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Sub-Riemannian geometry of
parallelizable spheres

Mauricio Godoy Molina and Irina Markina

Abstract
The first aim of the present paper is to compare various sub-

Riemannian structures over the three dimensional sphere S3 origi-
nating from different constructions. Namely, we describe the sub-
Riemannian geometry of S3 arising through its right action as a Lie
group over itself, the one inherited from the natural complex struc-
ture of the open unit ball in C2 and the geometry that appears when
it is considered as a principal S1−bundle via the Hopf map. The
main result of this comparison is that in fact those three structures
coincide.

We present two bracket generating distributions for the seven di-
mensional sphere S7 of step 2 with ranks 6 and 4. The second one
yields to a sub-Riemannian structure for S7 that is not widely present
in the literature until now. One of the distributions can be obtained
by considering the CR geometry of S7 inherited from the natural com-
plex structure of the open unit ball in C4. The other one originates
from the quaternionic analogous of the Hopf map.

1. Introduction

One of the main objectives of classical sub-Riemannian geometry is to study
manifolds which are path-connected by curves admissible in a certain sense.
In order to define what does admissibility mean in this context, we begin
by setting notations that will be used throughout this paper. Let M be a
smooth connected manifold of dimension n, together with a smooth distri-
bution H ⊂ TM of rank 2 ≤ k < n. Such vector bundles are often called
horizontal in the literature. An absolutely continuous curve γ : [0, 1] → M
is called admissible or horizontal if γ̇(t) ∈ H a.e.
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Distributions satisfying the condition that their Lie-hull equals the whole
tangent space of the manifold at each point play a central role in the search
for horizontally path-connected manifolds. Such vector bundles are said
to satisfy the bracket generating condition. To be more precise, define the
following real vector bundles

H1 = H, Hr+1 = [Hr,H] + Hr for r ≥ 1,

which naturally give rise to the flag

H = H1 ⊆ H2 ⊆ H3 ⊆ · · ·
Then we say that a distribution is bracket generating if for all x ∈ M there
is an r(x) ∈ Z+ such that

(1.1) Hr(x)
x = TxM.

If the dimensions dimHr
x do not depend on x for any r ≥ 1, we say that H

is a regular distribution. The least r such that (1.1) is satisfied is called the
step of H. We will focus on regular distributions of step 2. In [18] the reader
can find detailed definitions and broad discussion about terminology.

The following classical result shows the precise relation between the no-
tion of path-connectedness by means of horizontal curves and the assumption
that H is a bracket generating distribution.

Theorem 1 ([11, 23]). Let M be a connected manifold. If a distribution
H ⊂ TM is bracket generating, then any two points in M can be joined by
a horizontal path.

We recall the definition of sub-Riemannian manifold.

Definition 1. A sub-Riemannian structure over a manifold M is a pair
(H, 〈·, ·〉), where H is a bracket generating distribution and 〈·, ·〉 a fiber
inner product defined on H. In this setting, the length of an absolutely
continuous horizontal curve γ : [0, 1] → M is

�(γ) :=

∫ 1

0

‖γ̇(t)‖ dt,

where ‖γ̇(t)‖2 = 〈γ̇(t), γ̇(t)〉 whenever γ̇(t) exists. The triple (M,H, 〈·, ·〉) is
called sub-Riemannian manifold.

Thereby, restricting our considerations to connected sub-Riemannian
manifolds endowed with bracket generating distributions, it is possible to
define the notion of sub-Riemannian distance between two points.
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Definition 2. The sub-Riemannian distance d(p, q) ∈ [0, +∞) between two
points p, q ∈ M is given by d(p, q) := inf �(γ), where the infimum is taken
over all absolutely continuous horizontal curves joining p to q.

An absolutely continuous horizontal curve that realizes the distance be-
tween two points is called a horizontal length minimizer.

Remark: The connectedness of M and the fact that H is bracket generating,
assure that d(p, q) is a finite nonnegative number. Nevertheless the bracket
generating hypothesis, required for the previous definition, is possible to
be weakened. In fact, in [25] the author finds a necessary and sufficient
requirement to horizontal path-connectedness for a manifold in terms of the
corresponding distribution. Clearly, this theorem contains, as a particular
case, the bracket generating condition.

Historically, the first examples of sub-Riemannian manifolds that have
been considered were Lie groups, see e.g. [2, 6, 9, 14, 17]. Due to its algebraic
structure, it is sufficient to define appropriate distributions at the identity of
the group. Right (or left) translations allow to find globally defined bracket
generating distributions of right (or left) invariant vector fields. An im-
portant role has been played by considering domains in Euclidean spaces
with special algebraic structures (such as the Heisenberg groups, H−type
groups as their natural generalizations to Clifford algebras, Engel groups,
Carnot groups, etc.). Particular attention have had the three dimensional
unimodular Lie groups which were studied, for example, in [2, 6, 14] and
the Heisenberg group, see [13]. The main purpose of this communication is
to present recent results concerning different sub-Riemannian structures of
the second simplest family of examples of manifolds, namely, spheres. The
main tool for the study of sub-Riemannian structures on spheres arise from
the G−principal bundle structure given by the Hopf fibrations. We are also
inspired by the article [26], where the close relation between the Hopf map
and physical applications is presented.

The following celebrated theorem in topology, see [1], gives a very strong
restriction on the problem of finding globally defined sub-Riemannian struc-
tures over spheres.

Theorem 2. (Adams). Let Sn−1 = {x ∈ Rn : ‖x‖2 = 1} be the unit
sphere in Rn, with respect to the usual Euclidean norm ‖ · ‖. Then Sn−1 has
precisely �(n) − 1 linearly independent, globally defined and non vanishing
vector fields, where �(n) is defined in the following way: if n = (2a + 1)2b

and b = c + 4d where 0 ≤ c ≤ 3, then �(n) = 2c + 8d.
In particular, two classical consequences follow: S1, S3 and S7 are the

only spheres with maximal number of linearly independent globally defined
non vanishing vector fields, and the even dimensional spheres have no glob-
ally defined and non vanishing vector fields.
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The condition that a manifold M has maximal number of linearly inde-
pendent globally defined non vanishing vector fields is usually rephrased as
saying that M is parallelizable. The fact that S1, S3 and S7 are the only par-
allelizable spheres was proved in [7] and that the even dimensional spheres
have no globally defined and non vanishing vector fields is a consequence of
the Hopf index theorem, see [27].

This theorem permits to conclude at least two major points of discussion:
there is no possible global basis of a sub-Riemannian structure for spheres
with even dimension and it is impossible to find a globally defined basis for
bracket generating distributions, except for S3 and S7. The fact that S3

and S7 can be seen as the set of quaternions and octonions of unit length
will play a core role in many arguments throughout this paper.

The main results that we present here are: a comparison between three
sub-Riemannian structures of S3 and the constructions for two different
sub-Riemannian structures for S7. More specifically, the first result can be
summarized as an equivalence between the sub-Riemannian geometry of S3

arising through its right Lie group action over itself as the set of unit quater-
nions, the one inherited from the natural complex structure of the open unit
ball in C2 and the geometry that appears when considering the Hopf map
as a principal S1−bundle. Notice that this structure admits a tangent cone
isomorphic to the one dimensional Heisenberg group in the sense of Gromov-
Margulis-Mitchell-Mostow construction of the tangent cone [15, 20, 21, 22].
With respect to the second result, by considering the CR structure of S7

inherited from the natural complex structure of the open unit ball in C4, we
obtain a 2-step bracket generating distribution of rank 6. This construction
is intimately related to the Hopf fibration S1 → S7 → CP 3, in the sense that
the holomorphic tangent space defining the CR structure is an Ehresmann
connection, that is, the orthogonal complement to the vertical space defined
by the Hopf fibration as a principal S1−bundle. This fact is generalized
to all odd-dimensional spheres and, moreover, it implies that the tangent
cone for (2n + 1)−dimensional spheres is isomorphic to the n−dimensional
Heisenberg group. Making use of the quaternionic analogue of the Hopf map
S3 → S7 → S4, we present another 2-step bracket generating distribution
that has rank 4. We conclude that the sphere S7 admits at least two different
sub-Riemannian structures. The tangent cone, in the first case, is isomor-
phic to the 3-dimensional Heisenberg group, and in the second case it has
the structure of the quaternionic Heisenberg-type group with 3-dimensional
center [9]. In both cases we present the basis of the horizontal distribution
that is very useful in future studies of geodesics and hypoelliptic operators
related to the sub-Riemannian geometry of spheres. We would like to note
that, in the case of the rank 6 distribution the given basis is globally defined,
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while in the case of the rank 4 distribution the search for a globally defined
basis will be analyzed in a forthcoming paper. It is also expected that S7

with the structure induced by the quaternionic Hopf fibration satisfies the
conditions of a qCR−manifold in the sense of [3].

2. S3 as a sub-Riemannian manifold

Throughout this paper H will denote the quaternions, that is, H = (R4, +, ◦)
where + stands for the usual coordinate-wise addition in R4 and ◦ is a non-
commutative product given by the formula

(x0 + x1i + x2j + x3k) ◦ (y0 + y1i + y2j + y3k) =

= (x0y0 − x1y1 − x2y2 − x3y3) + (x1y0 + x0y1 − x3y2 + x2y3)i

+ (x2y0 + x3y1 + x0y2 − x1y3)j + (x3y0 − x2y1 + x1y2 + x0y3)k.

It is important to recall that H is a non-commutative, associative and
normed real division algebra. Let q = t+ai+bj+ck ∈ H, then the conjugate
of q, is given by

q̄ = t − ai − bj − ck.

We define the norm |q| of q ∈ H by |q|2 = qq̄.

The realization of the sphere S3 as the set of unit quaternions, produces
a Lie group structure induced by quaternion multiplication.

The multiplication rule in H induces a right translation Ry(x) of an
element x = x0 + x1i + x2j + x3k by the element y = y0 + y1i + y2j + y3k.
The right invariant basis vector fields are defined as Y (y) = (Ry(x))∗Y (0),
where Y (0) are the basis vectors at the unity of the group. The matrix
corresponding to the tangent map (Ry(x))∗, obtained by the multiplication
rule, becomes

(Ry(x))∗ =

⎛
⎜⎜⎝

y0 y1 y2 y3

−y1 y0 −y3 y2

−y2 y3 y0 −y1

−y3 −y2 y1 y0

⎞
⎟⎟⎠ .

Calculating the action of (Ry(x))∗ in the basis of unit vectors of R4 we
get the four vector fields

N(y) = y0∂y0 + y1∂y1 + y2∂y2 + y3∂y3 ,

V (y) = −y1∂y0 + y0∂y1 − y3∂y2 + y2∂y3 ,

X(y) = −y2∂y0 + y3∂y1 + y0∂y2 − y1∂y3 ,

Y (y) = −y3∂y0 − y2∂y1 + y1∂y2 + y0∂y3 .
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It is easy to see that N(y) is the unit normal to S3 at y ∈ S3 with respect
to the usual Riemannian structure 〈·, ·〉 in T R4. Moreover, for any y ∈ S3

〈
N(y), V (y)

〉
y

=
〈
N(y), X(y)

〉
y

=
〈
N(y), Y (y)

〉
y

= 0

and

〈
N(y), N(y)

〉
y

=
〈
V (y), V (y)

〉
y

=
〈
X(y), X(y)

〉
y

=
〈
Y (y), Y (y)

〉
y

= 1.

Since the matrix ⎛
⎝ −y1 y0 −y3 y2

−y2 y3 y0 −y1

−y3 −y2 y1 y0

⎞
⎠

has rank three, we conclude that the vector fields
{
V (y), X(y), Y (y)

}
form

an orthonormal basis of TyS
3 with respect to 〈·, ·〉y, for any y ∈ S3.

Observing that [X, Y ] = 2V , we see that the distribution span{X, Y } is
bracket generating, therefore it satisfies the hypothesis of Theorem 1. The
geodesics of the left invariant sub-Riemannian structure of S3 are determined
in [10], while in [17] the same results are achieved by considering the right
invariant structure of S3.

Notice that the distribution span{X, Y } can also be defined as the kernel
of the contact one form

ω = −y1 dy0 + y0 dy1 − y3 dy2 + y2 dy3.

Remark: It is easy to see that [V, Y ] = 2X and [X, V ] = 2Y , therefore the
distributions span{Y, V } and span{X, V } are also bracket generating. The
corresponding contact forms are

θ = −y2 dy0 + y3 dy1 + y0 dy2 − y1 dy3

and

η = −y3 dy0 − y2 dy1 + y1 dy2 + y0 dy3

respectively. This means that there is a priori no natural choice of a sub-
Riemannian structure on S3 generated by the Lie group action of multipli-
cation of quaternions. Any choice that can be made, will produce essentially
the same geometry.
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3. S3 as a CR manifold

Consider S3 as the boundary of the unit ball B4 on C2, that is, as the
hypersurface

S3 :=
{
(z, w) ∈ C2 : zz̄ + ww̄ = 1

}
.

The sphere S3 cannot be endowed with a complex structure, but nevertheless
it possess a differentiable structure compatible with the natural complex
structure of the ball B4 =

{
(z, w) ∈ C2 : zz̄ + ww̄ < 1

}
as an open set

in C2. We will show that this differentiable structure over the sphere S3

(CR structure) is equivalent to the sub-Riemannian one considered in the
previous section. We begin by recalling the definition of a CR structure,
according to [5].

Definition 3. Let W be a real vector space. A linear map J : W → W is
called an almost complex structure map if J ◦ J = −I, where I : W → W
is the identity map.

In the case W = TpR
2n, p = (x1, y1, . . . , xn, yn) ∈ R2n, we say that the

standard almost complex structure for W is defined by setting

Jn(∂xj
) = ∂yj

, Jn(∂yj
) = −∂xj

, 1 ≤ j ≤ n.

For a smooth real submanifold M of Cn and a point p ∈ M , in general the
tangent space TpM is not invariant under the almost complex structure map
Jn for TpC

n ∼= TpR
2n. We are interested in the largest subspace invariant

under the action of Jn.

Definition 4. For a point p ∈ M , the complex or holomorphic tangent
space of M at p is the vector space

HpM = TpM ∩ Jn(TpM).

In this setting, the following result takes place, see [5].

Lemma 1. Let M be a real submanifold of Cn of real dimension 2n − d.
Then

2n − 2d ≤ dimR HpM ≤ 2n − d,

and dimR HpM is an even number.

A real submanifold M of Cn is said to have a CR structure if dimR HpM
does not depend on p ∈ M . In particular, by Lemma 1, every smooth real
hypersurface S embedded in Cn satisfies dimR HpS = 2n − 2, therefore S is
a CR manifold. This fact applies to every odd dimensional sphere.
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The question addressed now is to describe HpS
3. By the discussion in the

previous paragraph, HpS
3 can be seen as a complex vector space of complex

dimension one. This description is achieved by considering the differential
form

ω = z̄dz + w̄dw

and observing that ker ω is precisely the set we are looking for. Straightfor-
ward calculations show that

ker ω = span{w̄∂z − z̄∂w}.
In real coordinates this corresponds to

w̄∂z − z̄∂w =
1

2
(−X + iY ),

where X and Y were defined in Section 2. It is important to remark that
this is precisely the maximal invariant J2−subspace of TpS

3, namely

J2(X) = Y, J2(Y ) = −X,

then J2

(
span{X, Y }) = span{X, Y }, but J2(V ) = −N /∈ TpS

3 for any point
p ∈ S3. Therefore, the distribution corresponding to the right invariant
action of S3 over itself is the same to its one dimensional (complex) CR
structure.

Remark: The distribution associated to the anti-holomorphic form

ω̄ = zdz̄ + wdw̄

is the conjugate to the previous one and isomorphic to the 2-dimensional
real distribution H. More explicitly:

ker ω = span{−w∂z̄ + z∂w̄}
and in real coordinates this corresponds to

−w∂z̄ + z∂w̄ =
1

2
(X + iY ).

The same almost complex structure as the previously described can be
obtained by means of the covariant derivative of S3 considered as a smooth
Riemannian manifold embedded in R4. Namely, in [17] it is introduced
the mapping J(Z) = ∇ZV , for Z ∈ TS3, were ∇ denotes the Levi-Civita
connection on the tangent bundle to S3 and V is the vector field defined in
Section 2.
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4. S3 as principal bundle

In this section we describe how the structure of a principal S1−bundle
over S3 induces a bracket generating distribution on S3. Namely, it is pos-
sible to consider S3 as a S1−space, according to the action

λ · (z, w) = (λz, λw),

where λ ∈ S1 =
{
λ ∈ C : |λ|2 = 1

}
and (z, w) ∈ S3 =

{
(z, w) ∈ C2 :

|z|2 + |w|2 = 1
}
.

Consider the Hopf map h : S3 → S2 as a principal S1−bundle, see [16,
19], given explicitly by

h(z, w) =
(|z|2 − |w|2, 2zw̄)

,

where S2 =
{
(x, ζ) ∈ R × C : x2 + |ζ |2 = 1

}
. Clearly, h is a submersion

of S3 onto S2, and it is a bijection between S3/S1 and S2, where S3/S1 is
understood as the orbit space of the S1−action over S3, previously defined.

Let p = (x0, ζ0) ∈ S2. It is easy to verify that h−1(p) = (z0, w0) mod S1,
where (z0, w0) is one preimage of p under h. Consider the great circle

γp(t) = e2πit(z0, w0), t ∈ [0, 1],

in S3, that projects to p under the Hopf map. Consider the tangent vector
field, defined by

γ̇p(t) = 2πie2πit(z0, w0) ∈ Tγp(t)S
3.

We write the curve γp and the map dγp(t)h in real coordinates, then

γp(t) =
(
z(t), w(t)

)
=

(
x0(t) + ix1(t), x2(t) + ix3(t)

)
=

(
x0(t), x1(t), x2(t), x3(t)

)
and

[dγp(t)h] = 2

⎛
⎝ x0(t) x1(t) −x2(t) −x3(t)

x2(t) x3(t) x0(t) x1(t)
−x3(t) x2(t) x1(t) −x0(t)

⎞
⎠ .

Thus, the Hopf map induces the following action over the vector field γ̇p(t):

[dγp(t)h]γ̇p(t) = 4π

⎛
⎝ x0(t) x1(t) −x2(t) −x3(t)

x2(t) x3(t) x0(t) x1(t)
−x3(t) x2(t) x1(t) −x0(t)

⎞
⎠
⎛
⎜⎜⎝

ẋ0(t)
ẋ1(t)
ẋ2(t)
ẋ3(t)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
0
0
0

⎞
⎟⎟⎠ .
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Therefore, if [dγp(t)h] is a full rank matrix, we would have characterized the
kernel of it, by

(4.1) ker dγp(t)h = span{γ̇p(t)}.
Notice that, using the notation of Section 2, the following identity holds

γ̇p(t) = 2πV (γp(t)).(4.2)

To see that the matrix [dγp(t)h] is full rank, observe that

[dγp(t)h][dγp(t)h]t = 4I3,

where I3 denotes the identity matrix of size 3×3. This implies that [dγp(t)h]
is full rank.

Before describing how the Hopf map induces a horizontal distribution,
it is necessary to present some definitions found for example in [22, Chap-
ter 11].

Definition 5. (Ehresmann Connection). Let M and Q be two differentiable
manifolds, and let π : Q → M be a submersion. Denoting by Qm = π−1(m)
the fiber through m ∈ M , the vertical space at q is the tangent space at the
fiber Qπ(q) and it is denoted by Vq.

An Ehresmann connection for the submersion π : Q → M is a distribu-
tion H ⊂ TQ which is everywhere transversal to the vertical, that is:

Vq ⊕Hq = TqQ.

We apply Definition 5 to the map h in order to define the Ehresmann
connection. Since we know that ker dph = span{V (p)}, for every p ∈ S3

by (4.1) and (4.2), and moreover,〈
X(p), V (p)

〉
p

=
〈
Y (p), V (p)

〉
p

=
〈
X(p), Y (p)

〉
p

= 0,

where 〈·, ·〉p stands for the usual Riemannian structure defined at p ∈ S3,
we see that

Hp = span{X(p), Y (p)}(4.3)

is an Ehresmann connection for the submersion h : S3 → S2 with V (p) as a
vertical space.

Definition 6. Let G be a Lie group acting on Q and π : Q → M a submer-
sion, with Ehresmann connection H, which is a fiber bundle with fiber G.
The submersion π is called a principal G−bundle with connection, if the
following conditions hold:

• G acts freely and transitively on fibers,
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• the group orbits are the fibers of π : Q → M (thus M is isomorphic
to Q/G and π is the canonical projection) and

• the G−action on Q preserves the horizontal distribution H;

We conclude that the Hopf fibration is a principal S1−bundle with con-
nection H, defined by (4.3).

Definition 7. A sub-Riemannian metric 〈·, ·〉 on the principal G-bundle
π : G → M is called a metric of bundle type if the inner product 〈·, ·〉 on
the horizontal distribution H is induced from a Riemannian metric on M .

The sub-Riemannian metric 〈·, ·〉|H, obtained by restricting the usual
Riemannian metric of S3 to the distribution H is, by construction, a metric
of bundle type.

Thus the Hopf map indicates, in a topological way, how to make a nat-
ural choice of the horizontal distribution H that was not obvious when we
considered the right action of S3 over itself.

Remark: Observe that the considered vector fields coincide with the right
invariant vector fields. This phenomenon does not appear when we change
the right action to the left action of S3 over itself.

5. Tangent vector fields for S7

In Sections 5 to 7 we will study different sub-Riemannian structures over
the sphere S7, using the ideas of Sections 2 to 4. As a result, we obtain two
structurally different types of horizontal distributions. One of them of rank 6
and other of the rank 4. Moreover, as we shall see, the sub-Riemannian
structure induced by the CR structure and quaternionic analogue of the
Hopf map are essentially different. We start from the construction of a
convenient basis of tangent vector fields to S7.

The multiplication of unit octonions is not associative, therefore S7 is
not a group in a contrast with S3. Nevertheless, we still able to use the
multiplication law in order to find global tangent vector fields. To do this,
we present a multiplication table for the basis vectors of R8. This non-
associative multiplication gives rise to the division algebra of octonions

O = span{e0, e1, e2, e3, e4, e5, e6, e7}.

According to Table 1, the formula for the product of two octonions is
presented in Subsection 8.1 of the Appendix. This multiplication rule in-
duces a matrix representation of the right octonion multiplication, given
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e0 e1 e2 e3 e4 e5 e6 e7

e0 e0 e1 e2 e3 e4 e5 e6 e7

e1 e1 −e0 e3 −e2 e5 −e4 −e7 e6

e2 e2 −e3 −e0 e1 e6 e7 −e4 −e5

e3 e3 e2 −e1 −e0 e7 −e6 e5 −e4

e4 e4 −e5 −e6 −e7 −e0 e1 e2 e3

e5 e5 e4 −e7 e6 −e1 −e0 −e3 e2

e6 e6 e7 e4 −e5 −e2 e3 −e0 −e1

e7 e7 −e6 e5 e4 −e3 −e2 e1 −e0

Table 1: Multiplication table for the basis of O.

explicitly by:

(Ry(x))∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y0 −y1 −y2 −y3 −y4 −y5 −y6 −y7

y1 y0 y3 −y2 y5 −y4 −y7 y6

y2 −y3 y0 y1 y6 y7 −y4 −y5

y3 y2 −y1 y0 y7 −y6 y5 −y4

y4 −y5 −y6 −y7 y0 y1 y2 y3

y5 y4 −y7 y6 −y1 y0 −y3 y2

y6 y7 y4 −y5 −y2 y3 y0 −y1

y7 −y6 y5 y4 −y3 −y2 y1 y0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We are able to find globally defined tangent vector fields which are in-
variant under the right product rule. We proceed by analogy with Section 2.
The explicit formulae are given in Subsection 8.2 of the Appendix. The vec-
tor fields {Y0, . . . , Y7} form a frame for TR8 and, as in Subsection 8.2, the
vector fields {Y1, . . . , Y7} form a frame for TS7. More explicitly, we have
that the following identities hold〈

Yi(y), Yj(y)
〉

y
= δij, y ∈ S7, i, j ∈ {0, 1, . . . , 7},

where 〈·, ·〉 is the standard Riemannian structure over R8 and δij stands for
Kronecker’s delta.

Remark: Recall that in contrast with quaternions, the matrix represen-
tation (Ry(x))∗ of right octonion multiplication is only a convenient way
of writing the formula presented in Subsection 8.1 of the Appendix. For
quaternions this is actually a representation of quaternion product, but it
cannot be such for octonions since they are non-associative and matrix mul-
tiplication is associative.
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6. CR structure and the Hopf map on S7

In [22, Chapter 11] it is briefly discussed the general idea of studying a
sub-Riemannian geometry for odd dimensional spheres via the higher Hopf
fibrations. Namely, consider S2n+1 = {z ∈ Cn+1 : ‖z‖2 = 1}, then the
S1−action on S2n+1 given by

λ · (z0, . . . , zn) = (λz0, . . . , λzn),

for λ ∈ S1 and (z0, . . . , zn) ∈ S2n+1, induces the well-known principal
S1−bundle

S1 → S2n+1 H−→ CP n

given explicitly by

S2n+1 � (z0, . . . , zn) �→ H(z0, . . . , zn) = [z0 : · · · : zn] ∈ CP n,

where [z0 : · · · : zn] denotes homogeneous coordinates. This map is called
higher Hopf fibration. The kernel of the map h : S2n+1 → CP n produces the
vertical space and a transversal to the vertical space distribution gives the
Ehresmann connection. We show that the vertical space is always given by
an action of standard almost complex structure on the normal vector field
to S2n+1, and the Ehresmann connection coincides with the holomorphic
tangent space at each point of S2n+1.

Theorem 2 asserts that any odd dimensional sphere has at least one
globally defined non vanishing tangent vector field. If the dimension of the
sphere is of the form 4n + 1, then it has only one globally defined non
vanishing tangent vector field. In the case that the dimension of the sphere
is of the form 4n + 3, then the sphere admits at least three globally defined
non vanishing vector fields. Any sphere S2n+1 possesses the vector field

Vn+1(y) = −y1∂y0 + y0∂y1 − y3∂y2 + · · · − y2n+2∂y2n+1 + y2n+1∂y2n+2 .

Observe that this vector field has appeared already in two opportunities:
the vector field V in Sections 2, 3 and 4 corresponds to V2; and the vector
field Y1 in Subsection 8.2 of the Appendix corresponds to V4.

The vector field Vn+1 encloses valuable information concerning the CR
structure of S2n+1. We know by Lemma 1 that, as a smooth hypersurface
in Cn+1 the sphere S2n+1 admits a holomorphic tangent space of dimension

dimR HpS
2n+1 = 2n

for any point p ∈ S2n+1. The following lemma implies the description of
HpS

2n+1 as the orthogonal complement to Vn+1.
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Lemma 2. Let W be an Euclidean space of dimension n + 2, n ≥ 1,
and inner product 〈·, ·〉W . Consider an orthogonal decomposition W =

span{X, Y } ⊕⊥ W̃ with respect to 〈·, ·〉W and an orthogonal endomorphism
A : W → W such that

A
(
span{X, Y }) = span{X, Y },

then W̃ is an invariant space under the action of A, i.e.

A(W̃ ) = W̃ .

Proof. Let v ∈ W̃ , then for any α, β ∈ R it is clear that〈
Av, αX + βY

〉
W

=
〈
v, At(αX + βY )

〉
W

=
〈
v, A−1(αX + βY )

〉
W

.

Since A
(
span{X, Y }) = span{X, Y }, there exist a, b ∈ R such that

A−1(αX + βY ) = aX + bY,

and therefore 〈
Av, αX + βY

〉
W

=
〈
v, aX + bY

〉
W

= 0,

which implies that Av ∈ W̃ . �
As an application of Lemma 2, it is possible to obtain the explicit char-

acterization of the previously mentioned space HpS
2n+1.

Lemma 3. The vector space HpS
2n+1 is the orthogonal complement to the

vector Vn+1(p) in TpS
2n+1, for any p ∈ S2n+1.

Proof. Consider the vector space

Wp = span{Nn+1(p)} ⊕⊥ TpS
2n+1 ∼= TpR

2n+2,

where Nn+1(p) is the normal vector to S2n+1 at p. The standard almost
complex structure map Jn+1 : Wp → Wp is orthogonal. Moreover

Jn+1

(
Vn+1(p)

)
= −Nn+1(p), Jn+1

(
Nn+1(p)

)
= Vn+1(p).

Using the decomposition Wp = W̃p ⊕⊥ span{Vn+1(p), Nn+1(p)}, it is possible

to apply Lemma 2 in order to conclude that W̃p, which is the orthogonal com-

plement to Vn+1(p) in TpS
2n+1, is invariant under Jn+1. Since dimR W̃p = 2n,

we conclude that W̃p = HpS
2n+1. �
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Remark: The space HS2n+1 can also be described as the kernel of the
one-form

θn+1 = z̄0dz0 + . . . + z̄ndzn.

Indeed, consider X ∈ HS2n+1, then by straightforward calculations we have

(6.1) θn+1(X) =
〈
X, Nn+1

〉
+ i

〈
X, Vn+1

〉
= 0.

Lemma 3 provides a horizontal distribution of rank 2n for the spheres
S2n+1, by considering the holomorphic tangent space. The goal now is to
prove that this distribution is bracket generating. In order to do this, let
us state a simple result establishing the bracket generating property for an
arbitrary contact manifold.

Lemma 4. Let M be a (2n+1)−dimensional contact manifold with contact
form ω, then ξ = ker ω is a bracket generating distribution of rank 2n and
step 2.

Proof. Recall Cartan’s formula for a differential one-form ω, namely

(6.2) dω(X, Y ) = X
(
ω(Y )

) − Y
(
ω(X)

)− ω
(
[X, Y ]

)
,

for all X, Y ∈ TM . See [8] for the general formulation. It follows from (6.2)
that ξ is Frobenius integrable if and only if dω(X, Y ) = 0 for all X, Y ∈ ξ.
Thus, if ω is a contact form, then dω(X, Y ) �= 0 for all X, Y ∈ TM and,
therefore ξ is not Frobenius integrable. This implies the bracket generat-
ing property for ξ, since if [X, Y ](p) /∈ ξp at any point p ∈ M for some
X(p), Y (p) ∈ ξp then span

{
[X, Y ](p)

} ⊕ ξp = TpM . �

By Lemma 4, to prove that HS2n+1 is bracket generating, it is sufficient
to find a contact one-form ωn+1 such that HS2n+1 = ker ωn+1. In order to
achieve this, consider

(6.3) ωn+1 = Im θn+1 = −y1dy0 + y0dy1 − . . . − y2n+1dy2n + y2ndy2n+1

defined on S2n+1. By (6.1), the relation HS2n+1 = ker ωn+1 holds immedi-
ately.

Theorem 3. The one-form ωn+1 defined in (6.3) is a contact form. More
specifically, ωn+1 satisfies

(dωn+1)
n ∧ ωn+1 = n! · 2ndvolS2n+1,

where dvolS2n+1 is the volume form for S2n+1.
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Proof. We observe that

dωn+1 = 2(dy0 ∧ dy1 + · · ·+ dy2n ∧ dy2n+1).

Now, recalling the multinomial formula

(x1 + . . . + xm)p =
∑

i1+···+im=p

(
p

i1 . . . im

)
xi1

1 · · · xim
m ,

where
(

p
i1...im

)
denotes the multinomial coefficient p!

i1!···im!
. Then

(dωn+1)
n =2n

∑
i0+···+in=n

(
n

i0 . . . in

)
(dy0 ∧ dy1)

i0 ∧ · · · ∧ (dy2n ∧ dy2n+1)
in(6.4)

= n! · 2n
n∑

j=0

(dy0 ∧ dy1) ∧ · · · ∧ (d̂y2j ∧ d̂y2j+1) ∧ · · · ∧ (dy2n ∧ dy2n+1),(6.5)

where d̂yk means that this term is ommited. The fact that the differential
one-forms are grouped in pairs in (6.4), permits us to use the multinomial
formula. Equality (6.5) holds since in the summation the only non-zero
terms are those when i0, . . . , in ∈ {0, 1} and i0 + · · · + in = n. In this case(

n

i0 . . . in

)
=

n!

0! · 1! · · · 1!
= n!.

Taking the exterior power of ωn+1 and expression (6.5) we see that

(dωn+1)
n ∧ ωn+1 = n! · 2n

2n+1∑
j=0

(−1)jyjdy0 ∧ · · · ∧ d̂yj ∧ · · · ∧ dy2n+1

= n! · 2ndvolS2n+1 . �
The following corollary holds, by Lemma 4 and Theorem 3.

Corollary 1. The holomorphic tangent bundle HS2n+1 is a bracket gener-
ating distribution of step 2 and rank 2n.

An important consequence of Theorem 3 follows by considering a classical
result by G. Darboux, see [12]. In modern terms, this theorem asserts that
every (2n + 1)−dimensional contact manifold is locally the n−dimensional
Heisenberg group. This means precisely that the tangent cone of S2n+1 as
a sub-Riemannian manifold with distribution HS2n+1 and metric induced
by the usual Euclidean metric in R2n+2 is isomorphic to the n−dimensional
Heisenberg group.

It is necessary to remark that in general there is no globally defined basis
for HS2n+1. By Theorem 2, this is only possible for S3 and S7. A basis for
this distribution in the case of S3 was already discussed in Section 2. Here
we present an explicit proof that shows the bracket generating property of
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the basis of HS7 invariant under right octonion multiplication. A similar
proof and other considerations concerning the hypoelliptic nature of the
sub-Laplacian associated with the distribution HS7 can be found in [4].

Theorem 4. The subbundle H = span{Y2, . . . , Y7} = HS7 of TS7 is a
bracket generating distribution of rank 6 and step 2.

Proof. Define the following vector fields

v41(y) = −y4∂y0 + y5∂y1 + y0∂y4 − y1∂y5 ,

v42(y) = y6∂y2 − y7∂y3 − y2∂y6 + y3∂y7 ,

v51(y) = −y5∂y0 − y4∂y1 + y1∂y4 + y0∂y5 ,

v52(y) = −y7∂y2 − y6∂y3 + y3∂y6 + y0∂y7 ,

and observe that v41 + v42 = Y4 and v51 + v52 = Y5. By straightforward
calculations we see that〈
v41(y), Y0(y)

〉
y

=
〈
v42(y), Y0(y)

〉
y

=
〈
v51(y), Y0(y)

〉
y

=
〈
v52(y), Y0(y)

〉
y

= 0,〈
v41(y), Y1(y)

〉
y

=
〈
v42(y), Y1(y)

〉
y

=
〈
v51(y), Y1(y)

〉
y

=
〈
v52(y), Y1(y)

〉
y

= 0,

which implies that v41, v42, v51, v52 ∈ span{Y2, . . . , Y7}. The following com-
mutation relation

[v41, v51] + [v42, v52] = −2Y1

implies that the distribution H is bracket generating of step 2. �
Remark: It is possible to repeat the previous argument with other pairs of
vector fields. For example, if instead of Y4 and Y5 we employ Y2 and Y3, we
can consider the vector fields

v21(y) = −y2∂y0 + y3∂y1 + y0∂y2 − y1∂y3 ,

v22(y) = −y6∂y4 + y7∂y5 + y4∂y6 − y5∂y7 ,

v31(y) = −y3∂y0 − y2∂y1 + y1∂y2 + y0∂y3 ,

v32(y) = y7∂y4 + y6∂y5 − y5∂y6 − y4∂y7 ,

satisfy v21 + v22 = Y2, v31 + v32 = Y3 and

[v21, v31] − [v21, v31] = −2Y1.

We can proceed in a similar way if we use Y6 and Y7.

We conclude this section by proving that the line bundle span{Vn+1}
is the vertical space for the submersion given by the Hopf fibration S1 →
S2n+1 H−→ CP n. This implies that the distribution H defined in Theorem 4
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is an Ehresmann connection for H . To achieve this, we recall that the charts
defining the holomorphic structure of CP n are given by the open sets

Uk =
{
[z0 : · · · : zn] : zk �= 0

}
,

together with the homeomorphisms

ϕk : Uk → Cn

[z0 : . . . : zn] �→ (
z0

zk
, . . . , zk−1

zk
, zk+1

zk
, . . . , zn

zk

)
.

Then, without loss of generality we will assume that n = 3 and we will
develop the explicit calculations for k = 0. The other cases can be treated
similarly.

Using the chart (U0, ϕ0) defined above, we have the map

ϕ0 ◦ H : S7 → C3

(z0, z1, z2, z3) �→ ( z1

z0
, z2

z0
, z3

z0
),

which in real coordinates can be written as

ϕ0 ◦ H(x0, . . . , x7) =

(
x0x2 + x1x3

x2
0 + x2

1

,
x0x3 − x1x2

x2
0 + x2

1

,
x0x4 + x1x5

x2
0 + x2

1

,

x0x5 − x1x4

x2
0 + x2

1

,
x0x6 + x1x7

x2
0 + x2

1

,
x0x7 − x1x6

x2
0 + x2

1

)
.

The differential of this mapping is given by the matrix

d(ϕ0 ◦ H) =
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(x2
1−x2

0)x2−2x0x1x3
(x2

0+x2
1)2

(x2
0−x2

1)x3−2x0x1x2
(x2

0+x2
1)2

x0
x2
0+x2

1

x1
x2
0+x2

1
0 0 0 0

(x2
1−x2

0)x3+2x0x1x2
(x2

0+x2
1)2

(x2
1−x2

0)x2−2x0x1x3
(x2

0+x2
1)2

− x1
x2
0+x2

1

x0
x2
0+x2

1
0 0 0 0

(x2
1−x2

0)x4−2x0x1x5
(x2

0+x2
1)2

(x2
0−x2

1)x5−2x0x1x4
(x2

0+x2
1)2

0 0
x0

x2
0+x2

1

x1
x2
0+x2

1
0 0

(x2
1−x2

0)x5+2x0x1x4
(x2

0+x2
1)2

(x2
1−x2

0)x4−2x0x1x5
(x2

0+x2
1)2

0 0 − x1
x2
0+x2

1

x0
x2
0+x2

1
0 0

(x2
1−x2

0)x6−2x0x1x7
(x2

0+x2
1)2

(x2
0−x2

1)x7−2x0x1x6
(x2

0+x2
1)2

0 0 0 0
x0

x2
0+x2

1

x1
x2
0+x2

1
(x2

1−x2
0)x7+2x0x1x6
(x2

0+x2
1)2

(x2
1−x2

0)x6−2x0x1x7
(x2

0+x2
1)2

0 0 0 0 − x1
x2
0+x2

1

x0
x2
0+x2

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

By straightforward calculations, we know that

det
(
[d(ϕ0 ◦ H)][d(ϕ0 ◦ H)]t

)
= (x2

0 + x2
1)

−8 = |z0|−16 �= 0,

therefore, the matrix d(ϕ0 ◦ H) has rank 6 or equivalently:

dimR ker d(ϕ0 ◦ H) = 2.

Moreover, since

d(ϕ0 ◦ H)(Nn+1) = d(ϕ0 ◦ H)(Vn+1) = 0,

by direct calculations, we conclude

ker d(ϕ0 ◦ H) = span{Nn+1, Vn+1}.
This implies that ker dH = span{Vn+1}.
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7. Application of the first quaternionic Hopf map

Trying to imitate the work already done for S3, we find through the quater-
nionic Hopf bundle S3 → S7 → S4 a natural choice of horizontal distribu-
tions. We consider the quaternionic Hopf map given by

(7.1)
h : S7 → S4

(z, w) �→ (|z|2 − |w|2, 2zw̄)
,

which can be written in real coordinates as:

h(x0, . . . , x7) =
(
x2

0 + x2
1 + x2

2 + x2
3 − x2

4 − x2
5 − x2

6 − x2
7,(7.2)

2(x0x4 + x1x5 + x2x6 + x3x7), 2(−x0x5 + x1x4 − x2x7 + x3x6),

2(−x0x6 + x1x7 + x2x4 − x3x5), 2(−x0x7 − x1x6 + x2x5 + x3x4)
)
.

The differential map dh is the following:

dh = 2

⎛
⎜⎜⎜⎜⎝

x0 x1 x2 x3 −x4 −x5 −x6 −x7

x4 x5 x6 x7 x0 x1 x2 x3

−x5 x4 −x7 x6 x1 −x0 x3 −x2

−x6 x7 x4 −x5 x2 −x3 −x0 x1

−x7 −x6 x5 x4 x3 x2 −x1 −x0

⎞
⎟⎟⎟⎟⎠ .

Since none of the commutators [Yi, Yj], i, j = 1, . . . , 7 coincides with the
Yk, k = 1, . . . , 7, we look for the kernel of dh among the commutators Yij,
i, j = 1, . . . , 7. We found that [dh]Y45 = [dh]Y46 = [dh]Y56 = 0. Define
V = {Y45, Y46, Y56}.

Our next step is to find the horizontal distribution span{H} that is
transversal to span{V } and bracket generating: span{H}p ⊕ span{V }p =
TpS

7 for all p ∈ S7. To begin with we define five basis for horizontal distri-
butions, that we will work with

H0 = {Y47, Y57, Y67, W},
H1 = {Y34, Y35, Y36, Y37}, H2 = {Y24, Y25, Y26, Y27},
H3 = {Y14, Y15, Y16, Y17}, H4 = {Y04, Y05, Y06, Y07},

where the vector field W will be defined later and the notation Y0k = Yk is
chosen for convenience. The numeration is valid only for this section.

We collect some useful information about sets Hm, m = 0, . . . , 4, that
we will exploit later.

1. All vector fields inside Hm, m = 0, 1, 2, 3, 4 are orthonormal (we do
not count W before we precise it).
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2. All of collections Hm, m = 0, 1, 2, 3, 4 are bracket generating with the
following commutator relations:

1

2
[Yj4, Yj5] = Y45,

1

2
[Yj4, Yj6] = Y46,

1

2
[Yj5, Yj6] = Y56, j = 0, 1, 2, 3,

1

2
[Y47, Y57] = Y45,

1

2
[Y47, Y67] = Y46,

1

2
[Y57, Y67] = Y56.

3. We aim to calculate the angles between the vector fields from Hm, m =
0, 1, 2, 3, 4 and between vector fields from Hm and V . Beforehand, we
introduce the following notations for the coordinates on the sphere S4

given by the Hopf map S3 → S7 → S4.

a00 = y2
0 + y2

1 + y2
2 + y2

3 − y2
4 − y2

5 − y2
6 − y2

7,

a11 = 2(y0y4 + y1y5 + y2y6 + y3y7),

a22 = 2(−y0y5 + y1y4 − y2y7 + y3y6),(7.3)

a33 = 2(−y0y6 + y1y7 + y2y4 − y3y5),

a44 = 2(−y0y7 − y1y6 + y2y5 + y3y4).

The first index of amk reflects the number of the collection Hm, where
they will appear and the second one is related to the number of the
coordinate on S4.

We start from H0 and calculate the inner products:

(7.4)
〈
Y45, Y67

〉
= −〈

Y46, Y57

〉
=

〈
Y56, Y47

〉
= a00.

All other vector fields are orthogonal. We continue for H1.

(7.5)

〈Y45, Y36〉 = −〈Y46, Y35〉 = 〈Y56, Y34〉 = a11

〈Y45, Y37〉 = 2(−y0y5 + y1y4 + y2y7 − y3y6) = a12

〈Y46, Y37〉 = 2(−y0y6 − y1y7 + y2y4 + y3y5) = a13

〈Y56, Y37〉 = 2(y0y7 − y1y6 + y2y5 − y3y4) = a14.

All other vector fields in H1 ∪ V are orthogonal. For the set H2 we see the
following:

(7.6)

−〈Y45, Y26〉 = 〈Y46, Y25〉 = −〈Y56, Y24〉 = a22

〈Y45, Y27〉 = 2(y0y4 + y1y5 − y2y6 − y3y7) = a21

〈Y46, Y27〉 = 2(−y0y7 + y1y6 + y2y5 − y3y4) = a24

〈Y56, Y27〉 = 2(−y0y6 − y1y7 − y2y4 − y3y5) = a23

The other products between vector fields from H2 ∪ V vanish. For H3 the
situation is similar.

(7.7)

〈Y45, Y16〉 = −〈Y46, Y15〉 = 〈Y56, Y14〉 = a33

〈Y45, Y17〉 = 2(−y0y7 − y1y6 − y2y5 − y3y4) = a34

〈Y46, Y17〉 = 2(−y0y4 + y1y5 − y2y6 + y3y7) = a31

〈Y56, Y17〉 = 2(−y0y5 − y1y4 + y2y7 + y3y6) = a32
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All other vector fields from H3 ∪ V are orthogonal. For the last collec-
tion H4 we obtain.

(7.8)

〈Y45, Y06〉 = −〈Y46, Y05〉 = 〈Y56, Y04〉 = a44

〈Y45, Y07〉 = 2(y0y6 − y1y7 + y2y4 − y3y5) = a43

〈Y46, Y07〉 = 2(−y0y5 − y1y4 − y2y7 − y3y6) = a42

〈Y56, Y07〉 = 2(y0y4 − y1y5 − y2y6 + y3y7) = a41

with the rest of the product vanishing.
We notice some relations between the coefficients amk. The coordinates

on S4 possesses the equality

(7.9) a2
00 + a2

11 + a2
22 + a2

33 + a2
44 = 1.

The direct calculations also show

a2
00 + a2

11 + a2
12 + a2

13 + a2
14 = 1

a2
00 + a2

21 + a2
22 + a2

23 + a2
24 = 1(7.10)

a2
00 + a2

31 + a2
32 + a2

33 + a2
34 = 1

a2
00 + a2

41 + a2
42 + a2

43 + a2
44 = 1.

In other words the sum of the squares of the cosines between vector fields
from Hm ∪ V , m = 1, 2, 3, 4 is equal to 1 − a2

00. Let us consider 2 cases:
0 < a2

00 ≤ 1 and a2
00 = 0.

Case 0 < a2
00 ≤ 1. This case corresponds to any point on S4 except of

the set

(7.11) S1 =
{
y2

0 + y2
1 + y2

2 + y2
3 = y2

4 + y2
5 + y2

6 + y2
7 = 1/2

}
.

We observe that the sum of the square of the cosines from (7.10):

4∑
k=1

a2
mk = 1 − a2

00, m = 1, 2, 3, 4

belongs to the interval (0, 1) and no one of the cosines can be equal to 1. We
conclude that each of Hm, m = 1, 2, 3, 4, is transverse to V . Particularly, if
a2

00 = 1 then
∑4

k=1 a2
mk = 0 and Hm⊥V . The latter situation occurs in the

antipodal points (±1, 0, 0, 0, 0) ∈ S4 or is to say on the set

S2 =
{
y2

0 + y2
1 + y2

2 + y2
3 = 0, y2

4 + y2
5 + y2

6 + y2
7 = 1

}
⋃{

y2
0 + y2

1 + y2
2 + y2

3 = 1, y2
4 + y2

5 + y2
6 + y2

7 = 0
} ∈ S7.(7.12)

We also can consider a collection H0, as a possible horizontal bracket gen-
erating distribution, if we choose an adequate vector field W . If a00 ∈ (0, 1)
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we have
0 < a2

41 + a2
42 + a2

43 + a2
44 = 1 − a2

00 < 1

and none of the products in (7.8) can give 1. We conclude that Y07 can not
be collinear to V = {Y45, Y46, Y56}. Therefore, we choose W = Y07. By the
same reason we could take Yj7, j = 1, 2, 3. In the case when a2

00 = 1 the
vector fields Yj7, j = 0, 1, 2, 3 are orthogonal to V from (7.5)–(7.8) but H0

is collinear to V from (7.4) and the collection H0 with W = Yj7 is not
transverse to V .

Case a2
00 = 0. In this case the distribution H0 nicely serves as a bracket

generating if we find a suitable vector field W . Notice that (7.9) becomes

(7.13) a2
11 + a2

22 + a2
33 + a2

44 = 1.

The amm can not vanish simultaneously. Without loss of generality, we can
assume that a44 �= 0. Then a2

41 + a2
42 + a2

43 = 1 − a2
44 < 1 from (7.10) and

the products (7.8) imply that Y07 is transverse to V and can be used as a
vector field W . In the case a2

44 = 1 we get that Y07 is orthogonal to V . Since
W⊥Yj7, j = 4, 5, 6 the collection H0 with any choice of Yj7, j = 0, . . . , 3 will
be orthonormal.

We formulate the latter result in the following theorem

Theorem 5. Let (7.1) be the quaternionic Hopf map with the vertical space

V = {Y45, Y46, Y56},
S1 and S2 are given by (7.11) and (7.12). Then the Hopf map produces the
following Ehresmann connection Hp, p ∈ S7:

(i) if p /∈ S1 then Hp = (Hm)p, for any choice of m = 1, 2, 3, 4;

(ii) if p /∈ S2 then Hp = (Y47, Y57, Y67, Yj7)p, for any choice of j = 0, 1, 2, 3;

and we have respectively

(i) span{(Hm)}p ⊕ span{V }p = TpS
7, m = 1, 2, 3, 4 for p ∈ S7 \ S1.

(ii) span{Y47, Y57, Y67, Yj7}p ⊕ span{V }p = TpS
7, j = 0, 1, 2, 3, for p ∈

S7 \ S2.

Remark: During the referee process, we were pointed out of the paper [4]
where a globally defined basis of the horizontal distribution of rank 4 was
constructed considering the Clifford algebra structure of S7. However, in
this case a globally defined basis of the vertical space was not found. In our
case, we present a globally defined basis of right invariant vector fields of the
vertical space that correspond to the Lie algebra su(2) of the S3−bundle.
Nevertheless we did not succeeded in constructing a globally defined basis for
the horizontal distribution. The question if both the horizontal distribution
and the S3−fiber are trivializable, remains open.
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8. Appendix

8.1. Multiplication of octonions

Let

o1 =
(
x0e0 + x1e1 + x2e2 + x3e3 + x4e4 + x5e5 + x6e6 + x7e7

)
and

o2 =
(
y0e0 + y1e1 + y2e2 + y3e3 + y4e4 + y5e5 + y6e6 + y7e7

)
be two octonions. Then we have according to Table 1

o1 · o2 = (x0e0 + x1e1 + x2e2 + x3e3 + x4e4 + x5e5 + x6e6 + x7e7)
◦ (y0e0 + y1e1 + y2e2 + y3e3 + y4e4 + y5e5 + y6e6 + y7e7)

= (x0y0 − x1y1 − x2y2 − x3y3 − x4y4 − x5y5 − x6y6 − x7y7) e0

+ (x1y0 + x0y1 − x3y2 + x2y3 − x5y4 + x4y5 + x7y6 − x6y7) e1

+ (x2y0 + x3y1 + x0y2 − x1y3 − x6y4 − x7y5 + x4y6 + x5y7) e2

+ (x3y0 − x2y1 + x1y2 + x0y3 − x7y4 + x6y5 − x5y6 + x4y7) e3

+ (x4y0 + x5y1 + x6y2 + x7y3 + x0y4 − x1y5 − x2y6 − x3y7) e4

+ (x5y0 − x4y1 + x7y2 − x6y3 + x1y4 + x0y5 + x3y6 − x2y7) e5

+ (x6y0 − x7y1 − x4y2 + x5y3 + x2y4 − x3y5 + x0y6 + x1y7) e6

+ (x7y0 + x6y1 − x5y2 − x4y3 + x3y4 + x2y5 − x1y6 + x0y7) e7.

8.2. Vector fields

According to the previous multiplication rule, we have the following unit
vector fields of R8 arising as right invariant vector fields under the octonion
product.

Y0(y) = y0∂y0 + y1∂y1 + y2∂y2 + y3∂y3 + y4∂y4 + y5∂y5 + y6∂y6 + y7∂y7

Y1(y) = −y1∂y0 + y0∂y1 − y3∂y2 + y2∂y3 − y5∂y4 + y4∂y5 − y7∂y6 + y6∂y7

Y2(y) = −y2∂y0 + y3∂y1 + y0∂y2 − y1∂y3 − y6∂y4 + y7∂y5 + y4∂y6 − y5∂y7

Y3(y) = −y3∂y0 − y2∂y1 + y1∂y2 + y0∂y3 + y7∂y4 + y6∂y5 − y5∂y6 − y4∂y7

Y4(y) = −y4∂y0 + y5∂y1 + y6∂y2 − y7∂y3 + y0∂y4 − y1∂y5 − y2∂y6 + y3∂y7

Y5(y) = −y5∂y0 − y4∂y1 − y7∂y2 − y6∂y3 + y1∂y4 + y0∂y5 + y3∂y6 + y2∂y7

Y6(y) = −y6∂y0 + y7∂y1 − y4∂y2 + y5∂y3 + y2∂y4 − y3∂y5 + y0∂y6 − y1∂y7

Y7(y) = −y7∂y0 − y6∂y1 + y5∂y2 + y4∂y3 − y3∂y4 − y2∂y5 + y1∂y6 + y0∂y7 .

The vector fields Yi, i = 1, . . . , 7 form an orthonormal frame of TpS
7,

p ∈ S7, with respect to restriction of the inner product 〈·, ·〉 from R8 to the
tangent space TpS

7 at each p ∈ S7.
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8.3. Commutators between vector fields

Let us denote by Yij(y) = 1
2
[Yi(y), Yj(y)] the commutator between the right

invariant vector fields under the octonion product, described in the previous
Subsection, we have the following list:

Y12(y) = y3∂y0 + y2∂y1 − y1∂y2 − y0∂y3 + y7∂y4 + y6∂y5 − y5∂y6 − y4∂y7

Y13(y) = −y2∂y0 + y3∂y1 + y0∂y2 − y1∂y3 + y6∂y4 − y7∂y5 − y4∂y6 + y5∂y7

Y14(y) = y5∂y0 + y4∂y1 − y7∂y2 − y6∂y3 − y1∂y4 − y0∂y5 + y3∂y6 + y2∂y7

Y15(y) = −y4∂y0 + y5∂y1 − y6∂y2 + y7∂y3 + y0∂y4 − y1∂y5 + y2∂y6 − y3∂y7

Y16(y) = y7∂y0 + y6∂y1 + y5∂y2 + y4∂y3 − y3∂y4 − y2∂y5 − y1∂y6 − y0∂y7

Y17(y) = −y6∂y0 + y7∂y1 + y4∂y2 − y5∂y3 − y2∂y4 + y3∂y5 + y0∂y6 − y1∂y7

Y23(y) = y1∂y0 − y0∂y1 + y3∂y2 − y2∂y3 − y5∂y4 + y4∂y5 − y7∂y6 + y6∂y7

Y24(y) = y6∂y0 + y7∂y1 + y4∂y2 + y5∂y3 − y2∂y4 − y3∂y5 − y0∂y6 − y1∂y7

Y25(y) = −y7∂y0 + y6∂y1 + y5∂y2 − y4∂y3 + y3∂y4 − y2∂y5 − y1∂y6 + y0∂y7

Y26(y) = −y4∂y0 − y5∂y1 + y6∂y2 + y7∂y3 + y0∂y4 + y1∂y5 − y2∂y6 − y3∂y7

Y27(y) = y5∂y0 − y4∂y1 + y7∂y2 − y6∂y3 + y1∂y4 − y0∂y5 + y3∂y6 − y2∂y7

Y34(y) = −y7∂y0 + y6∂y1 − y5∂y2 + y4∂y3 − y3∂y4 + y2∂y5 − y1∂y6 + y0∂y7

Y35(y) = −y6∂y0 − y7∂y1 + y4∂y2 + y5∂y3 − y2∂y4 − y3∂y5 + y0∂y6 + y1∂y7

Y36(y) = y5∂y0 − y4∂y1 − y7∂y2 + y6∂y3 + y1∂y4 − y0∂y5 − y3∂y6 + y2∂y7

Y37(y) = y4∂y0 + y5∂y1 + y6∂y2 + y7∂y3 − y0∂y4 − y1∂y5 − y2∂y6 − y3∂y7

Y45(y) = y1∂y0 − y0∂y1 − y3∂y2 + y2∂y3 + y5∂y4 − y4∂y5 − y7∂y6 + y6∂y7

Y46(y) = y2∂y0 + y3∂y1 − y0∂y2 − y1∂y3 + y6∂y4 + y7∂y5 − y4∂y6 − y5∂y7

Y47(y) = −y3∂y0 + y2∂y1 − y1∂y2 + y0∂y3 + y7∂y4 − y6∂y5 + y5∂y6 − y4∂y7

Y56(y) = −y3∂y0 + y2∂y1 − y1∂y2 + y0∂y3 − y7∂y4 + y6∂y5 − y5∂y6 + y4∂y7

Y57(y) = −y2∂y0 − y3∂y1 + y0∂y2 + y1∂y3 + y6∂y4 + y7∂y5 − y4∂y6 − y5∂y7

Y67(y) = y1∂y0 − y0∂y1 − y3∂y2 + y2∂y3 − y5∂y4 + y4∂y5 + y7∂y6 − y6∂y7 .
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[21] Mitchell, J.: On Carnot-Carathéodory metrics. J. Differential Geom. 21
(1985), no. 1, 35–45.

[22] Montgomery, R.: A tour of subriemannian geometries, their geodesics
and applications. Mathematical Surveys and Monographs 91. American
Mathematical Society, Providence, RI, 2002.
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