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A SECOND ORDER DIFFERENTIAL INCLUSION

WITH PROXIMAL NORMAL CONE IN BANACH SPACES

Fatine Aliouane — Dalila Azzam-Laouir

Abstract. In the present paper we mainly consider the second order evo-

lution inclusion with proximal normal cone:

(∗)


−ẍ(t) ∈ NK(t)(ẋ(t)) + F (t, x(t), ẋ(t)), a.e.

ẋ(t) ∈ K(t),

x(0) = x0, ẋ(0) = u0,

where t ∈ I = [0, T ], E is a separable reflexive Banach space, K(t) a ball

compact and r-prox-regular subset of E, NK(t)( · ) the proximal normal

cone of K(t) and F an u.s.c. set-valued mapping with nonempty closed

convex values. First, we prove the existence of solutions of (∗). After, we
give an other existence result of (∗) when K(t) is replaced by K(x(t)).

1. Introduction

The existence of solutions for the sweeping processes has been introduced

and thoroughly studied in the 70’s by Moreau in [23], in the setting where all

the sets are assumed to be convex. Recently in [10], the authors proved the

existence of solutions of the perturbed sweeping process,

(1.1) −ẋ(t) ∈ NK(t)(x(t)) + F (t, x(t)), a.e. t ∈ [0, T ]; x(0) = x0 ∈ K(0),

where K : [0, T ] ⇒ H is a set-valued mapping which has not necessarily convex

values and F : [0, T ] ×H ⇒ H is an upper semicontinuous set-valued mapping
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with convex compact values. Then the main concept, which appeared to get

around the convexity of the sets K(t), is the notion of “uniform prox-regularity”.

This property is very well-adapted to the resolution of (1.1).

Several papers (for example [2], [3], [4], [10], . . .) have been devoted to the

study of the properties of prox-regular (or proximally smooth) sets. Using these

properties, the authors in [1], [7], [9], [13], [16], [17], [19], [20] and [26] proved

some existence results of the first and second order sweeping processes.

Note that all the results recalled in the last paragraph above have been

obtained in finite dimensional or Hilbert spaces. Newly, some extensions of

convex sweeping processes from Hilbert spaces to Banach spaces are proved in [5],

[6], [8] and [22].

Our aim in this paper is to prove, in a separable reflexive and uniformly

smooth Banach space E, the existence results for the following problem

(PF )


−ẍ(t) ∈ NK(t)(ẋ(t)) + F (t, x(t), ẋ(t)), a.e. t ∈ [0, T ],

ẋ(t) ∈ K(t), for all t ∈ [0, T ],

x(0) = x0, ẋ(0) = u0,

where K : [0, T ] ⇒ E is a nonempty ball compact and r-prox-regular valued

set-valued mapping, NK(t)( · ) the proximal normal cone K(t) and F : [0, T ] ×
E×E ⇒ E an upper semicontinuous set-valued mapping with nonempty closed

convex values. Moreover, we extend this result to the case where the set-valued

mapping K depends on the state variable, that is, we give an existence theorem

for the problem:

(P ′F )


−ẍ(t) ∈ NK(x(t))(ẋ(t)) + F (t, x(t), ẋ(t)), a.e. t ∈ [0, T ],

ẋ(t) ∈ K(x(t)), for all t ∈ [0, T ],

x(0) = x0, ẋ(0) = u0.

Note that our first theorem extend to the second order the result proved in [5].

The organization of this paper is as follows. Section 2 is devoted to some

definitions and notation needed in the paper and Section 3 is reserved to the

main results.

2. Notation and preliminaries

In this section we recall the main definitions and notations used throughout

the paper.

Let (E, ‖ · ‖) be a separable Banach space, E′ its topological dual and 〈 · , · 〉
their duality product. BE(0, r) is the closed ball of E of center 0 and radius r,

BE the closed unit ball and SE is the unit sphere of E.

Let CE([0, T ]) (T > 0) be the Banach space of all continuous mappings

u : [0, T ]→ E, endowed with the sup-norm, and C1
E([0, T ]) be the Banach space
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of all continuous mappings u : [0, T ] → E with continuous derivative, equipped

with the norm

‖u‖C1 = max
{

max
t∈[0,T ]

‖u(t)‖, max
t∈[0,T ]

‖u̇(t)‖
}
.

We denote by L([0, T ]) the σ-algebra of Lebesgue measurable subsets of [0, T ].

(L1
E([0, T ]), ‖ · ‖1) is the Banach space of Lebesgue–Bochner integrable E-valued

mappings and (L∞E ([0, T ]), ‖ · ‖∞) is the Banach space of essentially bounded

E-valued mappings.

We said that a mapping u : [0, T ] → E is absolutely continuous if there is

a mapping v ∈ L1
E([0, T ]) such that

u(t) = u(0) +

∫ t

0

v(s) ds, for all t ∈ [0, T ],

in this case v = u̇ almost everywhere.

For A ⊂ E, co(A) denotes the convex hull of A and co(A) its closed convex

hull. We have the following characterization.

Theorem 2.1. Let K be a nonempty subset of E. Then,

co(K) = {x ∈ E | 〈x′, x〉 ≤ δ∗(x′,K) for all x′ ∈ E′},

where δ∗(x′,K) denotes the support function associated with K, i.e.

δ∗(x′,K) = sup
y∈K
〈x′, y〉.

It is well know that the support function of an upper semicontinuous set-

valued mapping is upper semicontinuous.

For closed subsets A and B of E, the Hausdorff distance between A and B

is defined by

H(A,B) = sup(e(A,B), e(B,A)),

where e(A,B) = sup
a∈A

d(a,B) stands for the excess of A over B and d(a,B) =

inf
x∈B
‖a− x‖.
We recall that for a closed convex subset A of E, one has

(2.1) d(x,A) = sup
x′∈BE′

(〈x′, x〉 − δ∗(x′, A)).

Definition 2.2. A subset A ⊂ E is said to be ball-compact if for all closed

ball B = B(x,R) of E, the set B ∩ A is compact. Obviously, a ball-compact

subset A is closed.

Definition 2.3. Let A be a closed subset of E. Then the set-valued projec-

tion operator PA is defined by

PA(x) = {y ∈ E | ‖x− y‖ = d(x,A)} for all x ∈ E.
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Definition 2.4. Let A be a closed subset of E and x ∈ A, we denote by

NA(x) the proximal normal cone of A at x, defined by

NA(x) = {v ∈ E, ∃s > 0, x ∈ PA(x+ sv)}.

Definition 2.5. For every point x ∈ A and r > 0, we define Γr(x,A) as the

set of good directions v to project at the scale r from x+ rv to x, that is,

Γr(A, x) = {v ∈ E, x ∈ PA(x+ rv)}.

Remark 2.6. For all x ∈ A, we obviously have by definition of the proximal

normal cone

NA(x) =
⋃
r>0

Γr(A, x).

We refer to [3, Lemma 2.1] for the following geometric lemma.

Lemma 2.7. Let E be a Banach space and K be a closed subset of E. Then

for x ∈ A and v ∈ Γr(A, x), we have λv ∈ Γr(A, x) for all λ ∈ (0, 1). Therefore,

if we assume that E is uniformly convex then for all λ ∈ (0, 1), we have x ∈
PA(x+ λrv).

We now come to the main notion of prox-regularity. It was initially intro-

duced by H. Federer ([21]) in spaces of finite dimension under the name of posi-

tively reached sets. Then, it was extended in Hilbert spaces by A. Canino in [11]

and A.S. Shapiro in [25]. After, this notion was studied by F.H. Clarke, R.J. Stern

and P.R. Wolenski in [14] (see also [15]) and by R.A. Poliquin, R.T. Rockafellar

and L. Thibault in [24]. Few years later, F. Bernard, L. Thibault and N. Zlateva

have defined this notion in Banach spaces (see [2], [3] and [4]).

Definition 2.8. Let A be a closed subset of E and r > 0. The set A is said

to be r-prox-regular if for all x ∈ A and v ∈ NA(x) \ {0}

B

(
x+ r

v

‖v‖
, r

)
∩A = ∅.

The following Proposition give some important consequences of the prox-

regularity needed in the sequel. For the proof and more details we refer the

reader to [24].

Proposition 2.9. Let r ∈ (0,+∞] and let A be a nonempty closed and

r-prox-regular subset of E. Then we have the following:

(a) For all x ∈ E with d(x,A) < r, the projection of x onto A is well-defined

and continous, that is, PA(x) is single-valued;

(b) if u = PA(x) then, u = PA(u+ r(x− u)/‖x− u‖).

Now we recall some useful definitions, due to the geometric theory of Banach

spaces (we refer the reader to [18] for these concepts and more details).
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Definition 2.10. The Banach space (E, ‖·‖) is said to be uniformly smooth

if his norm is uniformly Fréchet differentiable away of 0, it means that for any

two unit vectors x0, h ∈ E, the limit

lim
t↓0

‖x0 + th‖ − ‖x0‖
t

exists uniformly with respect to h, x0 ∈ SE .

As we know that the norm could be non differentiable at the origin 0, we

study the function x 7→ ‖x‖p for an exponent p > 1.

Proposition 2.11. Let E be a uniformly smooth Banach space and p ∈
(1,∞) be an exponent. The function x 7→ ‖x‖p is C1 over the whole space E.

Definition 2.12. For E a uniformly smooth Banach space and p ∈ (1,∞),

we denote

Jp(x) :=
1

p
(∇‖ · ‖p)(x) ∈ E′.

Definition 2.13. Let I be an interval of R. A separable reflexive uniformly

smooth Banach space E is said to be “I-smoothly weakly compact” for an ex-

ponent p ∈ (1,∞) if for all bounded sequence (xn)n of L∞E (I), we can extract

a subsequence (yn)n weakly converging to a point y ∈ L∞E (I) such that for all

z ∈ L∞E (I) and φ ∈ L1
R(I),

lim
n→∞

∫
I

〈Jp(z(t) + yn(t))− Jp(yn(t)), yn(t)〉φ(t) dt

=

∫
I

〈Jp(z(t) + y(t))− Jp(y(t)), y(t)〉φ(t) dt.

Remark 2.14. It is easy to check that the notion of “I-smoothly weakly

compactness” does not depend on the time-interval I.

Proposition 2.15. All separable Hilbert space H is I-smoothly weakly com-

pact for p = 2.

The following proposition describes a useful property of weak continuity of

the projection operator. For the proof we refer the reader to [5].

Proposition 2.16. Let (E, ‖ · ‖) be a separable, reflexive and uniformly

smooth Banach space. Let Cn, C : I ⇒ E be set-valued mappings taking nonempty

closed values and satisfying

sup
t∈I
H(Cn(t), C(t)) −→

n→∞
0.

We assume that for an exponent p ∈ [2,∞) and a bounded sequence (vn)n
of L∞E (I), we can extract a subsequence (vk(n))n weakly converging to a point
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v ∈ L∞E (I) such that for all z ∈ L∞E (I) and φ ∈ L1
R(I),

lim sup
n→∞

∫
I

〈Jp(z(t) + vk(n)(t))− Jp(vk(n)(t)), vk(n)(t)〉φ(t) dt

=

∫
I

〈Jp(z(t) + v(t))− Jp(v(t)), v(t)〉φ(t) dt.

Then the projection PC( · ) is weakly continuous in L∞E (I) (relatively to the direc-

tions given by the sequence (vn)n) in the following sense: for all r > 0 and for

any bounded sequence (un)n of L∞E (I) satisfyingun → u in L∞E (I),

un(t) ∈ PCn(t)(un(t) + rvn(t))) a.e. t ∈ I,

one has u(t) ∈ PC(t)(u(t) + rv(t)) for almost every t ∈ I.

3. Main results

Now, we are able to prove our main existence theorems.

Theorem 3.1. Let I = [0, T ] (T > 0) and E be a separable, reflexive, uni-

formly smooth Banach space, which is I-smoothly weakly compact for an exponent

p ∈ [2,∞). Let F : I ×E ×E ⇒ E be an upper semicontinuous set-valued map-

ping with nonempty closed convex values. We assume that there exists a constant

m > 0 such that

(3.1) F (t, x, u) ⊂ mBE , for all (t, x, u) ∈ I × E × E.

Let r > 0 and K : [0, T ] ⇒ E be a set-valued mapping taking nonempty ball-

compact and r-prox-regular values. We assume that K( · ) moves in a Lipschitz

way, that is, there exists a constant k > 0 such that for all s, t ∈ I,

(3.2) H(K(t),K(s)) ≤ k|t− s|.

Then for all x0 ∈ E and u0 ∈ K(0), the differential inclusion

(PF )



u(0) = u0,

x(t) = x0 +

∫ t

0

u(s) ds for all t ∈ I,

u(t) ∈ K(t) for all t ∈ I,
−u̇(t) ∈ NK(t)(u(t)) + F (t, x(t), u(t)) a.e. t ∈ I,

has Lipschitz solutions u, x : I → E. Moreover, we have ‖u̇(t)‖ ≤ 2m + k for

almost every t ∈ I. In other words, the differential inclusion

(PF )


−ẍ(t) ∈ NK(t)(ẋ(t)) + F (t, x(t), ẋ(t)) a.e. t ∈ I,
ẋ(t) ∈ K(t) for all t ∈ I,
x(0) = x0, ẋ(0) = u0,
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has at least a Lipschitz solution x( · ) ∈ C1
E(I).

Proof. Step 1. Let n0 ∈ N∗ such that

(3.3)
T

n0
(m+ k) ≤ r

2
.

Consider the partition {tn,0, In,i}, 0 ≤ i ≤ n of the time-interval I = [0, T ]

defined by In,i = (tn,i, tn,i+1] for 0 ≤ i ≤ n − 1, tn,i = ih for 0 ≤ i ≤ n and

h = T/n. For every n ≥ n0 we define the following approximating mappings on

each interval In,i as follows (this approximation is inspired from [5])

(3.4)



un(t) = un,i +

(
t

h
− i
)

(un,i+1 − un,i),

xn(t) = x0 +

∫ t

0

un(s) ds,

xn,i = xn(tn,i),

Kn(t) = K(tn,i+1),

and since F has nonempty values, we choose a point,

(3.5) zn,i ∈ F (tn,i, xn,i, un,i)

and we define the mapping zn from I to E by zn(t) = zn,i, for all t ∈ In,i, where

un,0 = u0; xn,0 = x0, and for all 0 ≤ i ≤ n− 1 the point un,i+1 is given by

(3.6) un,i+1 = PK(tn,i+1)(un,i − hzn,i).

This operation is allowed since the constants m and k satisfy relation (3.3), K

satisfies (3.2) and the sets K(t) are assumed to be r-prox-regulars. Indeed, we

have un,0 ∈ K(tn,0) and then

d(un,0 − hzn,0,K(tn,1)) ≤ d(un,0 − hzn,0,K(tn,0)) +H(K(tn,1),K(tn,0))

≤‖un,0 − hzn,0 − un,0‖+ k|tn,1 − tn,0|

=h(‖zn,0‖+ k) ≤ h(m+ k) ≤ r

2
< r.

By Proposition 2.9, we have that PK(tn,1)(un,0 − hzn,0) is a nonempty single-

valued set. Then we define the point un,1 ∈ K(tn,1), by

un,1 = PK(tn,1)(un,0 − hzn,0).

Similarly, we can define, by induction, all the points (un,i), 0 ≤ i ≤ n.

Observe that relation (3.6) and Proposition 2.9 give

(3.7) un,i+1 = PK(tn,i+1)

(
un,i+1 + r

un,i − hzn,i − un,i+1

‖un,i − hzn,i − un,i+1‖

)
,

that is,
un,i − hzn,i − un,i+1

‖un,i − hzn,i − un,i+1‖
∈ Γr(K(tn,i+1), un,i+1).
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On the other hand, we have by (3.4), for all t ∈ In,i = (tn,i, tn,i+1]

un(t) = un,i +

(
t

h
− i
)

(un,i+1 − un,i),

and for all t ∈ In,i−1 = (tn,i−1, tn,i]

un(t) = un,i−1 +

(
t

h
− (i− 1)

)
(un,i − un,i−1).

Then

un(tn,i) =un,i−1 +

(
tn,i
h
− (i− 1)

)
(un,i − un,i−1)

=un,i−1 + (i− i+ 1)(un,i − un,i−1) = un,i,

and

lim
t→>tn,i

un(t) = un,i +

(
tn,i
h
− i
)

(un,i+1 − un,i) = un,i.

Consequently, for each n ≥ n0, the mapping un is continuous and xn ∈ C1
E(I).

Step 2. We look for a differential inclusion satisfied by the mapping un. For

almost every t ∈ In,i, we have by (3.4)

u̇n(t) =
1

h
(un,i+1 − un,i + hzn,i)− zn,i.

We set

∆n(t) = u̇n(t) + zn(t) =
1

h
(un,i+1 − un,i + hzn,i).

We claim that −∆n(t) ∈ Γr/(m+k)(Kn(t), un,i+1)∩B(0, (m+k)), which is equiva-

lent to

‖∆n(t)‖ ≤ (m+ k) and un,i+1 ∈ PKn(t)

(
un,i+1 −

r

(m+ k)
∆n(t)

)
.

First, we check that ∆n(t) is a bounded vector. Using the construction of the

points un,i+1 (see relation (3.6)) and the fact that un,i ∈ K(tn,i), we have for

almost every t ∈ In,i

‖∆n(t)‖ =

∥∥∥∥ 1

h
(un,i+1 − un,i + hzn,i)

∥∥∥∥
=

1

h
‖PK(tn,i+1)(un,i − hzn,i)− (un,i − hzn,i)‖

=
1

h
d(un,i − hzn,i,K(tn,i+1))

≤ 1

h
(d(un,i − hzn,i,K(tn,i)) +H(K(tn,i+1),K(tn,i)))

≤ 1

h
(‖un,i − hzn,i − un,i‖+ k|tn,i+1 − tn,i|)

≤ 1

h
(h(m+ k)) = m+ k.
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That is, for almost every t ∈ In,i,

(3.8) ‖∆n(t)‖ ≤ (m+ k).

Then, by considering the vector v = un,i − hzn,i, since K has r-prox-regular

values, the relation (3.7) gives

(3.9) un,i+1 = PKn(t)(PKn(t)(v)− r
PKn(t)(v)− v
‖PKn(t)(v)− v‖

).

Observe, that by the relation (3.8), we have ‖PKn(t)(v)− v‖/(h(m+ k)) ≤ 1.

Then, applying Lemma 2.7 to the relation (3.9), with λ = ‖PKn(t)(v) − v‖/
(h(m+ k)), we get

un,i+1 =PKn(t)

(
PKn(t)(v)− r

h

‖PKn(t)(v)− v‖
(m+ k)

PKn(t)(v)− v
‖PKn(t)(v)− v‖

)
=PKn(t)

(
PKn(t)(v)− r

h(m+ k)
(PKn(t)(v)− v)

)
=PKn(t)

(
PKn(t)(v)− r

(m+ k)
∆n(t)

)
,

that is, −∆n(t) ∈ Γr/(m+k)(Kn(t), un,i+1), or equivalently

(3.10) un,i+1 ∈ PKn(t)(un,i+1 −
r

(m+ k)
∆n(t)) a.e. on In,i.

Step 3. Existence of limit mappings. First, we will to prove the convergence

of the sequence (un( · )) ∈ CE(I). By the relation (3.8), we have for almost every

t ∈ I,

‖u̇n(t)‖ ≤ ‖u̇n(t) + zn(t)‖+ ‖zn(t)‖ = ‖∆n(t)‖+ ‖zn(t)‖ ≤ 2m+ k,

i.e.

(3.11) ‖u̇n(t)‖ ≤ 2m+ k.

This shows that (u̇n( · )) is uniformly bounded by (2m + k). So (un( · )) is a

bounded sequence of CE(I) since for every t ∈ I

(3.12) ‖un(t)‖ ≤ ‖u0‖+

∫ t

0

‖u̇n(s)‖ ds ≤ ‖u0‖+ T (2m+ k) := M.

Now, we will show that (un( · )) is relatively compact. Obviously, (un( · )) is

equicontinuous. Let us prove that for every fixed t, the sequence (un(t))n≥n0 is

relatively compact. For each i and for t ∈ In,i, using the relation (3.8) and the

fact that un,i ∈ K(tn,i), we have

d(un(t),K(t)) ≤ d(un(t),K(tn,i)) +H(K(tn,i),K(t))

≤‖un(t)− un,i‖+ k|t− tn,i|

=

∥∥∥∥un,i +

(
t

h
− i
)

(un,i+1 − un,i)− un,i
∥∥∥∥+ k|t− tn,i|
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≤
∥∥∥∥( tn,i+1

h
− i
)

(un,i+1 − un,i)
∥∥∥∥+ k|tn,i+1 − tn,i|

= ‖un,i+1 − un,i‖+ kh

= ‖un,i+1 − un,i + hzn,i − hzn,i‖+ kh

= ‖h∆n(t)− hzn,i‖+ kh ≤ h‖∆n(t)‖+ hm+ kh

≤h(m+ k) + hm+ kh = 2h(m+ k) = 2
T

n
(m+ k).

Then, for each n ≥ n0 there is yn(t) ∈ K(t) such that

d(un(t),K(t)) ≤ ‖yn(t)− un(t)‖ < 2
T

n
(m+ k) +

T

n
(m+ k) = 3

T

n
(m+ k).

Set en(t) = un(t)− yn(t), and observe that

‖en(t)‖ < 3
T

n
(m+ k) and un(t)− en(t) ∈ K(t).

Using this last inequality and the relation (3.12) we get for each n ≥ n0,

‖un(t)− en(t)‖ ≤M + 3
T

n
(m+ k) ≤M + 3

T

n0
(m+ k) := M ′,

that is, (un(t)− en(t)) ∈ K(t) ∩B(0,M ′), or equivalently

(3.13) un(t) ∈ K(t) ∩B(0,M ′) + ({0} ∪ {ek(t)/k ≥ n0}) := K̃(t).

Remark that the set K̃(t) is compact sinceK(t) is ball-compact and lim
n→∞

en(t)=0.

Consequently (un(t))n≥n0 is relatively compact. By Ascoli–Arzelà’s Theorem,

the sequence (un( · ))n≥n0
is relatively compact in CE(I), by extracting a subse-

quence still denoted (un( · )) we may suppose the uniform convergence of (un( · ))
to some mapping u( · ) ∈ CE(I). Obviously u(0) = u0, u( · ) is a Lipschitz map-

ping and for all t ∈ I

(3.14) u(t) ∈ K(t)

since K(t) is closed.

Now, we will to prove the convergence of (xn( · )) in CE(I). For all t, s ∈ I

‖xn(t)− xn(s)‖ ≤
∥∥∥∥x0 +

∫ t

0

un(τ)dτ − x0 −
∫ t

0

un(τ) dτ

∥∥∥∥
≤
∫ t

0

‖un(τ)‖ dτ ≤M |t− s|.

That is, (xn( · )) is equicontinuous. Furthermore, for all t ∈ I,

‖xn(t)‖ =

∥∥∥∥x0 +

∫ t

0

un(s) ds

∥∥∥∥ ≤ ‖x0‖+

∫ t

0

‖un(s)‖ ds ≤ ‖x0‖+MT.

On the other hand, as

xn(t) = x0 +

∫ t

0

un(s) ds,
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by the relation (3.13), we get

xn(t) ∈ x0 +

∫ t

0

co(K̃(s)) ds := Γ(t),

which is a compact set since for all t ∈ I, co(K̃(t)) is a convex compact set

(see [12] for more details). Therefore, (xn( · ))n≥n0 is relatively compact. Then

we can apply Ascoli–Arzelà’s Theorem to conclude the existence of a subse-

quence, still denoted (xn( · )), which converges uniformly on I to some mapping

x( · ) ∈ CE(I). Obviously x(0) = x0 and x( · ) is a Lipschitz mapping with

ratio M .

Observe that for all t ∈ I,

(3.15) x(t) = lim
n→∞

xn(t) = x0 +

∫ t

0

lim
n→∞

un(s) ds = x0 +

∫ t

0

u(s) ds

using Lebesgue’s theorem since (un( · )) is equibounded (relation (3.12)), hence,

ẋ( · ) = u( · ) almost everywhere.

Finally, let us prove the convergence of the sequences (zn( · )) and (u̇n( · )).
First, set for every t ∈ In,i, θn(t) = tn,i+1, δn(t) = tn,i, and observe that

lim
n→∞

|δn(t)− t| = lim
n→∞

(t− tn,i) ≤ lim
n→∞

(tn,i+1 − tn,i) = lim
n→∞

T

n
= 0,

that is, lim
n→∞

δn(t) = t. By the same calculus we have lim
n→∞

θn(t) = t. Then, for

all t ∈ I,

lim
n→∞

‖xn(δn(t))− x(t)‖ ≤ lim
n→∞

(‖xn(δn(t))− xn(t)‖+ ‖xn(t)− x(t)‖)

≤ lim
n→∞

(M |δn(t)− t|+ ‖xn(t)− x(t)‖) = 0.

This shows that lim
n→∞

‖xn(δn(t))− x(t)‖ = 0.

Similarly, we have, for all t ∈ I,

lim
n→∞

‖un(δn(t))− u(t)‖ ≤ lim
n→∞

(‖un(δn(t))− un(t)‖+ ‖un(t)− u(t)‖)

≤ lim
n→∞

((2m+ k)|δn(t)− t|+ ‖un(t)− u(t)‖),

that is, lim
n→∞

‖un(δn(t))− u(t)‖ = 0.

The convergence of the sequences (xn(θn( · )))n and (un(θn( · )))n to x( · ) and

u( · ) respectively, is also obtained.

Now, by relation (3.5) and the construction of un, xn and zn, we have for all

t ∈ I,

(3.16) zn(t) ∈ F (δn(t), xn(δn(t)), un(δn(t))).

Since F satisfies the relation (3.1), we deduce that (zn( · ))n is a bounded se-

quence in L∞E (I), then we can extract a subsequence, still denoted (zn( · )) con-

verging σ(L∞E ,L
1
E′) to some mapping z( · ) in L∞E (I) = (L1

E′(I))′ since E is



154 F. Aliouane — D. Azzam-Laouir

reflexive, i.e. for all ζ( · ) ∈ L1
E′(I), we have

(3.17) lim
n→∞

〈zn( · ), ζ( · )〉 = 〈z( · ), ζ( · )〉.

As L∞E′(I) ⊂ L1
E′(I), by the relation (3.17) we deduce that for all ζ( · ) ∈ L∞E′(I),

lim
n→∞

〈zn( · ), ζ( · )〉 = 〈z( · ), ζ( · )〉,

that is, (zn( · )) converges σ(L1
E ,L

∞
E′) to z( · ) in L1

E(I), so Mazur’s Lemma en-

sures that for almost every t ∈ I, there exists a sequence (ξn( · )) (where ξn( · )
is a convex combination of {zk( · ), k ≥ n}) which converges to z( · ) in L1

E(I).

We can extract from the sequence (ξn( · )) a subsequence which converges almost

everywhere to z( · ). Then,

z(t) ∈ {ξn(t), n ∈ N} =
⋂
n∈N
{ξn(t)}, a.e. t ∈ I,

and so,

z(t) ∈
⋂
n∈N

co{zk(t), k ≥ n}, a.e. t ∈ I.

Set An = {zk(t), k ≥ n}. Then, by Theorem 2.1, we obtain for all x′ ∈ E′,

〈x′, z(t)〉 ≤ δ∗(x′, An) for all n ∈ N

= sup
k≥n
〈x′, zk(t)〉 for all n ∈ N,

that is,

〈x′, z(t)〉 ≤ inf
n∈N

sup
k≥n
〈x′, zk(t)〉 = lim sup

n→∞
〈x′, zn(t)〉.

From the relation (3.16), we get

〈x′, z(t)〉 ≤ lim sup
n→∞

δ∗(x′, F (δn(t), xn(δn(t)), un(δn(t)))).

We define for all x′ ∈ E′ the mapping

hx′ : [0, T ]× E × E → R, (t, x, u) 7→ hx′(t, x, u) = δ∗(x′, F (t, x, u))

which is upper semicontinuous since F is upper semicontinuous, and hence

lim sup
(t,x,u)→(t0,x0,u0)

hx′(t, x, u) ≤ hx′(t0, x0, u0).

Hence, since lim
n→∞

δn(t) = t, lim
n→∞

xn(δn(t)) = x(t) and lim
n→∞

un(δn(t)) = u(t), we

conclude that,

lim sup
n→∞

δ∗(x′, F (δn(t), xn(δn(t)), un(δn(t))) ≤ δ∗(x′, F (t, x(t), u(t)))

so,

〈x′, z(t)〉 ≤ δ∗(x′, F (t, x(t), u(t))), for all x′ ∈ E′,
and then,

sup
x′∈E′

(〈x′, z(t)〉 − δ∗(x′, F (t, x(t), u(t)))) ≤ 0.
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Since F has closed convex values, by the relation (2.1), we get

d(z(t), F (t, x(t), u(t))) ≤ 0.

This shows that

(3.18) z(t) ∈ F (t, x(t), u(t)), a.e. t ∈ I.

On the other hand, we see by the relation (3.11), that (u̇n( · ))n is bounded in

L∞E (I), up to a subsequence, we may suppose that (u̇n( · ))n weakly* converges in

L∞E (I) to some mapping w( · ) and that w( · ) = u̇( · ). Indeed, for all y ∈ L1
E′(I),

lim
n→∞

〈u̇n( · ), y( · )〉 = 〈w( · ), y( · )〉,

i.e.

lim
n→∞

∫ t

0

〈u̇n(s), y(s)〉 ds =

∫ t

0

〈w(s), y(s)〉 ds,

in particular for y( · ) = 1[0,t]( · )ej , with t ∈ I, 1[0,t] the characteristic function of

the interval [0, t], and (ej) a sequence of the space E′ which separates the points

of E (such a sequence exists since E is separable), then we obtain〈
lim
n→∞

∫ t

0

u̇n(s) ds, ej

〉
=

〈∫ t

0

w(s)ds, ej

〉
, for all j,

which ensures,

lim
n→∞

∫ t

0

u̇n(s) ds =

∫ t

0

w(s) ds.

As (un( · )) is a sequence of absolutely continuous mappings, we have the follow-

ing equality

lim
n→∞

(un(t)− un(0)) = lim
n→∞

∫ t

0

u̇n(s) ds =

∫ t

0

w(s) ds,

then

u(t) = u(0) +

∫ t

0

w(s) ds,

so u( · ) is absolutely continuous, and hence w( · ) = u̇( · ).
Observe again, that for all t ∈ I

(3.19) H(Kn(t),K(t)) = H(K(θn(t)),K(t)) ≤ k|θn(t)− t| → 0.

Let us prove now that for almost every t ∈ I

−u̇(t)− z(t) ∈ Γr/(m+k)(K(t), u(t)),

or equivalently

u(t) ∈ PK(t)(u(t)− r

(m+ k)
(u̇(t) + z(t))).

Set r′ = r/(m+ k). We have ∆n(t) = u̇n(t) + zn(t) and by the arguments given

above we know that (∆n( · ))n weakly*-converges in L∞E (I) to u̇( · ) + z( · ) :=

∆( · ). Supplying the property “I-smoothly weakly compact” supposed on the
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space E to the sequence (r′∆n( · ))n we obtain for all y ∈ L∞E (I) and all φ ∈
L1
R(I),

lim
n→∞

∫
I

〈Jp(y(t)− r′∆n(t))− Jp(−r′∆n(t)),∆n(t)〉φ(t) dt

=

∫
I

〈Jp(y(t)− r′∆(t))− Jp(−r′∆(t)),∆(t)〉φ(t) dt.

By (3.10) we know that for almost every t ∈ I

un(θn(t)) ∈ PKn(t)(un(θn(t))− r′∆n(t)),

and since the sequence (un(θn( · )))n strongly converges in L∞E (I) to u( · ), using

the relation (3.19), we conclude by Proposition 2.16, that for almost every t ∈ I

u(t) ∈ PK(t)(u(t)− r′∆(t)),

that is, −∆(t) ∈ NK(t)(u(t)) (see Definition 2.5 and Remark 2.6), or equivalently,

−u̇(t)− z(t) ∈ NK(t)(u(t)), a.e. t ∈ I,

and, by (3.18), we get

−u̇(t) ∈ NK(t)(u(t)) + F (t, x(t), u(t)), a.e. t ∈ I.

Finally, by the relation (3.14) and (3.15) we conclude that
−ẍ(t) ∈ NK(t)(ẋ(t)) + F (t, x(t), ẋ(t)), a.e. t ∈ I,
ẋ(t) ∈ K(t), for all t ∈ I,
x(0) = x0; ẋ(0) = u0,

that is, our problem (PF ) has at least a Lipschitz solution x ∈ C1
E(I). Further-

more,

‖ẍ(t)‖ ≤ 2m+ k, a.e. t ∈ I.

The proof of our theorem is then complete. �

Remark that in Theorem 3.1, the set-valued mapping K depends on the

time. In the following, we extend this result to the case where K depends on the

state variable x, that is, our aim is to give an existence result for the following

differential inclusion

(P ′F )


−ẍ(t) ∈ NK(x(t))(ẋ(t)) + F (t, x(t), ẋ(t)) a.e. t ∈ I,
ẋ(t) ∈ K(x(t)) for all t ∈ I,
x(0) = x0, ẋ(0) = u0.

Theorem 3.2. Let I = [0, T ] (T > 0) and E be a separable, reflexive, uni-

formly smooth Banach space, which is I-smoothly weakly compact for an exponent
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p ∈ [2,∞). Let F : I ×E ×E ⇒ E be an upper semicontinuous set-valued map-

ping with nonempty closed convex values. We assume that there exists a constant

m > 0 such that

(3.20) F (t, x, u) ⊂ mBE , for all (t, x, u) ∈ I × E × E.

Let r > 0 and K : E ⇒ E be a set-valued mapping taking nonempty and r-prox-

regular values. We assume that K( · ) satisfies the following assumptions:

(a) K( · ) moves in a Lipschitz way, that is, there exists a constant k > 0

such that for all y, z ∈ E,

H(K(y),K(z)) ≤ k‖y − z‖;

(b) there is a constant l > 0 and a ball-compact set L ⊂ E such that

K(y) ⊂ L ⊂ lBE , for all y ∈ E.

Then for all x0 ∈ E and u0 ∈ K(x0), the differential inclusion (P ′F ) has at least

a Lipschitz solution x( · ) ∈ C1
E(I).

Proof (sketch). The proof is essentially the same as for Theorem 3.1. Fix

n0 ∈ N∗ such that

(3.21)
T

n0
(m+ 3kl) ≤ r

2
.

The first step consists in defining the approximating mappings as in (3.4) and

(3.5) by setting for every n ≥ n0 and for each t ∈ In,i

(3.22)



un(t) = un,i +

(
t

h
− i
)

(un,i+1 − un,i),

xn(t) = x0 +

∫ t

0

un(s) ds,

xn,i = xn(tn,i),

zn,i ∈ F (tn,i, xn,i, un,i),

Kn(t) = K(xn,i),

where un,0 = u0; xn,0 = x0 and for all 0 ≤ i ≤ n− 1 the point un,i+1 is given by

(3.23) un,i+1 = PK(xn,i)(un,i − hzn,i).

First, observe that this last relation implies that un,i+1 ∈ K(xn,i) and then by

using the hypothesis (b), we obtain for all 0 ≤ i ≤ n

‖xn,i − xn,i−1‖ =

∥∥∥∥∫ tn,i

0

un(s) ds−
∫ tn,i−1

0

un(s) ds

∥∥∥∥ ≤ ∫ tn,i

tn,i−1

‖un(s)‖ ds

=

∫ tn,i

tn,i−1

‖un,i−1 +

(
s

h
− (i− 1)

)
(un,i − un,i−1)‖ ds
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≤
∫ tn,i

tn,i−1

(
‖un,i−1‖+

∣∣∣∣ sh − (i− 1)

∣∣∣∣(‖un,i‖+ ‖un,i−1‖)
)
ds

≤
∫ tn,i

tn,i−1

(
l +

(
tn,i
h
− (i− 1)

)
(2l)

)
ds = 3l|tn,i − tn,i−1| = 3lh.

Let us prove now that the relation (3.23) is well defined. Indeed, since u0 ∈
K(x0), we have

d(un,0 − hzn,0,K(xn,0)) ≤ ‖un,0 − hzn,0 − un,0‖ ≤ hm ≤
r

2
< r

using the relation (3.21). Then we set un,1 = PK(xn,0)(un,0−hzn,0) which implies

that un,1 ∈ K(xn,0). Consequently, using (3.21) a second time, we can write

d(un,1 − hzn,1,K(xn,1)) ≤ d(un,1 − hzn,1,K(xn,0)) +H(K(xn,1),K(xn,0))

≤‖un,1 − hzn,1 − un,1‖+ k‖xn,1 − xn,0‖

≤hm+ k3lh ≤ T

n0
(m+ 3kl) ≤ r

2
< r.

Then, we set un,2 = PK(xn,1)(un,1−hzn,1). Similarly, we can define, by induction,

all the points (un,i), 0 ≤ i ≤ n.

The second step of the proof still holds with the following estimate

‖∆n(t)‖ ≤ m+ 3kl, a.e. t ∈ In,i

and

−∆n(t) ∈ Γr/(m+3kl)(Kn(t), un,i+1)

or equivalently,

un,i+1 ∈ PKn(t)

(
un,i+1 −

r

(m+ 3kl)
∆n(t)

)
.

In step 3, for proving that for every fixed t the sequence (un(t))n≥n0
is

relatively compact, we consider for each i and all t ∈ In,i

d(un(t),Kn(t)) = d(un(t),K(xn,i))

≤ d(un(t),K(xn,i−1)) +H(K(xn,i),K(xn,i−1))

≤‖un(t)− un,i‖+ k‖xn,i − xn,i−1‖

=

∥∥∥∥un,i +

(
t

h
− i
)

(un,i+1 − un,i)− un,i
∥∥∥∥+ k‖xn,i − xn,i−1‖

≤‖un,i+1 − un,i‖+ 3khl = h‖∆n(t)− zn,i‖+ 3khl

≤h‖∆n(t)‖+ hm+ 3khl ≤ 2
T

n
(m+ 3kl) ≤ 2

T

n0
(m+ 3kl),

and since Kn(t) ⊂ L, we conclude that, for each n ≥ n0,

d(un(t), L) ≤ 2
T

n0
(m+ 3kl).
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Then (un(t))n≥n0
is relatively compact since L is ball-compact. We complete

the proof of our theorem as for Theorem 3.1. �

References

[1] D. Azzam-Laouir and S. Izza, Existence of solutions for second-order perturbed noncon-

vex sweeping process, Comp. Math. Appl 62 (2001), 1736–1744.

[2] F. Bernard and L. Thibault, Prox-regularity of functions and sets in Banach spaces,

Set-Valued Anal. 12 (2004), 25–47.

[3] F. Bernard, L. Thibault and N. Zlateva, Characterizations of prox-regular sets in

uniformaly convex Banach spaces, J. Convex Anal. 13 (2006), 525–560.

[4] , Prox-regular sets and epigraphs in uniformly convex Banach spaces: various

regularities and other properties, Trans. Amer. Math. Soc. 363, no. 4 (2010), 2211–2247.

[5] F. Bernicot and J. Venel, Existence of sweeping process in Banach spaces under direc-

tional prox-regularity, J. Convex Anal. 17 (2010), 451–484.

[6] M. Bounkhel, Existence results for second order convex sweeping processes in p-

uniformly smooth and q-uniformly convex Banach spaces, Electron, J. Qual. Theory Differ.

Equ. 27 (2012), 1–10.

[7] , General existence results for second order nonconvex sweeping process with un-

bounded perturbations, Port. Math. (N.S.) 60 (2003), no. 3, 269–304.

[8] M. Bounkhel and R. AL-Yusof, First and second order convex sweeping processes in

reflexive smooth Banach spaces, Set-Valued Var. Anal. 18 (2010), no. 2, 151–182.

[9] M. Bounkhel and D. Laouir-Azzam, Existence results for second order nonconvex

sweeping processes, Set-Valued Anal. 12 (2004), no. 3, 291–318.

[10] M. Bounkhel and L. Thibault, Nonconvex sweeping process and prox-regularity in

Hilbert space, J. Nonlinear Convex Anal. 6 (2001), 359–374.

[11] A. Canino, On p-convex sets and geodesics, J. Differential Equations 75 (1988), 118–157.

[12] C. Castaing and M. Valadier, Convex analysis and measurable multifunctions, Lecture

Notes in Math. vol. 580, Springer–Verlag, Berlin, 1977.
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