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This book aims to make topos logic an adequate tool for all topos theory by extending
it to handle category theory in toposes, or "relative category theory", with the relative Giraud
theorem as test case. The problem and the test were remarked as early as Johnstone [1977,
xviii].: "the formal language approach breaks down when confronted with the relative Giraud
theorem; whilst [it] is a very powerful tool in proofs within a single topos, it is not well
adapted to proofs in which we have to pass back and forth between two toposes by a geo-
metric morphism."

It is well known that each topos S has an internal languaqe called Ls, a multi-sorted
constructive set theory interpreted in 5. For any topos S, Heyting's intuitionistic predicate
logic is sound in Ls, but classical logic generally is not. Of course classical logic ls sound in
some toposes, such as the topos of classical sets, Set. But in general the law of excluded
middle and the axiom of choice fail.

There are different views on the internal language. Most category theorists are not
logicians and many dislike the syntactic details needed to make it a rigorous tool. Barr and
Wells [1985] avoid it almost entirely. On the other hand Bell [1988] introduces toposes
almost entirely in terms of it. Chapman and Rowbottom justly say their book "is essentially
self-contained, except for basic category theory, which may be found in Mac Lane [1971]
or Barr and Wells [1985], Chapter 1. However, it forms a natural sequel to Bell's book
[1988]" (p.7).

Their task falls into two parts: treating small categories in the internal language, and
treating certain large ones. A small category in a topos is with an object of objects and an
object of arrows. In the topos Set then, it is a category with a set of objects and a set of
arrows. A large category is one too big to be small. In Set it is a category with a proper
class of objects and of arrows. The theory of small categories in Set has always been
largely constructive and so works in any topos. But expressing it in the interval language
has been surprisingly thorny.

The composite of arrows f and g is defined if the codomain of f is the domain of g.
Logicians usually formalize partial functions by relations. Instead of a term gf for "the
composite of/and g" we use a relation C(f, g; k) read "k is the composite of /and g". The
definability condition for composites is then stated

(ЗА:) C(f, g; k) <-» Dom(g) = Cod(/)

with the functions Dom and Cod for domain and codomain. But simple formulas become
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nearly unreadable in this notation. The associativity equation f(gh) = (fg)h becomes:

C(f, g; k)&C(k, h; i) &C(g, h; j)&C(f, j ; rí) -*Ci = n

No one works with this notation.
So when Johnstone [1977] had to do category theory in a topos, he avoided the inter-

nal language he used elsewhere very elegantly. On the other hand McLarty [1992] does
category theory in the internal language with/g as an abuse of notation made rigorous in an
exercise.

Chapman and Rowbottom go much farther, and this is the central technique of the
book. They extend the internal language JL5 to a theory of partial functions L '5. This L '5 has
the same sorts as Ls and includes the same relation and function symbols. But lttF(x, y) be
any partially functional relation in Ls, i.e. any relation such that

F(x,y)&F(x,Z) -* y = z

Then L's has a function symbol fp such that

fFÍx)=y ** Fix, y)

with/f(y) undefined otherwise. Chapman and Rowbotton use a different notation but this
will do to explain the point. So L '5 has function symbols for composition for every category
in Ls although composites are not always defined. The language L's is close to Scott's
[1979] using partial description operators. The authors use L's to describe small categories,
small cartesian closed categories, and small toposes in S.

As to foundations, to speak of a topos S the authors assume a metatheory dealing with
collections of objects and arrows of S. It could be some set theory or some topos. By meta-
class they mean whatever kind of collections the metatheory uses.

They handle the large categories they need by means of a new definition of a category

in S for any topos S. A category С in S has a meta-class \C\, called the indexing meta-class

of C, and for each A in | С | an 5 object CA and for each pair A,B of members of | С | an S

object CAB- Think of each CA as a collection of objects of С and each CAB a s the collection

of all arrows of С from any object in

-» CA and

to any one in Св. We need S arrows dom.Aß: CAB

: CAB -* QB for every A and В in | С |,

thought of as taking each arrow in CAB to its domain and codomain respectively. And for all
A, B, and С in I C| we need a partial function of composition from the product Сдв* QßCto

CAC- The composite of a pair <f,g> must be defined if codABÍf) = àomBcig) a n ( i m u s t

satisfy the usual axioms.
In the special case where | C| is a singleton С is a small category in 5. In the special

case where each composition function is total С is a category enriched in S in the usual
sense.
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The example they use most is s , called the category of internal sets and functions of
S, or the self-image of 5. Here the indexing meta-class is Obj(5), the meta-class of all S
objects. For each 5 object ï the object s Ì is the power object of ï. For any S objects í and
í the object s # contains all triples <I,f,J> with I a "subset" of i and J of J, and f a partial
function from ï to í with I as domain of definition and all its values contained in J. The
composite of any <I,f,J> with any <J,g,K> is <I,fg,K>.

The key fact is that 5 sees s as well-pointed, because any object in any topos is
internally the union of its singleton "subsets". We can transfer questions about toposes over
5 to toposes over s , and then neglect any explicit indexing or use of generalized elements.

This approach to large categories is interestingly simple and natural in the logical
presentation. Its reliance on partial functions may be less natural categorically than the
known alternatives: indexed categories (see Johnstone and Paré [1978]) and fibered cat-
egories (see Bénabou [1985]. It is less general as it applies only to categories in a topos.
And it is perhaps less systematic just because it is less general.

One knows the indexed or fibered category of groups over any category 5 with finite
limits. At any index i it is the category of groups in the slice S/l, which is the category of i-
indexed families of groups. But even if 5 is a topos, what is its category of groups in
Chapman and Rowbottom's sense? The category with Obj(5) as indexing meta-class and
assigning to each ï the internal "set" of all group structures on "subsets" of ï might work
well but it is not clear. The authors never mention such things but keep their examples close
to the self-images of toposes.

Giraud proved, in effect, that any elementary topos defined over Set with a few nice
properties is a Grothendieck topos, i.e., it is representable as the category of all sheaves on
some site in Set. Altogether this says a lot about the topos. For applications see Mac Lane
and Moerdijk [1992].

The Giraud theorem, and much more, was relativized to any elementary topos S in
place of Set by Diaconescu [1975]. Any geometric morphism S' -» 5 of elementary toposes
with a few nice properties makes 5 ' representable as the category of sheaves over some site
in 5. Johnstone [1977] follows Diaconescu's proof. Anyone familiar with the internal lan-
guage will see its workings behind the proof but it is not used and it is not clear how it could
be when you get right down to it. That is the point of the present book. Barr and Wells
[1985] give a more algebraic proof.

Chapman and Rowbottom's proof of the relative Giraud theorem is not short. Whether
it is clearer than the others will depend on how much you prefer logical apparatus to cat-
egory theory. At any rate, it is crucial to their extension of topos logic towards a compre-
hensive framework for topos theory.

The authors say "it seems incoherent to make stronger assumptions (set theoretic or
logical) at the 'meta' level than at the level of the topos. For this (and other) reasons, work
at the 'meta' level will be constructive" (p. 9). The general claim is already debatable.
Indeed the metatheory must make some stronger assumptions to define semantics for the
object theory. More important here is to square it with the puzzling remark that "we wish to
convince the reader that local set theories can be constructed in a topos [i.e. it can be done
constructively—CM]. However most of the material is disposable in the sense that it will
not have to be referred to in practice" (p. 100). A local set theory is a theory which can be
the internal language of a topos.
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The Giraud theorem for an arbitrary topos 5 involves toposes in 5. Results on those
toposes were proved using their internal languages with L 's as metatheory. Thus it requires
constructive metatheory. But basic model theory, as opposed to many methods for obtain-
ing particular models, is nearly constructive anyway. Syntax deals with finite strings; basic
semantics uses explicit constructions.

There is only one trick to a constructive metatheory of topos logic. The authors de-
scribe it but without clearly saying it is the only trick. We must restrict ourselves to expres-
sions "with free variables that are 'indicially distinct'—equal precisely when their indices
are—so that comparison of free variables reduces to comparison of indices (and avoids
comparison of types) and so is decidable" (p. 9). This is merely a matter of labelling and
"can be ignored in practice" (p. 9), which seems to explain the above quote from p. 100.

Finally, categories in S are not flexible enough to give the adjoint functor theorems.
So the book closes with an appendix on generalizing categories in S to categories in S with
parameters. These give adjoint functor theorems although, according to the closing remark
on p. 254, it is an open question whether these work so smoothly as in the classical case and
the expected answer is no. Category theoretically, a category with parameters in S is just a
category in a slice Sft. The authors prove that fact but decline to use it (p. 222) as they
prefer a thoroughly logic oriented account.
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