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THE ENIGMA OF THE INFINITESIMAL:
TOWARD CHARLES L. DODGSON’S

THEORY OF INFINITESIMALS 1

FRANCINE F. ABELES

1. Introduction

In 1888 Charles L. Dodgson published Curiosa Mathematica, Part
I. A New Theory of Parallels (hereafter CMI) containing his novel
alternative Euclidean parallel postulate: in every circle the inscribed
equilateral hexagon is greater [in area] than any one of the segments
which lie outside it. In Appendix II, “Is Euclid’s Axiom True,” he
discusses infinitely large and infinitely small magnitudes, particularly
infinitesimal lines and strips, and infinitesimal angles and sectors. In
this section he develops a theory of infinitesimals that although flawed,
contains elements that ultimately were addressed in the rigorous theory
of infinitesimals Abraham Robinson created more than a half century
later.

To provide a context for Dodgson’s work, the paper begins with a
survey of the main lines of thought about infinitesimals in the nine-
teenth century in analysis and in geometry, including the incomplete
and divergent view held by Charles S. Peirce.

2. Infinitesimals in Analysis.

In the period between Gottfried Leibniz (1646–1716) and Abraham
Robinson (1918-1974), roughly 300 years, infinitesimals were used in
mathematics without being properly understood. In the first 200 years
or so after the invention of the calculus infinitesimals as numbers were
sometimes confused with the number zero. Alternatively, mathemati-
cians following Augustin Cauchy (1789-1857) regarded them as vari-
ables with zero as their limit. The lack of a precise definition of the
real number system was the principal stumbling block. Once this piece
was put into place in the 1870s, the evolution of the calculus into a

1 This paper is an expansion of the invited address, “Charles L. Dodgson’s Theory of
Infinitesimals” given at the 1998 Midwest Conference on the History of Mathematics held
at Iowa State University. c© 2001 Modern Logic.
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rigorous theory that had been anticipated by Cauchy and Bernhard
Bolzano (1781-1848) and completed by Karl Weierstrass (1815-1897)
removed infinitesimals from formal mathematics. By eliminating the
intuitively appreciated dynamic component of continuous motion from
limiting processes, substituting instead an abstract static epsilon - delta
definition, taking the limit of an expression containing the infinitesi-
mal dx involves just a variable dx whose limit is 0 taking on nonzero
values. There is no need to distinguish an infinitesimal from any other
variable.

In this way infinitesimals, which cannot be real numbers, were cir-
cumvented so that in their disguised use the Archimedean axiom of the
real number system was obeyed. But infinitesimals themselves contin-
ued to be used informally. In geometry where differentials were repre-
sented geometrically, ambiguity of expression was typical in arguments
that employed them because infinitesimals beyond the first order were
routinely ignored. In analysis x and x + dx were treated as if they
were equal, allowing in certain situations one to be used in place of the
other but not uniformally so. According to Bolzano, “we have infinitely
many infinitely small quantities, with one standing to another in any
prescribed ratio, . . . [and] that among the infinitely small quantities,
we have . . . an infinite number of different orders.” [6, pp. 109 ff.]

Cantor’s vociferous antagonism to infinitesimals also contributed to
the denial of infinitesimals as numbers. Cantor was critical of the work
with infinitesimals by such mathematicians as Paul du Bois-Reymond
(1870-1), Otto Stolz (1882-3), Giuseppe Veronese (1889), Rodolfo Bet-
tazzi (1890), and Tullio Levi-Civita (1892-3), and their attempts to
develop rigorous theories.

As Joseph Dauben noted, Cantor’s belief in the linearity of the num-
ber system and the essential Archimedean property of the reals made
the existence of infinitesimals impossible. In a letter to Weierstrass in
1887 Cantor wrote,

Non-zero linear numbers (in short, numbers which may
be thought of as bounded, continuous lengths of a straight
line) which would be smaller than any arbitrary small
finite number do not exist, that is, they contradict the
concept of linear numbers. [10, p. 130]

3. Non-Archimedean Geometry.

In 1890 Cantor corresponded with Veronese (1854-1917) and rejected
his infinitesimal elements too. A year later Veronese published his



CHARLES L. DODGSON’S THEORY OF INFINITESIMALS 9

Fondamenti di Geometria containing the earliest example of a non-
Archimedean ordered field1. Veronese was motivated by the question of
the existence of straight line segments not satisfying the Archimedean
axiom.

The usual interpretation of the Archimedean property (axiom) is
that for any segments AB, CD there is a finite natural number n such
that if CD is chosen a unit of length, then the length of AB is at
most n times CD. However, if we reverse the roles of AB and CD, then
with AB as the unit of length, the length of CD must be at least 1/n
times AB. In other words, if one segment is chosen as a unit of length,
no other segment can be infinitely small with respect to this unit.
So infinitesimal numbers are prohibited in a geometry that employs
the Archimedean property2. When the underlying complete ordered
field is non-Archimedean, the corresponding geometry has magnitudes
(segments, angles, areas, etc.) that are infinitely small.

Veronese showed that the continuum postulates given by Dedekind,
Cantor and Weierstrass implicitly contain properties not required by
the continuum; specifically, that the Archimedean axiom can be sepa-
rated from the continuum. In his Fondamenti, Veronese constructed in-
finite and infinitesimal segments as the elements in a non-Archimedean
ordered field. But his development was flawed and his student Levi-
Civita, approaching the problem arithmetically, completed the con-
struction in 1892-3. Generalizing his construction, Levi-Civita intro-
duced infinitesimals in a consistent way by constructing, in 1898, a
non-Archimedean totally ordered field with formal power series as ele-
ments3.

In the appendix to Fondamenti, Veronese commented on the first
of the non-Archimedean systems, by Du Bois-Reymond, extended by
Stolz beginning in 1883, which produces an alternative theory of the
continuum based on a different idea of an infinitesimal, the system
not being an ordered field. Stolz, who later developed his own theory

1Two years earlier, in 1889, Veronese published “Il continuo rettilineo e l’assioma
V d’Archimede” in Atti Della Reale Accademia Dei Lincei, Memorie (Della Classe
Di Scienze Fisiche, Matematiche E Naturali) Roma, 6, 603–24 containing a con-
struction of infinite and infinitesimal line segments.

2To develop his theory of proportion, Euclid excluded infinitely large and infin-
itely small magnitudes from his geometry, tacitly assuming in Book V that magni-
tudes obey the Archimedean axiom. He did not explicitly employ the axiom until
Pr.1 of Bk. X.

3In 1907 Hans Hahn, extending the work of Levi-Civita, formulated a rigororous
theory of infinitesimal numbers but the theory was not useful for analysis because
the usual properties of functions like lnx, sinx, ex are not retained.
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of infinitesimals, also showed that the Archimedean property can be
proved using Dedekind’s continuum postulate and therefore that the
existence of infinitely small straight line segments was impossible.

4. Charles S. Peirce’s Theory of Infinitesimals.

Charles Sanders Peirce (1839-1914) held an altogether different view
of infinitesimals, one closer to the idea of a smoothly continuous quan-
tity, a continuum in the small. As Dauben wrote of Peirce’s ideas
beginning in 1881,

The difficulty in describing the continuity of the real line
. . . [is] reduced to the fact that numbers per se could
never account for continuity. Numbers expressed noth-
ing but the order . . . of discrete objects. Nothing dis-
crete could possibly be multitudinous enough to account
for the continuum. [11, p. 130]

This interpretation of Peirce’s infinitesimals is supported in a recent
paper by John Bell [3]. A different interpretation is the one given by
Stephen H. Levy, who asserts that

Peirce’s theory of infinitesimals is a theory of an ex-
tended real number system. His infinitesimals corre-
spond roughly to the non-standard elements . . . of a
nonstandard model for analysis. [31, p. 135]

Levy adds that unlike Abraham Robinson’s non-standard model, in
Peirce’s incipient theory there is a largest infinitesimal, of order 1. [31,
p. 140]

Levy writes that Peirce, a proponent of Cantor’s theory of the infi-
nite, used that theory to argue for the acceptability of infinitesimals,
stating that infinitesimals “...‘involve no contradiction’...” and “...‘lend
themselves to mathematical demonstrations’.” [31, p. 136]

5. Infinitesimals in Geometry.

The discovery of the non-Euclidean geometries focused attention on
the behavior of parallel lines at infinity. For example, in hyperbolic
geometry if a right triangle contains an angle of zero degrees, the hy-
potenuse and one side are asymptotic straight lines. When Nikolai
Lobachevsky (1793-1856) constructed the first non-Euclidean geometry
in 1840, later named hyperbolic by Christian Felix Klein (1849-1925),
he used analytic methods to express relations of magnitude in his ge-
ometry, regarding infinitely small magnitudes as continuous variables
having limit zero.
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Eugenio Beltrami’s work of 1866 and 1868 provided a concrete met-
rical interpretation of hyperbolic geometry, a model of the geometry on
an ordinary surface (bounded plane). Points of the surface represented
on an auxiliary plane lie in the interior of the unit circle; ideal points
(points at infinity on the surface) lie on the circle. Straight lines are
represented by chords; parallel straight lines by chords intersecting in
a point on the circle.

In this interpretation the asymptotic character of parallel infinite
straight lines, and consequently the relationship between such lines
and the Archimedean property was not immediately apparent. That
Beltrami’s model was not entirely satisfactory to other mathematicians
concerned with the foundations of geometry is evidenced by the work
of Wilhelm Killing (1847-1923) who beginning in 1880, focusing on
the analytic treatment of non-Euclidean space forms, considered such
forms as being representable by a system of n-tuples of real numbers,
each element of the tuple varying continuously. His approach naturally
involved the classification of infinitesimal motions, but he proceeded in
the customary way by ignoring second and higher order infinitesimals,
effectively treating them as approximate real numbers. [21, pp. 303ff.]

Beltrami’s work, unfortunately, had the effect of masking the rôle of
the Archimedean property because in his model the ordinary projec-
tive properties of the surface also are valid. Beltrami’s method allows
both Euclidean and hyperbolic geometries to be considered, without
any parallel postulate being assumed, within the fabric of (metrical)
projective geometry — a method in which the ideal elements play a
major role in the sense that, as Arthur Cayley had showed in 1859, the
set of basic metrical objects, the absolute of the plane, includes the line
at infinity [5, p. 163]4.

Building on Beltrami’s and Cayley’s work, Klein developed non-
Euclidean geometry (1871, 1873) by considering a quadratic form “near”
the imaginary spherical circle given in Cartesian coordinates and in-
volving an arbitrarily small parameter ε. When ε is positive the non-
Euclidean geometry is hyperbolic. The determinant D of this form
given by

4In the projective model real points are located in the interior of the absolute
conic (an infinite plane); ideal points, located on the conic, are determined by the
pencils of parallel lines; ultraideal points, exterior to the conic, are determined by
the non intersecting lines. (These lines exist only in hyperbolic geometry and can
be considered to complete the projective plane.) [39, p. 155]
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∣∣∣∣∣∣∣∣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −ε

∣∣∣∣∣∣∣∣ = −ε

vanishes only when ε = 0, i.e. when the form represents the imagi-
nary Euclidean spherical circle. Klein implicitly is using infinitesimal
numbers in representing D. He wrote,

“Our assumption then amounts to this, that we replace
the quadratic form whose determinant vanishes by a
quadratic form whose determinant is positive or neg-
ative (but arbitrarily small in absolute value).” [26, p.
180]

Klein then develops a general distance measure for any quadratic
surface and goes on to show that it yields the Euclidean metric when
ε = 0. His complicated argument depends in large part on the handling
of ε. By not allowing it to become 0, but only to become very small,
certain expressions can be be neglected and certain approximations
made, e.g. arcsin ε = sin ε, for small ε. [26, pp. 182-3]

But Klein makes no connection between the need for infinitesimal
numbers and the non-Archimedean nature of the non-Euclidean ge-
ometries he develops5. The importance of the Archimedean property
in connection with hyperbolic geometry was not established until 1900
by Max Dehn when he showed that in this geometry (which he called
Semi-Euclidean), the Archimedean property necessarily does not hold.

David Hilbert (1862–1943) who was concerned with the foundations
of both arithmetic and geometry, established the theorem that the real
number system is an Archimedean ordered field satisfying an axiom of
(arithmetic) completeness. In fact, by constructing a non-Archimedean
ordered field in the second edition of his Grundlagen der Geometrie in
1903, Hilbert demonstrated that a non-Archimedean geometry logically
could exist. [18, p. 111]

6. Charles L. Dodgson’s Theory of Infinitesimals.

The relationship between continuous geometric magnitudes (line seg-
ments, angles, areas) and infinitesimals was the basis of Dodgson’s

5Klein discussed the role of the Archimedean axiom as a continuity axiom in his
description of a well known non-Archimedean system, that of horn-shaped angles,
much later, in the 1920s.
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(1832–1898) attempt to understand the nature of infinitesimals. Al-
though Dodgson had no contact with any of the work on non-Archimedean
systems being published at the time, his writing is philosophically clos-
est to that of Veronese6. Dodgson and Veronese both believed that the
Archimedean axiom does not extend to infinite space because there is
no way to observe two segments obeying it, but that one can establish
the Archimedean axiom between two finite segments because it can be
observed. Throughout the appendices of CMI, Dodgson maintains the
distinction between finite and infinitely large magnitudes. Euclid never
assumed the Archimedean property for any geometric magnitudes. He
only assumed that straight lines behaved in an Archimedean way, sug-
gesting either that infinite straight lines behave like finite straight lines,
or that infinite straight lines are excluded from propositions dealing
with measurement. Dodgson concurred with the latter.

Dodgson believed that infinitesimals were numbers and that they
were needed to distinguish among numbers that seemed to be equal
but were not really so. In correspondence concerning a problem in
probability in 1886 he argued that

“when an event is possible, its chance of happening is
not zero.” [38, p. 218]

In connection with this point, Dodgson claims that the question of
whether or not a convergent infinite series reaches its limit is equivalent
to the question of whether an infinitesimal is or is not equal to zero.
He used the infinite series 1

2
+ 1

4
+ 1

8
+ . . .+ 1

2n to illustrate his reasoning.

The limit of this series is 1, and its nth partial sum is 1− 1
2n . He states,

“Hence, if when n is infinite, the series reaches its limit,
the infinitesimal 2−n must be equal to zero.” [38, p.
218]

Dodgson carries this argument over to a strip infinite in length whose
area can be shown to be finite. He claims its width must be infinitesimal
because if it were finite, the area of the strip would be infinite.

To understand what Dodgson is saying, consider the problem of toss-
ing a coin endlessly and the probability of obtaining a head on any toss.
Since there is a 50% chance of obtaining a head on the first toss, and
a 25% chance of obtaining a head on the second toss, there is a 1

2
+ 1

4
chance of obtaining a head on either the first or the second or both
tosses. Continuing in this way, the chance of obtaining a head in the

6Dodgson recorded the beginning of his work on infinitesimals in a diary entry
dated 29 March 1885: “I am now writing on ‘Infinities and Infinitesimals’.” [19,
v.2, p. 433].
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first three tosses is 1
2
+ 1

4
+ 1

8
; in the first four tosses it is 1

2
+ 1

4
+ 1

8
+ 1

16
,

etc.
Expressing the terms of the series in binary form (where 1

2
= 0.1, 1

4
=

0.01, 1
8

= 0.001, etc.), we see that the chance of obtaining a head in the
first four tosses is 0.1 + 0.01 + 0.001 + 0.0001 = 0.1111. Extending the
partial sums to express the chance of obtaining a head on some toss
produces 0.111111 . . . But perhaps every toss will produce a tail, its
chance of occurring being the infinitessimal 0.000000000 . . . 1 The limit
of the series, 1, is really the sum of these two probabilities, the partial
sum 0.11111 . . . and the infinitesimal 0.00000 . . . 1. [31, p. 130]

Dodgson was not concerned with the foundations of the calculus and
the attendant controversy over limits vs. infinitesimals. His interest
was in the rôle of infinitesimals in geometry and he needed a method to
construct them. His belief in the necessity of their existence is rooted
in the two ways he interprets continuity. The first is the continuity
implicit in the Archimedean axiom; the second is the continuum of
numerical values as one moves from infinite values through finite values
through infinitesimal values to zero. His method of constructing two
linear magnitudes not obeying the Archimedean axiom, employs the
notion of infinite area. The method is the content of Appendix II of
CMI. A substantial revision is incorporated in the third edition (1890).

We should first recall that the transition in the meaning of “exis-
tence” in mathematics: from existence by construction to existence as
consistency was going on during this time and did not emerge as the
standard until the turn of the century when it is apparent, for example,
in Hilbert’s Grundlagen der Geometrie (1899).

Dodgson’s basic idea of the number system was an extension of the
notion of “denseness” to the existence of an extended real number
system that would include infinitesimal and infinite numbers obeying
the same laws as ordinary real numbers. Contrary to published opinion,
Dodgson considered non-Euclidean geometry as a possible model of real
space, and he understood that measurement in this geometry depended
on the denial of the Archimedean axiom:

“. . . given a line and a Point not on it, a whole ‘pen-
cil’ of Lines may be drawn, through the Point, and not
meeting the given Line.... After drawing one such line
the others [will] make with it angles which are infinitely
small fractions of a right angle.” [13, p. 51]

Dodgson needed a way of apprehending the behavior of parallel
straight lines at infinity. In CMI he describes the construction of two
linear magnitudes not obeying the Archimedean axiom in this way:
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Beginning with an infinite strip whose width is one inch and whose
area is infinite, he claims that if the sides of the strip are allowed to
approach each other, the area remains infinite (until the sides coincide
and the area becomes zero) because a sequence of infinite areas having
a finite ratio to each other is generated.

Now Dodgson reverses the process and starting with an infinite strip
whose area he (erroneously) assumes is one square inch, he concludes
that the width of the strip must be infinitely small because the finite
area of the strip is the product of an infinite length H and an infini-
tesimal width 1

H
7.

To construct different orders of infinitesimals of smaller size, he first
cuts off a one inch piece from the infinite strip whose area he believes
is one square inch, claiming its area must be a first order infinitesimal
since no multiple of the area of this short strip can equal the one
inch area of the infinitely long strip. Now he seeks the value of the
width of the short strip (whose length is infinite) and concludes it must
be a smaller infinitesimal than the width of the infinite strip because
otherwise the short strip would have a finite area. Continuing in this
way yields smaller and smaller infinitesimals of the third, fourth, etc.
orders.

This book, although flawed, is to my knowledge, the earliest pub-
lication linking the necessity of a non-Archimedean number system
containing infinite and infinitesimal numbers with a geometry that in-
cludes infinitely large and infinitely small magnitudes. Moreover, in
the third edition, in proving the Euclidean parallel postulate from the
Archimedean axiom — by restricting the statement of the twelfth (par-
allel) axiom to apply only to a finite angular defect, Dodgson establishes
the equivalence of segments that satisfy the Archimedean property to
segments that are finite, i.e. commensurable segments.

Dodgson offers additional evidence that physical space indeed may
be non-Euclidean:

“If a Pair of Lines make, with a certain transversal, two
interior angles on the same side of it together less than
two right angles, then, so long as the defect is finite,
there is no doubt that the Lines intersect . . . when the

7Dodgson correctly states that the area of a plane is an infinity of higher order
than the area of an infinite strip whose width is finite. Also, he understands that if
two lines (infinite) intersect in a finite angle, the area of one of the sectors created
is an infinity of higher order than the area of the infinite strip. One should note
that during this time Henri Lebesgue’s (1875-1941) theory of area, the content of
his thesis (1902), had not yet been published.
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‘defect from two right angles’ becomes an Infinitesimal
of the first order, the lines may possibly intersect, but
can only do so at an infinite distance; and that, when the
defect has become an Infinitesimal of the second order,
the Lines have ceased to intersect.” [13, 3rd ed., p. 55]

7. Some Twentieth Century Developments.

Work toward a rigorous theory of infinitesimals continued into the
twentieth century. By 1951 Alfred Tarski had demonstrated that real
closed ordered fields are first order indistinguishable from the ordered
field of real numbers R, i.e. R does not admit an algebraic extension
to an ordered field that is more inclusive, but it is not unique.

In 1961 Abraham Robinson was able to establish non-Archimedean
real closed extensions of the system of real numbers (the non-standard
or hyperreal number systems) incorporating infinite and infinitesimal
numbers. Building on earlier work by Tarski (1935), Thoralf Skolem
(1934), and A.I. Malcev (1936), among others, Robinson’s results in
model theory, a term due to Tarski, resolved the inconsistency in Leib-
niz’s concept of the continuum.

That inconsistency is this: Leibniz not only assumed two quantities
can be considered equal if they differ by an infinitesimally small amount
relative to them (nonlinearity), but also that the laws of arithmetic hold
for infinitesimal as well as for finite quantities (linearity).

Robinson’s results based on properties of predicate logic provide a
consistent theory in respect to classical mathematics by establishing
that x and x+dx , although not equal, are equivalent in a well-defined
sense and can be substituted for each other in some, but not in all rela-
tions. In other words, if K is the set of sentences in a formal language
L which is true in R, then there exists a proper (non-Archimedean)
extension ∗R of R that is a model of K, provided that the sentences
of K refer only to the admissable entities of a given type. [36, p. 538]

Statements about real numbers, when reinterpreted according to the
rules for extending the theory to ∗R, are valid for the members of ∗R.
∗R is a totally ordered non-Archimedean field containing R as a proper
subfield, and containing infinitely small numbers.

Robinson’s rigorous theory of infinitesimals, to which the operations
of real numbers apply, distinguishes between the standard part of the
finite real number a, the uniquely determined standard real number
infinitely close to a, and an infinitesimal number a, one whose absolute
value is less than any positive standard real number. In Robinson’s
theory each standard real number is surrounded by numbers infinitely
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close to it, while the infinitesimals form a set whose standard part is
zero8.

In Robinson’s theory the following are progressively smaller nonzero
infinitesimals, the equivalence classes of:

{1, 1/2, 1/3, . . . , 1/n, . . .},
{1, 1/4, 1/9, . . . , 1/n2, . . .},
{1, 1/2, 1/4, . . . , 1/2n, . . .}.

These infinitesimals are different from those that result from the the-
ory put forth by Leibniz who considered infinitesimals as being divided
into classes of successive orders of infinite smallness. For example, for
the first order differential dx , all other first order differentials stand in
finite ratio to dx. Generally, all nth order differentials stand in finite
ratio to dxn, and the set of infinitesimals consists only of these classes
of differentials [7, p. 83].

8. Conclusion.

Since the time of Euclid, concerns about magnitude and number
have been important in the foundations of mathematics. Beginning in
the last thirty years of the nineteenth century the relationship between
numbers and the magnitudes used in Euclidean geometry together with
the implications of the Archimedean axiom became clarified. Ulti-
mately these issues and those involving infinitesimals came together in
Robinson’s nonstandard analysis.

Dodgson’s inchoate theory marks one step in the historical evo-
lution of the concept of infinitely small numbers. His approach, in
which infinitesimals are formulated as elements in a non-linear (non-
Archimedean) number system underlying a non-Euclidean geometry, is
the earliest attempt to establish this connection.
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