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The following type of example is often presented in
introductory probability and statistics courses to help
sharpen students’ intuition about the importance of
background rates in calculating probabilities: Suppose
that you are walking down the street and notice that
the Department of Public Health is giving a free
medical test for a certain rare disease. The test is 90%
reliable in the following sense: If a person has the
disease, there is a probability of 0.9 that the test will
give a positive response (the “sensitivity” of the test);
and if a person does not have the disease, there is a
probability of 0.9 that the test will give a negative
response (the “specificity” of the test). Data indicate
that your chances of having the disease are only 1 in
5000. However, because the test costs you nothing
(you have already paid for it with your taxes), and it
is fast and harmless, you decide to stop and take the
test. A few days later you learn that you had a positive
response to the test. What is now the probability that
you have the disease?

Many beginning students feel that this probability
should be about 0.9, but that feeling mistakenly ig-
nores the small prior probability of 0.0002 that you
had the disease. The correct posterior probability is
found by Bayes theorem to be 0.0018. Your probability
of having the disease is now 9 times as large as it was
before you took the test, but it is still extremely small.
The intuitive explanation is that because the test has
a 10% rate of producing false positives, there will be
about 500 positive responses among a group of 5000
persons, but on the average only one person in the
group will have the disease.

It is this large number of false positives that has led
various interested parties to question the effectiveness
of large-scale medical screening tests for populations
in which the prevalence of the disease is low, and
which is the subject of the opening article by Joseph
L. Gastwirth in this issue. He considers problems in
which the prevalence, as well as the sensitivity and
the specificity of the test, are unknown, and discusses
effective experimental designs for estimating these
quantities in order to obtain an estimate of the pos-
terior probability given a positive response that will
have small variance. He describes two applications
that have been very much in the news in recent years:
the screening of general populations for the presence
of antibodies to the AIDS virus and the screening of
the employees, or potential employees, of an organi-
zation with polygraph (or “lie detector”) tests.

In his discussion of this article, D. H. Kaye consid-
ers the standards that are used for the admissibility
of polygraph evidence in court, and the relevance of
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Gastwirth’s work to the legal question of admissibility.
John C. Kircher and David C. Raskin point out that
the problem of low base rates has been discussed for
many years in the psychology literature, and describe
the many different contexts in which polygraph tests
are used. Janet Wittes emphasizes that the context of
a medical screening determines whether the sensitiv-
ity or the specificity of the test is more important.
Judith D. Goldberg points out that not only preva-
lence, but also false positive and false negative rates,
can vary from group to group. Seymour Geisser
sketches a Bayesian predictive approach to the prob-
lems addressed by Gastwirth. Finally, Beth C. Gladen
comments that in many situations the application of
a confirmatory test following a positive response
would make variance calculations relatively unimpor-
tant.

* * *

In his article, “Uncertainty, policy analysis, and
statistics,” James S. Hodges states that “No existing
school of statistical thinking provides a comprehen-
sive framework for considering the various types of
uncertainty and the tradeoffs among them that ana-
lysts must make.” He describes three major types of
uncertainty: (1) structural uncertainty, which is un-
certainty about the model that is used; (2) risk, which
is uncertainty due to statistical or stochastic variabil-
ity given the model; and (3) technical uncertainty,
which is uncertainty due to data processing and the
use of approximations. He argues that the absence of
a system that properly accounts for all these types
“creates an inherent tendency for analyses to under-
state uncertainty about predictions . . . which can lead
to invisible biases in policy considerations.” He be-
lieves that the de Finetti approach comes closest to
providing such a system, and he tries in this paper to
develop further the connection between that approach
and real policy applications.

In his comment, David Freedman states that “Good
statistical analysis can be done in either the frequen-
tist or the Bayesian framework. However, for either
approach to succeed, the analyst has to get the model
right, or close enough.” Seymour Geisser points out
that there is a fundamental principle in the de Finetti
approach to statistics “that statisticians (even Baye-
sian predictivists) often ignore.” Peter J. Huber com-
ments on “the problem of the infinite regress, and the
question of whether and when to combine different
kinds of uncertainty.” Joseph B. Kadane stresses three
important aspects of de Finetti’s approach: the subjec-
tivity of probability, the emphasis on prevision and
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the insistence on finitely additive probabilities. Albert
Madansky uses “more earthy terms” to describe the
three major types of uncertainty covered by Hodges:
“The model . .. may be ‘off-base,” the procedures rec-
ommended . . . may be ‘dead wrong,” and . . . the stat-
istician may ‘drop the ball’ in implementing his rec-
ommended procedure.” He then goes on to raise (and
answer) some questions suggested by the three terms
in the title of Hodges’ paper. Adrian F. M. Smith
points out that “Model development and use typically
involves a progression through five broad stages: per-
ceived problem situation, conceptual model, formal
model, technical solution and summary output of some
kind.” He emphasizes that “the quantitative analyst
cannot and should not be acting in splendid technical
isolation” but instead must be part of a team with
broad expertise.

* * *

In many empirical investigations to learn about the
effects of a new treatment, it is not possible or not
feasible for the investigator to decide, either randomly
or deterministically, in the course of the experiment
which subjects will receive the treatment and which
ones will not. Instead, the subjects that might be
included in the study can only be classified as either
having received the treatment or not. An observational
study is an attempt to estimate the effects of the
treatment in an investigation of this type. In his article
in this issue, Paul R. Rosenbaum studies the useful-
ness of more than one control group in observational
studies. He writes, “A second control group provides
a test of the assumption that conventional adjust-
ments for observed covariates suffice in estimating
treatment effects.”

In his discussion, Paul W. Holland describes his
experience with multiple control groups in an obser-
vational study of computer-assisted instruction. Barry
H. Margolin discusses the use of multiple control
groups in designed or controlled experimentation.
Richard G. Cornell extends the discussion of case-
control studies and observational studies comparing
groups having different exposures to harmful agents.
Norman Breslow states that “The major conclusions
of this paper should come as no surprise to biostatis-
ticians and epidemiologists involved in the applica-
tions of statistical methods and concepts to clinical
and observational studies in public health and medi-
cine” because the principles of study design and
interpretation “are well known and widely used.”
Rosenbaum, in his rejoinder, disagrees.

* x %
In problems of testing hypotheses about a parameter

6, a precise hypothesis is one which specifies that ¢
has a particular value or that 6 lies in a given small

interval. In their article, James Berger and Mohan
Delampady review the problem of testing a precise
null hypothesis, “with special emphasis placed on
exploring the dramatic conflict between conditional
measures (Bayes factors and posterior probabilities)
and the classical P-value (or observed significance
level).” Their studies show that “claiming that a P-
value of 0.05 is significant evidence against a precise
hypothesis is sheer folly; the actual Bayes factor may
well be near 1, and the posterior probability of H, near
%.” This leads them to the recommendation that
“when testing precise hypotheses, formal use of P-
values should be abandoned. Almost anything will give
a better indication of the evidence provided by the
data against H,.” The paper is clearly and enjoyably
written, and with its strong conclusions it has inevit-
ably sparked interesting discussion.

D. R. Cox writes that “the paper is a valuable and
thought-provoking one,” but “the conclusion that P-
values have no role at all is wrong.” He also gives his
own maxim to accompany others in the article: “At-
tempts to force formal problems of statistical infer-
ence into an exclusively Bayesian mold may give
misleading answers.” Morris L. Eaton discusses
whether there is a specific question that a P-value
addresses; the use of “automatic” methods, Bayesian
or frequentist; and the meaning of objectivity. Arnold
Zellner suggests that in many problems, prior infor-
mation distinguishing certain important alternatives
is usually available and that Bayes factors should be
computed for them “to get a hold on the sensitivity of
results to specific, relevant broader assumptions.”
M. J. Bayarri presents a Bayesian decision-theoretic
approach to goodness-of-fit tests in which the special
nature of the precise null hypothesis is represented in
the utility function, because of the usefulness of the
particular model being tested, rather than in a sharply
spiked prior distribution. George Casella and Roger L.
Berger disagree with the authors and argue that “it is
not the case that P-values are too small, but rather
that Bayes point null posterior probabilities are much

" too big!” Joseph B. Kadane notes that a significance

test is driven by the sample size and concludes “that
the technique of testing hypotheses is vastly overrated
in statistics as a method.”

Readers who crave still more discussion on this topic
are referred to the March 1987 issue of the Journal of
the American Statistical Association, pages 106-139.

* * *

The featured interview in this issue of Statistical
Science is a conversation with George E. P. Box, Vilas
Research Professor of Mathematics and Statistics at
the University of Wisconsin, who is well-known for
his work in experimental design, time series analysis,
quality improvement and other areas of statistics.



