the existence of mild solutions for a class of impulsive fractional equations with
infinite delay. Wang et al [34] discussed the solvability and optimal controls of
a class of fractional integrodifferential evolution systems with infinite delay in
Banach spaces. In fact, it is important and necessary to consider the approximate
controllability for fractional functional differential systems with impulses and
infinite delay. However, in the present literature, no work has been reported on
approximate controllability of fractional differential systems with impulses and
infinite delay. Motivated by [8], [34], in this paper we study the approximate
controllability of a class of fractional order functional differential equations with
impulses and infinite delay in the following form

(1.1)

Dq
tx(t) = Ax(t) +Bu(t) + f(t, xt,Hx(t)), t ∈ J = [0, b], t 6= tk,

∆x(tk) = Ik(x(t−k )), k = 1, . . . ,m,

x(t) = φ(t) ∈ Bh,

where 0 < q < 1; Dq
t is the Caputo fractional derivative of order q; A:D(A) ⊂

X → X is an infinitesimal generator of a q-resolvent family {Sq(t)}t≥0, the
solution operator {Tq(t)}t≥0 is defined on a Hilbert space X with the norm
‖ · ‖X ; the control function u( · ) is given in L2(J, U), U is a Hilbert space; B
is a bounded linear operator from U into X. The histories xt: (−∞, 0] → X

defined by xt(θ) = x(t + θ) belong to an abstract phase space Bh. Ik:X → X,
k = 1, . . . ,m is continuous. Furthermore, the fixed times tk satisfy 0 = t0 <

t1 < . . . < tm < tm+1 = b, ∆x(tk) = x(t+k )− x(t−k ), x(t+k ) and x(t−k ) denote the
right and left limits of x(t) at t = tk. f : J × Bh ×X → X is a given function;
Hx(t) is given by Hx(t) =

∫ t

0
G(t, s)x(s) ds, where G ∈ C(D,R+) is the set of

all positive continuous functions on D = {(t, s) ∈ R2 : 0 ≤ s ≤ t ≤ b}.

2. Preliminaries

In this section, some basic definitions and lemmas are given which will be
used to prove main results. Let L(X) denote the Banach space of bounded linear
operators from X into X with the norm ‖ · ‖L(X). Let C(J,X) denote the space
of all continuous functions from J into X with the norm ‖x‖ = sup

t∈J
‖x(t)‖.

Now, we present the abstract space Bh. Let h: (−∞, 0] → (0,+∞) be
a continuous function with l =

∫ 0

−∞ h(t) dt < +∞. For any a > 0, define
B = {ϕ : [−a, 0] → X such that ϕ(t) is bounded and measurable} and equip the
space B with the norm

‖ϕ‖[−a,0] = sup
s∈[−a,0]

‖ϕ(s)‖, ϕ ∈ B.
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Further, define the space

Bh =
{
ϕ: (−∞, 0] → X, for any c > 0, ϕ|[−c,0] ∈ B

with ϕ(0) = 0 and
∫ 0

−∞
h(s)‖ϕ‖[s,0] ds < +∞

}
.

If Bh is endowed with the norm

‖ϕ‖Bh
=

∫ 0

−∞
h(s)‖ϕ‖[s,0] ds, ϕ ∈ Bh,

then (Bh, ‖ · ‖Bh
) is a Banach space.

We assume that the phase space (Bh, ‖ · ‖Bh
) is a semi-normed linear space

of functions mapping (−∞, 0] into X and satisfying the following fundamental
axioms [14].

(A1) If x: (−∞, b] → X, b > 0, is continuous on J and x0 ∈ Bh, then for
every t ∈ J , the following conditions hold:
(i) xt ∈ Bh,
(ii) ‖x(t)‖ ≤ L‖xt‖Bh

,
(iii) ‖xt‖Bh

≤ C1(t) sup0≤s≤t ‖x(s)‖ + C2(t)‖x0‖Bh
, where L > 0 is

a constant; C1: [0, b] → [0,∞) is continuous, C2: [0,∞) → [0,∞) is
locally bounded and C1, C2 are independent of x( · ).

(A2) For the function x( · ) in (A1), xt is a Bh-valued function on [0, b].
(A3) The space Bh is complete.

Definition 2.1 ([23]). The Caputo derivative of order q for a function
f : [0,∞) → R can be written as

Dq
t f(t) =

1
Γ(n− q)

∫ t

0

(t− s)n−q−1f (n)(s) ds = In−qfn(t),

for n− 1 < q < n, n ∈ N . If 0 < q ≤ 1, then

Dq
t f(t) =

1
Γ(1− q)

∫ t

0

(t− s)−qf (1)(s) ds.

The Laplace transform of the Caputo derivative of order q > 0 is given as

L{Dq
t f(t) : λ} = λqf(λ)−

n−1∑
k=0

λq−k−1f (k)(0); n− 1 < q < n.

The Mittag–Lefller type function in two arguments is defined by the series
expansion

Eq,p(z) =
∞∑

k=0

zk

Γ(qk + p)
=

1
2πi

∫
C

µq−peµ

µq − z
dµ, q, p > 0, z ∈ C,
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where C is a contour which starts and ends at −∞ and encircles the disc ‖µ‖ ≤
|z|1/2 counter clockwise. The Laplace transform of the Mittag–Lefller function
is given as follows∫ ∞

0

e−λttp−1Eq,p(ωtq) dt =
λq−p

λq − ω
, Reλ > ω1/q, ω > 0,

and for more details (see [23]).

Definition 2.2 ([13]). A closed and linear operator A is said to be sectorial
if there are constants ω ∈ R, θ ∈ [π/2, π], M > 0, such that the following two
conditions are satisfied:

(a) ρ(A) ⊂
∑
(θ,ω)

= {λ ∈ C : λ 6= ω, | arg(λ− ω)| < θ},

(b) ‖R(λ,A)‖L(X) ≤
M

|λ− ω|
, λ ∈

∑
(θ,ω)

.

Definition 2.3 ([13]). Let A be a linear closed operator with domain D(A)
defined on X. Let ρ(A) be the resolvent set of A. We call A is the generator
of a q-resolvent family if there exists ω ≥ 0 and a strongly continuous functions
Sq: R+ → L(x) such that {λq : Reλ > ω} ⊂ ρ(A) and

(λqI −A)−1x =
∫ ∞

0

e−λtSq(t)x dt, Reλ > ω, x ∈ X.

In this case, Sq is called the q-resolvent family generated by A.

Definition 2.4 ([2]). Let A be a linear closed operator with domain D(A)
defined on X. We call A is the generator of a solution operator if there exists
ω ≥ 0 and a strongly continuous functions Sq: R+ → L(x) such that {λq : Reλ >
ω} ⊂ ρ(A) and

λq−1(λqI −A)−1x =
∫ ∞

0

e−λtSq(t)x dt, Reλ > ω, x ∈ X.

In this case, Sq is called the solution operator generated by A.

Lemma 2.5 ([8]). If f satisfies the uniform Hölder condition with the ex-
ponent β ∈ (0, 1] and A is a sectorial operator, then the unique solution of the
Cauchy problem

Dq
tx(t) = Ax(t) + f(t, xt,Hx(t)), t > t0, t0 ∈ R, 0 < q < 1,

x(t) = φ(t), t ≤ t0,

is given by

x(t) = Tq(t− t0)(x(t+0 )) +
∫ t

t0

Sq(t− s)f(s, xs,Hx(s)) ds,
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where

Tq(t) = Eq,1(Atq) =
1

2πi

∫
bBr

eλt λq−1

λq −A
dλ,

Sq(t) = tq−1Eq,q(Atq) =
1

2πi

∫
bBr

eλt 1
λq −A

dλ,

B̂r denotes the Bromwich path. Sq(t) is called the q-resolvent family and Tq(t)
is the solution operator generated by A.

Consider the space

Bb = {x : (−∞, b] → X such that x|Jk
∈ C(Jk, X)

and there exist x(t−k ) and x(t+k )

with x(tk) = x(t−k ), x0 = φ ∈ Bh, k = 0, . . . ,m}.

where x|Jk
is the restriction of x to Jk = (tk, tk+1], k = 0, . . . ,m. Set ‖ · ‖Bb

be
a seminorm in Bb defined by

‖x‖Bb
= sup

s∈J
‖x(s)‖+ ‖φ‖Bh

, x ∈ Bb.

According to [8], we give the following definition of the mild solution of (1.1).

Definition 2.6. A function x: (−∞, b] → X is said to be a mild solution
for the system (1.1) if the following holds: x0 = φ ∈ Bh on (−∞, 0] with φ(0) =
0; ∆x(tk) = Ik(x(t−k )), k = 1, . . . ,m, the restriction of x( · ) to the interval
[0, b) \ {t1, . . . , tm} is continuous and satisfies the following integral equation:

(2.2) x(t) =



φ(t), t ∈ (−∞, 0],∫ t

0
Sq(t− s)Bu(s) ds

+
∫ t

0
Sq(t− s)f(s, xs,H(x(s))) ds, t ∈ [0, t1],

Tq(t− t1)(x(t−1 ) + I1(x(t−1 )))

+
∫ t

t1
Sq(t− s)Bu(s) ds

+
∫ t

t1
Sq(t− s)f(s, xs,H(x(s))) ds, t ∈ (t1, t2],

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tq(t− tm)(x(t−m) + Im(x(t−m)))

+
∫ t

tm
Sq(t− s)Bu(s) ds

+
∫ t

tm
Sq(t− s)f(s, xs,H(x(s)))ds, t ∈ (tm, b].

If q ∈ (0, 1) and A ∈ Aq(θ0, ω0), then for any x ∈ X and t > 0, we have
‖Tq(t)‖L(X) ≤Meωt and ‖Sq(t)‖L(X) ≤ Ceωt(1 + tq−1), t > 0, ω > ω0. Let

M̃T = sup
0≤t≤b

‖Tq(t)‖L(X), M̃T = sup
0≤t≤b

Ceωt(1 + t1−q).
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Hence, we have ‖Tq(t)‖L(X) ≤ M̃T , ‖Sq(t)‖L(X) ≤ tq−1M̃S (see [29]).

Lemma 2.7 ([22]). Let

C∗1 = sup
0<τ<b

C1(τ), C∗2 = sup
0<τ<b

C2(τ), µ∗1 = sup
0<τ<b

µ1(τ), µ∗2 = sup
0<τ<b

µ2(τ).

Then, for any s ∈ J ,

µ1(s)‖ys + zs‖Bh
+ µ2(s)‖H(y(s) + z(s))‖X

≤ µ∗1

[
C∗1 sup

0≤τ≤s
‖z(τ)‖X + C∗2‖φ‖Bh

]
+ µ∗2

∫ s

0

G(s, τ)‖z(τ)‖X dτ.

If ‖z‖X < r, r > 0, then

µ1(s)‖ys + zs‖Bh
+µ2(s)‖H(y(s)+ z(s))‖X ≤ µ∗1 [C∗1r + C∗2‖φ‖Bh

] +µ∗2H
∗r = δ,

where H∗ = sup
t∈[0,b]

∫ t

0
G(t, s) ds <∞.

The main result of this paper is established by using the following fixed point
theorem.

Lemma 2.8 ([8]). Let S be a bounded closed and convex subset of a Banach
space X. Let P and Q maps E into X such that:

(a) Px+Qy ∈ E for every x, y ∈ E,
(b) P is compact and continuous,
(c) Q is a contraction mapping,

then Px+Qy = x has a solution on S.

3. Approximate controllability

In this section, we prove the approximate controllability of nonlinear impul-
sive fractional-order functional differential equations with infinite delay under
suitable conditions. Consider the linear fractional control system:

(3.1)
Dq

tx(t) = Ax(t) + (Bu)(t), t ∈ [0, b],

x(0) = φ(0).

Let us now introduce the following operators:
Define the operator Γb

0:X → X associated with (3.1) as

Γb
0 =

∫ b

0

Sq(b−s)BB∗S∗q (b−s) ds:X → X, R(α,Γb
0) = (αI+Γb

0)
−1:X → X,

where B∗ denotes the adjoint of B and S∗q (t) is the adjoint of Sq(t). It is
straightforward that the operator Γb

0 is a linear bounded operator.
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Definition 3.1. The control system (1.1) is said to be approximately con-
trollable on J if for every φ ∈ Bh, there is some control u ∈ L2(J, U), the
closure of the reachable set R(b, φ) is dense in X, i.e. R(b, φ) = X, where
R(b, φ) = {xb(φ;u)(0):u( · ) ∈ L2(J, U)} is the reachable set of system (1.1)
with the initial value φ at terminal time b.

Remark 3.2. The approximate controllability of (3.1) is equivalent to the
convergence of function α(αI + Γb

0)
−1:X → X to zero as α → 0+ in the strong

operator topology (see [21]).

In order to establish the result, we need the following hypothesis:

(H1) The function f : J × Bh × X → X is continuous and there exists two
continuous functions µ1, µ2: J → (0,∞) such that

‖f(t, ϕ, x)‖X ≤ µ1(t)‖ϕ‖Bh
+ µ2(t)‖x‖X , (t, ϕ, x) ∈ J × Bh ×X.

(H2) Ik ∈ C(X,X) and there exist constants Ω > 0, ρk > 0 such that

Ω = max
1≤k≤m

{‖Ik(x)‖X}, ‖Ik(x)− Ik(y)‖X ≤ ρk‖x− y‖X ,

for x, y ∈ X, (k = 1, . . . ,m).
(H3) There exists constants N1 > 0 and N2 > 0 such that

‖f(t, ϕ, x)− f(t, ψ, y)‖X ≤ N1‖ϕ− ψ‖Bh
+N2‖x− y‖X ,

for t ∈ J , ϕ,ψ ∈ Bh, x, y ∈ X.
(H4) The linear system (3.1) is approximately controllable.

It will be shown that the system (1.1) is approximately controllable, if for all
α > 0, there exists a continuous function x( · ) ∈ Bb such that

(3.2) x(t) =



φ(t), t ∈ (−∞, 0],∫ t

0
Sq(t− s)Bux(s) ds

+
∫ t

0
Sq(t− s)f(s, xs,H(x(s))) ds, t ∈ [0, t1],

Tq(t− t1)(x(t−1 ) + I1(x(t−1 )))

+
∫ t

t1
Sq(t− s)Bux(s) ds

+
∫ t

t1
Sq(t− s)f(s, xs,H(x(s))) ds, t ∈ (t1, t2],

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tq(t− tm)(x(t−m) + Im(x(t−m)))

+
∫ t

tm
Sq(t− s)Bux(s) ds

+
∫ t

tm
Sq(t− s)f(s, xs,H(x(s))) ds, t ∈ (tm, b],
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(3.3) ux(t) =


B∗S∗q (t1 − t)R(α,Γt1

0 )p(x( · )), t ∈ [0, t1],

B∗S∗q (t2 − t)R(α,Γt2
t1)p(x( · )), t ∈ (t1, t2],

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B∗S∗q (b− t)R(α,Γb
tm

)p(x( · )), t ∈ (tm, b],

where

p(x( · )) =



xt1 −
∫ t1
0
Sq(t1 − s)f(s, xs,H(x(s))) ds, t ∈ [0, t1],

xt2 − Tq(t2 − t1)(x(t−1 ) + I1(x(t−1 )))

−
∫ t2

t1
Sq(t2 − s)f(s, xs,H(x(s))) ds, t ∈ (t1, t2],

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xb − Tq(b− tm)(x(t−m) + Im(x(t−m)))

−
∫ b

tm
Sq(b− s)f(s, xs,H(x(s))) ds, t ∈ (tm, b].

Theorem 3.3. Let the hypothesis (H1)–(H3) hold and if A ∈ Aq(θ0, ω0),
then the system (1.1) has at least one mild solution on (−∞, b] provided that

L̂0 = max
i≤i≤m

{
1
α
M2

BM̃
2
S

b2q−1

2q − 1
M̃T (1 + ρi)

+
(

1
α
M2

BM̃
2
S

b2q−1

2q − 1
+ 1

)
bq

q
M̃S(N1C

∗
1 +N2H

∗)
}
< 1.

Proof. The main aim in this section is to find conditions for solvability of
system (3.2) and (3.3) for α > 0. Now it will be shown that for α > 0, the
operator Φ:Bb → Bb defined by

(Φx)(t) =



φ(t), t ∈ (−∞, 0],∫ t

0
Sq(t− s)Bux(s) ds

+
∫ t

0
Sq(t− s)f(s, xs,H(x(s)))ds, t ∈ [0, t1],

Tq(t− t1)(x(t−1 ) + I1(x(t−1 )))

+
∫ t

t1
Sq(t− s)Bux(s) ds

+
∫ t

t1
Sq(t− s)f(s, xs,H(x(s)))ds, t ∈ (t1, t2],

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tq(t− tm)(x(t−m) + Im(x(t−m)))

+
∫ t

tm
Sq(t− s)Bux(s) ds

+
∫ t

tm
Sq(t− s)f(s, xs,H(x(s))) ds, t ∈ (tm, b].

has a fixed point, which is then a solution of system (1.1).
Let y( · ): (−∞, b] → X be the function defined by

y(t) =

{
φ(t), t ∈ (−∞, 0],

0, t ∈ J,
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then y0 = φ. For each z ∈ C(J,R) with z(0) = 0, we denote by z the function
defined by

z(t) =

{
0, t ∈ (−∞, 0],

z(t), t ∈ J.

If x( · ) satisfies (2.2), then we can decompose x( · ) as x(t) = y(t)+z(t) for t ∈ J ,
which implies xt = yt + zt for t ∈ J and the function z( · ) satisfies

z(t) =



∫ t

0
Sq(t− s)Buy+z(s) ds

+
∫ t

0
Sq(t− s)f(s, ys + zs,H(y(s) + z(s))) ds, t ∈ [0, t1],

Tq(t− t1)(y(t−1 ) + z(t−1 ) + I1(y(t−1 ) + z(t−1 )))

+
∫ t

t1
Sq(t− s)Buy+z(s) ds

+
∫ t

t1
Sq(t− s)f(s, ys + zs,H(y(s) + z(s))) ds, t ∈ (t1, t2],

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tq(t− tm)(y(t−m) + z(t−m) + Im(y(t−m) + z(t−m)))

+
∫ t

tm
Sq(t− s)Buy+z(s) ds

+
∫ t

tm
Sq(t− s)f(s, ys + zs,H(y(s) + z(s))) ds, t ∈ (tm, b],

where

uy+z(t) =



B∗S∗q (t1 − t)R(α,Γt1
0 )

·
[
xt1 −

∫ t1
0
Sq(t1 − s)f(s, ys + zs,H(y(s) + z(s))) ds

]
(t),

t ∈ [0, t1],

B∗S∗q (t2 − t)R(α,Γt2
t1)

·
[
xt2 − Tq(t2 − t1)((y(t−1 ) + z(t−1 )) + I1(y(t−1 ) + z(t−1 )))

−
∫ t2

t1
Sq(t2 − s)f(s, ys + zs,H(y(s) + z(s))) ds

]
(t), t ∈ (t1, t2],

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B∗S∗q (b− t)R(α,Γb
tm

)

·
[
xb − Tq(b− tm)((y(t−m) + z(t−m)) + Im(y(t−m) + z(t−m)))

−
∫ b

tm
Sq(b− s)f(s, ys + zs,H(y(s) + z(s))) ds

]
(t), t ∈ (tm, b].

Let B0
b = {z ∈ Bb : z0 = 0 ∈ Bh}. For any z ∈ B0

b , we have

‖z‖B0
b

= sup
s∈J

‖z(s)‖X + ‖z0‖Bh
= sup

s∈J
‖z(s)‖X , z ∈ B0

b .

Thus, (B0
b , ‖ · ‖B0

b
) is a Banach space.
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Let the operator Π:B0
b → B0

b be defined by

(3.4) Πz(t)=



∫ t

0
Sq(t− s)Buy+z(s) ds

+
∫ t

0
Sq(t− s)f(s, ys + zs,H(y(s) + z(s))) ds, t ∈ [0, t1],

Tq(t− t1)(y(t−1 ) + z(t−1 ) + I1(y(t−1 ) + z(t−1 )))

+
∫ t

t1
Sq(t− s)Buy+z(s) ds

+
∫ t

t1
Sq(t− s)f(s, ys + zs,H(y(s) + z(s))) ds, t ∈ (t1, t2],

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tq(t− tm)(y(t−m) + z(t−m) + Im(y(t−m) + z(t−m)))

+
∫ t

tm
Sq(t− s)Buy+z(s) ds

+
∫ t

tm
Sq(t− s)f(s, ys + zs,H(y(s) + z(s))) ds, t ∈ (tm, b].

It is clear that the operator Φ has a fixed point if and only if Π has a fixed point.
Now we will show that Π has a fixed point.

Choose

r ≥ M̃T (r + Ω) +
1
α
M2

BM̃
2
S

b2q−1

2q − 1

[
‖xti+1‖+ M̃T (r + Ω) + M̃Sδ

bq

q

]
+ M̃Sδ

bq

q

and consider a set Br = {z ∈ B0
b : ‖z‖B0

b
≤ r}, then Br ⊂ B0

b , is clearly a bounded
closed convex set. Now for t ∈ J , we decompose Π as Π = Π1 + Π2, where Π1

and Π2 are defined on Br, by

Π1z(t) =


0, t ∈ [0, t1],

Tq(t− t1)(z(t−1 ) + I1(z(t−1 ))), t ∈ (t1, t2],

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tq(t− tm)(z(t−m) + Im(z(t−m))), t ∈ (tm, b].

Π2z(t)=



∫ t

0
Sq(t− η)BB∗S∗q (t1 − η)R(α,Γt1

0 )

·
[
xt1 −

∫ t1
0
Sq(t1 − s)f(s, ys + zs,H(y(s) + z(s))) ds

]
(η) dη

+
∫ t

0
Sq(t− s)f(s, ys + zs,H(y(s) + z(s))) ds, t ∈ [0, t1],∫ t

t1
Sq(t− η)BB∗S∗q (t2 − η)R(α,Γt2

t1)

·
[
xt2 − Tq(t2 − t1)((z(t−1 )) + I1(z(t−1 )))

−
∫ t2

t1
Sq(t2 − s)f(s, ys + zs,H(y(s) + z(s))) ds

]
(η) dη

+
∫ t

t1
Sq(t− s)f(s, ys + zs,H(y(s) + z(s))) ds, t ∈ (t1, t2],

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .∫ t

tm
Sq(t− η)BB∗S∗q (b− η)R(α,Γb

tm
)
[
xb − Tq(b− tm)((z(t−m))

+Im(z(t−m)))−
∫ b

tm
Sq(b− s)f(s, ys + zs,H(y(s) + z(s))) ds

]
(η) dη

+
∫ t

tm
Sq(t− s)f(s, ys + zs,H(y(s) + z(s))) ds, t ∈ (tm, b].
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First we prove that Π1z + Π2z
∗ ∈ Br, whenever z, z∗ ∈ Br. For t ∈ [0, t1], we

have

‖(Π1z)(t) + (Π2z
∗)(t)‖X ≤

∫ t

0

‖Sq(t− η)BB∗S∗q (t1 − η)R(α,Γt1
0 )‖X

·
[
‖xt1‖+

∫ t1

0

‖Sq(t1 − s)‖L(X)‖f(s, ys + z∗s,H(y(s) + z∗(s)))‖X ds

]
(η) dη

+
∫ t

0

‖Sq(t− s)‖L(X)‖f(s, ys + z∗s,H(y(s) + z∗(s)))‖X ds

≤ 1
α
M2

BM̃
2
S

∫ t

0

(t− η)2(q−1)

[
‖xt1‖

+ M̃S

∫ t1

0

(t1 − s)q−1(µ1(s)‖ys+z∗s‖Bh
+ µ2(s)‖H(y(s) + z∗(s))‖X) ds

]
(η) dη

+ M̃S

∫ t

0

(t− s)q−1(µ1(s)‖ys + z∗s‖Bh
+ µ2(s)‖H(y(s) + z∗(s))‖X) ds.

By using Lemma 2.7, we deduce that

‖(Π1z) + (Π2z
∗)‖b ≤

1
α
M2

BM̃
2
S

b2q−1

2q − 1

[
‖xt1‖+ M̃Sδ

bq

q

]
+ M̃Sδ

bq

q
< r.

Similarly, when t ∈ (ti, ti+1], i = 1, . . . ,m, we have

‖(Π1z)(t) + (Π2z
∗)(t)‖X ≤ ‖Tq(t− t1)(z(t−i ) + Ii(z(t−i )))‖X

+
∫ t

ti

‖Sq(t− η)BB∗S∗q (ti+1 − η)R(α,Γti+1
ti

)‖X

·
[
‖xti+1‖+ ‖Tq(ti+1 − ti)(z∗(t−i ) + Ii(z∗(t−i )))‖X

+
∫ ti+1

ti

‖Sq(ti+1 − s)‖L(X)‖f(s, ys + z∗s,H(y(s) + z∗(s)))‖X ds

]
(η) dη

+
∫ t

ti

‖Sq(t− s)‖L(X)‖f(s, ys + z∗s,H(y(s) + z∗(s)))‖X ds

≤ M̃T (‖z‖b + ‖Ii(z(t−i ))‖) +
1
α
M2

BM̃
2
S

b2q−1

2q − 1

·
[
‖xti+1‖+ M̃T (‖z∗‖b + ‖Ii(z∗(t−i ))‖) + M̃S δ

bq

q

]
+ M̃Sδ

bq

q

≤ M̃T (r + Ω) +
1
α
M2

BM̃
2
S

b2q−1

2q − 1

·
[
‖xti+1‖+ M̃T (r + Ω) + M̃Sδ

bq

q

]
+ M̃Sδ

bq

q
< r.

Hence for all t ∈ [0, b], ‖(Π1z) + (Π2z
∗)‖B0

b
≤ r. Using the same argument as

in [8], we can obtain that Π1 is continuous and equicontinuous. Finally, by using
Ascoli’s theorem, we conclude that Π1 is compact.
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Next we show that Π2 is a contraction mapping. Let z, z∗ ∈ Br and for
t ∈ [0, t1], we have

‖(Π2z)(t)− (Π2z
∗)(t)‖X ≤

∫ t

0

‖Sq(t− η)BB∗S∗q (t1 − η)R(α,Γt1
0 )‖X

·
[ ∫ t1

0

‖Sq(t1 − s)‖L(X)‖f(s, ys + zs,H(y(s) + z(s)))

− f(s, ys + z∗s,H(y(s) + z∗(s)))‖X ds

]
(η) dη

+
∫ t

0

‖Sq(t− s)‖L(X)‖f(s, ys + zs,H(y(s) + z(s)))

− f(s, ys + z∗s,H(y(s) + z∗(s)))‖X ds

≤ 1
α
M2

BM̃
2
S

∫ t

0

(t− η)2(q−1)

[
M̃S

∫ t1

0

(t1 − s)q−1(N1‖zs − z∗s‖Bh

+N2‖H(y(s) + z(s))−H(y(s) + z∗(s))‖X) ds
]
(η) dη

+ M̃S

∫ t

0

(t− s)q−1(N1‖zs − z∗s‖Bh

+N2‖H(y(s) + z(s))−H(y(s) + z∗(s))‖X) ds

≤
{

1
α
M2

BM̃
2
S

b2q−1

2q − 1

[
bq

q
M̃S(N1C

∗
1 +N2H

∗)
]

+
bq

q
M̃S(N1C

∗
1 +N2H

∗)
}
‖z − z∗‖B0

b

≤
(

1
α
M2

BM̃
2
S

b2q−1

2q − 1
+ 1

)
bq

q
M̃S(N1C

∗
1 +N2H

∗)‖z − z∗‖B0
b
.

For t ∈ (ti, ti+1], i = 1, . . . ,m,

‖(Π2z)(t)− (Π2z
∗)(t)‖X ≤

∫ t

ti

‖Sq(t− η)BB∗S∗q (t1 − η)R(α,Γti+1
ti

)‖X

·
[
‖Tq(ti+1 − ti)‖L(X)(‖z(t−i )− z∗(t−i )‖X + ‖Ii(z(t−i ))− Ii(z∗(t−i ))‖X)

+
∫ ti+1

ti

‖Sq(ti+1 − s)‖L(X)‖f(s, ys + zs,H(y(s) + z(s)))

− f(s, ys + z∗s,H(y(s) + z∗(s)))‖X ds

]
(η) dη

+
∫ t

ti

‖Sq(t− s)‖L(X)‖f(s, ys + zs,H(y(s) + z(s)))

− f(s, ys + z∗s,H(y(s) + z∗(s)))‖X ds

≤ 1
α
M2

BM̃
2
S

∫ t

ti

(t− η)2(q−1)

[
M̃T (‖z(t−i )− z∗(t−i )‖X + ρi‖z(t−i )− z∗(t−i )‖X)
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+ M̃S

∫ ti+1

ti

(ti+1 − s)q−1(N1‖zs − z∗s‖Bh

+N2‖H(y(s) + z(s))−H(y(s) + z∗(s))‖X) ds
]
(η)dη

+ M̃S

∫ t

ti

(t− s)q−1(N1‖zs − z∗s‖Bh

+N2‖H(y(s) + z(s))−H(y(s) + z∗(s))‖X) ds

≤
{

1
α
M2

BM̃
2
S

b2q−1

2q − 1
M̃T (1 + ρi)

+
(

1
α
M2

BM̃
2
S

b2q−1

2q − 1
+ 1

)
bq

q
M̃S(N1C

∗
1 +N2H

∗)
}
‖z − z∗‖B0

b
.

Thus, for all t ∈ [0, b], we have ‖(Π2z) − (Π2z
∗)‖X ≤ L̂0‖z − z∗‖B0

b
. Hence Π2

is a contraction mapping. Hence, by the Krasnosel’skĭı fixed-point theorem, we
deduce that Π has a fixed point z ∈ Br which is a mild solution of (1.1). �

Theorem 3.4. Suppose that the assumptions (H1)–(H4) are satisfied and
the operator family (Sq(t))t≥0 is compact. Moreover, if f is uniformly bounded
then the fractional system (1.1) is approximately controllable on [0, b].

Proof. Let x̃α(·) be a fixed point of Π in Br. By Theorem 3.3, any fixed
point of Π is a mild solution of (1.1) under the control

ũα(t) =


B∗S∗q (t1 − t)R(α,Γt1

0 )p(x̃α), t ∈ [0, t1],

B∗S∗q (t2 − t)R(α,Γt2
t1)p(x̃

α), t ∈ (t1, t2],

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B∗S∗q (b− t)R(α,Γb
tm

)p(x̃α), t ∈ (tm, b]

and satisfies

(3.4)


x̃α(t1) = xt1 + αR(α,Γt1

0 )p(x̃α), t ∈ [0, t1],

x̃α(t2) = xt2 + αR(α,Γt2
t1)p(x̃

α), t ∈ (t1, t2],

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x̃α(b) = xb + αR(α,Γb
tm

)p(x̃α), t ∈ (tm, b].

Moreover, by the assumption that f is uniformly bounded, there exists N > 0
such that ∫ b

0

‖f(s, x̃α
s ,Hx̃

α(s))‖2 ds ≤ bN2

and consequently, the sequence {f(s, x̃α
s ,Hx̃

α(s))} is bounded in L2(J,X). Then
there is a subsequence denoted by {f(s, x̃α

s ,Hx̃
α(s))}, that converges weakly to
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say f(s) in L2(J,X). Define

w=


xt1−

∫ t1
0
Sq(t1 − s)f(s) ds, t ∈ [0, t1],

xt2 − Tq(t2 − t1)(x(t−1 ) + I1(x(t−1 )))−
∫ t2

t1
Sq(t2 − s)f(s) ds, t ∈ (t1, t2],

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xb − Tq(b− tm)(x(t−m) + Im(x(t−m)))−
∫ b

tm
Sq(b− s)f(s) ds, t ∈ (tm, b].

Now, for t ∈ [0, t1], we have

‖p(x̃α)− w‖ =
∥∥∥∥∫ t1

0

Sq(t1 − s)[f(s, x̃α
s ,Hx̃

α(s))− f(s)] ds
∥∥∥∥(3.5)

≤ sup
t∈[0,t1]

∥∥∥∥∫ t

0

Sq(t− s)[f(s, x̃α
s ,Hx̃

α(s))− f(s)] ds
∥∥∥∥.

For t ∈ [ti, ti+1], i = 1, . . . ,m, we have

‖p(x̃α)− w‖ =
∥∥∥∥∫ ti+1

ti

Sq(ti+1 − s)[f(s, x̃α
s ,Hx̃

α(s))− f(s)] ds
∥∥∥∥(3.6)

≤ sup
t∈(ti,ti+1]

∥∥∥∥∫ t

ti

Sq(t− s)[f(s, x̃α
s ,Hx̃

α(s))− f(s)] ds
∥∥∥∥.

By using infinite-dimensional version of the Ascoli–Arzela theorem, one can show
that an operator

l( · ) →
∫ ·

0

( · − s)q−1Sq( · − s) l(s) ds:L1(J,X) → C(J,X)

is compact. Hence, for all t ∈ [0, b], we obtain that ‖p(x̃α)−w‖ → 0 as α→ 0+.
Moreover, from (3.4) we get, for t ∈ [0, t1],

‖x̃α(t1)− xt1‖ ≤‖αR(α,Γt1
0 )(w)‖+ ‖αR(α,Γt1

0 )‖‖p(x̃α)− w‖
≤‖αR(α,Γt1

0 )(w)‖+ ‖p(x̃α)− w‖.

It follows from assumption Remark 3.2 and the estimation (3.5) that ‖x̃α(t1)−
xt1‖ → 0 as α → 0+. Similarly, in the view of (3.6), for t ∈ (ti, ti+1], i =
1, . . . ,m, ‖x̃α(ti+1) − xti+1‖ → 0 as α → 0+. Thus, for all t ∈ [0, b], we get
‖x̃α(b) − xb‖ → 0 as α → 0+. This proves the approximate controllability
of (1.1). �

Example 3.5. Let X = L2(0, π), and A = d2/dy2 with D(A) consisting
of all x ∈ X with d2x/dy2 and x(0) = 0 = x(π). Put en(y) =

√
2/π sinny,

n = 1, 2, . . . , then {en, n = 1, 2, . . . } is an orthonormal base for X and en is
the eigenfunction corresponding to the eigenvalue λn = −n2 of the operator A,
n = 1, 2, . . . Define an infinite dimensional control space U by

U =
{
u

∣∣∣∣ u =
∞∑

n=2

unen with
∞∑

n=2

u2
n <∞

}
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with norm defined by

‖u‖U =
( ∞∑

n=2

u2
n

)1/2

.

Define a continuous linear map B from U to X as

Bu = 2u2e1 +
∞∑

n=2

unen for u =
∞∑

n=2

unen ∈ U.

Let us consider the following fractional partial integro-differential equation
with infinite delay of the form

(3.7)

cDq
tx(t, y) =

∂2

∂y2
x(t, y) + µ(t, y) +

∫ t

−∞
K(t, x, s− t)Q(x(s, y)) ds

+
∫ t

0

g(s, t)e−x(s,y) ds, t ∈ J = [0, 1], y ∈ [0, π], t 6= tk,

x(t, 0) =x(t, π) = 0,

x(t, y) =φ(t, y), t ∈ (−∞, 0], y ∈ [0, π],

∆x(ti)(y) =
∫ ti

−∞
qi(ti − s)x(s, y) ds, y ∈ [0, π],

where cDq
t is the Caputo fractional derivative of order 0 < q < 1, φ(t, y) is

continuous, qi:R→ R are continuous.
It is well known that A generates a analytic semigroup {T (t), t > 0} in X

and it is given by

T (t)x =
∞∑

n=1

e−n2t(x, en)en, x ∈ X.

From these expression it follows that {T (t), t > 0} is uniformly bounded compact
semigroup, so that, R(λ,A) = (λI −A)−1 is compact operator for λ ∈ ρ(A).

Let h(s) = e2s, s < 0, then l =
∫ 0

∞ h(s) ds = 1/2 and define

‖φ‖Bh
=

∫ 0

−∞
h(s) sup

θ∈[s,0]

‖φ(θ)‖L2 ds.

For (t, φ) ∈ J × Bh, where φ(θ)(y) = φ(θ, y), (θ, y) ∈ (−∞, 0]× [0, π].
Let x(t)(y) = x(t, y), and define the bounded linear operator B:U → X by

(Bu)(t)(y) = µ(t, y), 0 ≤ y ≤ π and

f(t, φ,Hx(t))(y) =
∫ 0

−∞
K(t, y, θ)Q(φ(θ)(y)) dθ +Hx(t)(y),

where

Hx(t)(y) =
∫ t

0

g(s, t)e−x(s,y) ds, Ik(x(t−i ))(y) =
∫ ti

−∞
qi(ti − s)x(s, y) ds.
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On the otherhand, the linear fractional control system corresponding to (3.7)
is approximately controllable. Then, the system (3.7) can be written in the
abstract form of (1.1) and all the conditions of the Theorem 3.4 are satisfied.
Further, if we impose suitable conditions on K, Q, g and qi to verify assumptions
on Theorem 3.4, then we can conclude that the fractional control system (3.7)
is approximately controllable on [0, 1].

Definition 3.6. The control system (1.1) is said to be exactly controllable
on J if for every φ ∈ Bh, there is some control u ∈ L2(J, U), the reachable set,
R(b, φ) is dense in X, i.e. R(b, φ) = X.

Assume that the linear fractional differential system

(3.8)
Dq

tx(t) = Ax(t) + (Bu)(t), t ∈ [0, b],

x(0) = φ(0).

is exactly controllable. It is convenient at this point to introduce the controlla-
bility operator associated with (3.8) as

Γb
0 =

∫ b

0

Sq(b− s)BB∗S∗q (b− s) ds.

Lemma 3.7. If the linear fractional system (3.8) is exactly controllable if
and only then for some γ > 0 such that 〈Γb

0x, x〉 ≥ γ‖x‖2, for all x ∈ X and
consequently ‖(Γb

0)
−1‖ ≤ 1/γ.

Corollary 3.8. Assume that the hypotheses (H2) and (H3) are hold. If the
linear system associated with the system (1.1) is exactly controllable on all [0, t],
t > 0, then the nonlinear system (1.1) is exactly controllable on [0, b] provided
that

max
1≤i≤m

{(
1
γ
M2

BM̃
2
S

b2q−1

2q − 1
+ 1

)[
M̃T (1 + ρi) +

bq

q
M̃S(N1C

∗
1 +N2H

∗)
]}

< 1.

Proof. Choose the feedback control function

(3.9) ûx(t) =



B∗S∗q (t1 − t)(Γt1
0 )−1

·[xt1 −
∫ t1
0
Sq(t1 − s)f(s, xs,H(x(s))) ds](t), t ∈ [0, t1],

B∗S∗q (t2 − t)(Γt2
t1)

−1

·[xt2 − Tq(t2 − t1)(x(t−1 ) + I1(x(t−1 )))

−
∫ t2

t1
Sq(t2 − s)f(s, xs,H(x(s))) ds](t), t ∈ (t1, t2],

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B∗S∗q (b− t)(Γb
tm

)−1

·[xb − Tq(b− tm)(x(t−m) + Im(x(t−m)))

−
∫ b

tm
Sq(b− s)f(s, xs,H(x(s))) ds](t), t ∈ (tm, b].
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and define the operator Φ̂:Bb → Bb by

(Φ̂x)(t) =



φ(t), t ∈ (−∞, 0],∫ t

0
Sq(t− s)Bûx(s) ds

+
∫ t

0
Sq(t− s)f(s, xs,H(x(s))) ds, t ∈ [0, t1],

Tq(t− t1)(x(t−1 ) + I1(x(t−1 )))

+
∫ t

t1
Sq(t− s)Bûx(s) ds

+
∫ t

t1
Sq(t− s)f(s, xs,H(x(s))) ds, t ∈ (t1, t2],

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tq(t− tm)(x(t−m) + Im(x(t−m)))

+
∫ t

tm
Sq(t− s)Bûx(s) ds

+
∫ t

tm
Sq(t− s)f(s, xs,H(x(s))) ds, t ∈ (tm, b].

Note that the control (3.9) transfers the system (1.1) from the initial state φ to
the final state xb provided that the operator Φ̂ has a fixed point.

To prove the exact controllability, it is enough to show that the operator Φ̂
has a fixed point in Bb. From Lemma 3.7 and the assumptions on the data, one
can easily prove that Φ̂ has a fixed point. The proof of this corollary is similar
to that of Theorem 3.3 with some changes and hence it is omitted. �

References

[1] N. Abada, M. Benchohra and H. Hammouche, Existence and controllability results

for nondensely defined impulsive semilinear functional differential inclusions, J. Differ-
ential Equations 246 (2009), 3834–3863.

[2] R.P. Agarwal, B. De Andrade and G. Siracusa, On fractional integro-differential
equations with state-dependent delay, Comput. Math. Appl. 62 (2011), 1143–1149.

[3] H.M. Ahmed, Controllability of fractional stochastic delay equations, Lobachevskii J.
Math. 30 (2009), 195–202.

[4] , Boundary controllability of nonlinear fractional integrodifferential systems, Adv.
Difference Equ. 2010 (2010), Article ID 279493.

[5] M. Benchohra, J. Henderson, S.K. Ntouyas and A. Ouahab, Existence results
for fractional order functional differential equations with infinite delay, J. Math. Anal.

Appl. 338 (2008), 1340–1350.

[6] Y.K. Chang, J.J. Nieto and W.S. Li, Controllability of semilinear differential systems

with nonlocal initial conditions in Banach spaces, J. Optim. Theory. Appl. 142 (2009),

267–273.

[7] Y.K. Chang, Z.-H. Zhao and J.J. Nieto, Global existence and controllability to a sto-
chastic integro-differential equation, Electron. J. Qual. Theory Differ Equ. (2010), 1–15.

[8] J. Dabas, A. Chauhan and M. Kumar, Existence of the mild solutions for impulsive

fractional equations with infinite delay, Internat. J. Differential Equations 2011 (2011),
20 pages, Article ID 793023.



363

[9] A. Debbouche and D. Baleanu, Controllability of fractional evolution nonlocal im-

pulsive quasilinear delay integro-differential systems, Comput. Math. Appl. 62 (2011),
1442–1450.
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