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Flux terms and Robin boundary
conditions as limit of reactions and

potentials concentrating at the boundary

José M. Arrieta, Ángela Jiménez-Casas and
Ańıbal Rodŕıguez-Bernal

Abstract

We analyze the limit of the solutions of an elliptic problem when
some reaction and potential terms are concentrated in a neighborhood
of a portion Γ of the boundary and this neighborhood shrinks to Γ
as a parameter goes to zero.

We prove that this family of solutions converges in certain Sobolev
spaces and also in the sup norm, to the solution of an elliptic problem
where the reaction term and the concentrating potential are trans-
formed into a flux condition and a potential on Γ.

1. Introduction

Let Ω be an open bounded smooth set in R
N with a C2 boundary ∂Ω. Let

Γ ⊂ ∂Ω be a smooth subset of the boundary, isolated from the rest of the
boundary, that is, dist(Γ, ∂Ω \ Γ) > 0.

Define the strip of width ε and base Γ as

(1.1) ωε = {x− σ�n(x), x ∈ Γ, σ ∈ [0, ε)}

for sufficiently small ε, say 0 < ε < ε0, where �n(x) denotes the outward
normal vector. We note that for small ε, the set ωε is a neighborhood of Γ
in Ω̄, that collapses to the boundary when the parameter ε goes to zero.
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Figure 1: The set ωε

We are interested in the behavior, for small ε, of the solutions of an
elliptic problem when some reaction terms and some potentials are “concen-
trated” in ωε.

Hence, we consider two family of functions fε and Vε with the prop-
erty that

(1.2)
1

ε

∫
ωε

|fε|r ≤ C,
1

ε

∫
ωε

|Vε|ρ ≤ C

for some 1 ≤ r, ρ ≤ ∞, where we understand that r or ρ = ∞ means that
‖fε‖L∞(ωε), ‖Vε‖L∞(ωε) are bounded uniformly in ε. Moreover, we assume
that there exist functions f0 ∈ Lr(Γ) and V0 ∈ Lρ(Γ) (or bounded Radon
measures on Γ, f0, V0 ∈ M(Γ) if r = 1 = ρ) such that for any smooth
function ϕ, we have

(1.3) lim
ε→0

1

ε

∫
ωε

fεϕ =

∫
Γ

f0ϕ, lim
ε→0

1

ε

∫
ωε

Vεϕ =

∫
Γ

V0ϕ.

For instance, if fε ≡ f ∈W 1,p(Ω) where W 1,p(Ω) has a well defined trace
in Lr(Γ), then (1.2) and (1.3) hold for f and the function f0 is given by the
trace of f in Γ.

Notice also that from condition (1.2) we get that the functions 1
ε
Xωεfε,

1
ε
XωεVε are uniformly bounded in L1(Ω), where Xωε denote the characteristic

function of the set ωε. We refer to 1
ε
Xωεfε,

1
ε
XωεVε as the concentrating

functions in ωε.
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Hence, we will consider general elliptic problems in divergence form of
the type,

(1.4)

⎧⎪⎪⎨
⎪⎪⎩
−div(a(x)∇uε)+c(x)uε+λuε+ 1

ε
X ωεVε(x)u

ε = 1
ε
Xωεfε+gε in Ω,

a(x)∂uε

∂n
+b(x)uε = jε on Γ,

uε = 0 on ΓD,

where ΓD = ∂Ω \ Γ and λ ∈ R. We will show that, for sufficiently large λ,
independent of ε, with ρ > N −1, under appropriate values of r and assum-
ing that the terms gε and jε converge in certain weak sense to g0 and j0,
respectively, then the solutions of (1.4) converge to the unique solution of

(1.5)

⎧⎪⎪⎨
⎪⎪⎩

−div(a(x)∇u) + c(x)u+ λu= g0 in Ω,

a(x)∂u
∂n

+ (b(x) + V0(x))u= f0 + j0 on Γ,

u= 0 on ΓD.

We will consider two different cases, according to the smoothness prop-
erties of the coefficients of the underlying elliptic operator. If a, b and c
are C1 functions, we can use the scale of interpolation-extrapolation spaces
associated to the elliptic operator, [2]. This scale is given basically by the
scale of Bessel potentials Hs,p(Ω), incorporating the boundary conditions
accordingly. This scale provides us with a powerful tool to treat pertur-
bations, like the one given by the potentials 1

ε
XωεVε and to consider the

concentrated reactions 1
ε
Xωεfε as convergent sequences in H−s,p(Ω) for some

appropriate s, p. This will allow us to prove that the solutions of (1.4) con-
verge to the unique solution of (1.5) in some Bessel potential spaces Hs,p(Ω)
and even in spaces of Hölder functions in Ω̄.

In case the coefficients are not smooth enough, we will rely in the Hilbert
space theory and will be able to prove the convergence in H1(Ω) and, via
the De Giorgi-Moser procedure, we will also show the convergence of the
solutions in L∞(Ω).

Observe that earlier versions of this work, containing weaker results can
be found in [5, 6]. Also, [7], contains some related results for some nonlinear
eigenvalue problems.

We describe now the contents of the paper. In Section 2 we will prove sev-
eral technical results on the behavior of concentrating reactions and poten-
tials as ε→ 0. In Section 3 we deal with the case where the coefficients a, b
and c are C1. In Section 4 we deal with the case where the coefficients a, b
and c are non-smooth. Finally in Section 5 we present several extensions
and important applications of the results of this paper.
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2. Concentrating integrals

In this section we prove several results that describe how different concen-
trated integrals converge to surface integrals.

As we mentioned in the introduction, we consider a bounded smooth
domain Ω ⊂ R

N with smooth boundary ∂Ω and we also consider Γ ⊂ ∂Ω,
a subset of the boundary isolated from the rest of the boundary, that is,
dist(Γ, ∂Ω \ Γ) > 0. Then for sufficiently small σ ≥ 0 we can define the
“parallel” interior boundary

Γσ = {x− σ�n(x), x ∈ Γ}
where �n(x) denotes the outward normal unit at x ∈ Γ. Note that Γ0 = Γ.
Define also the strip of width ε and base Γ as

ωε = {x− σ�n(x), x ∈ Γ, σ ∈ [0, ε)} =
⋃

0≤σ<ε

Γσ

for sufficiently small ε, say 0 < ε < ε0.
Note that if we take a continuous function, v, in a neighborhood of Γ,

then it is clear that we have

(2.1) lim
ε→0

sup
ωε

|v| = lim
ε→0

sup
Γε

|v| = sup
Γ

|v|.

In what follows we will be interested in such type of convergence but when
certain weighted integral norms are considered.

We will extensively use the scale of Bessel Potential spacesHs,p(Ω), which
are obtained via complex interpolation procedure of the usual Sobolev spaces
W k,p(Ω) with k = 0, 1, ..., see for instance [1, 14, 2]. This scale of spaces are
suitable to study elliptic and parabolic problems, see [2] for a nice survey on
this topic.

Note that the regularity of Ω and standard trace theory, see [1], imply
that for any function v ∈ Hs,p(Ω), with s > 1

p
, and for any σ ≥ 0 small

enough, the trace of v is well defined and it lies in Lq(Γσ), provided s−N/p ≥
−(N − 1)/q, that is, with q ≤ p(N−1)

N−sp
. Also in case s = 1 = p the trace is

well defined in L1(Γσ).
The value ε0 above will be chosen small enough so that, for all 0 < ε < ε0,

the strip ωε can be parameterized in a C2 way by Γ× [0, ε), that is, the map

Tε : Γ × [0, ε) −→ ωε

(x, σ) −→ x− σ�n(x)

is a C2 diffeomorphism.
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Notice that if we define Ωδ = Ω\ω̄δ, for 0 < δ < ε0, then we can construct
the following C2 diffeomorphism τδ : Ω −→ Ωδ defined by

τδ(x) =

{
x if dist(x,Γ) ≥ ε0

z − ψδ(σ)�n(z) if x = z − σ�n(z), σ ∈ [0, ε0)

where the function ψδ : [0, ε0] → [δ, ε0] is a C2 function such that ψδ(ε0) = ε0,
ψ′

δ(ε0) = 1, ψ′′
δ (ε0) = 0, ψδ(0) = δ, it is strictly increasing, |ψδ(σ) − σ| +

|ψ′
δ(σ) − 1| + |ψ′′

δ (σ)| → 0 uniformly in σ ∈ [0, ε0] as δ → 0 and the map
δ → ψδ ∈ C2([0, ε0]) is continuous.

Observe that τδ is a C2 diffeomorphism between Ω and Ωδ which satisfies
‖τδ‖C2 , ‖τ−1

δ ‖C2 ≤ C with C independent of δ ∈ (0, ε0), the map δ → τδ ∈
C2(Ω̄) is continuous for δ ∈ [0, ε0] and ‖τδ − I‖C2(Ω) → 0 as δ → 0. Note
also that τδ is C2 diffeomorphism between Γ and Γδ

These diffeomorphisms induce isomorphisms τ ∗δ : Hs,p(Ωδ) −→ Hs,p(Ω)
for all 0 ≤ s ≤ 2 and 1 ≤ p ≤ +∞, which are defined by τ ∗δ (u) = u ◦ τδ. The
C2-bounds obtained above for τδ and τ−1

δ and the fact that ‖τδ−I‖C2(Ω) → 0
as δ → 0 imply that the isomorphisms τ ∗δ and (τ ∗δ )−1 are uniformly bounded
in δ ∈ (0, ε0). Moreover, we also have that for u ∈ Hs,p(Ωδ), we get ‖τ ∗δ (u)−
u‖Hs,p(Ωδ) → 0. They also induce the isomorphisms τ̂δ : Lq(Γδ) → Lq(Γ), for
1 ≤ q ≤ ∞, defined by τ̂δ(v) = v ◦ τδ. Similarly, as we have argued for τ ∗δ we
will have that τ̂δ and τ̂−1

δ are also uniformly bounded. It is not difficult to
prove now that if we denote by γδ the trace operator from Hs,p(Ω) to Lq(Γδ)
and γ the trace operator from Hs,p(Ω) to Lq(Γ) then

τ̂δ ◦ γδ → γ, as δ → 0

and this convergence is pointwise from Hs,p(Ω) to Lq(Γ) if s > 1/p, s− N
p
≥

−N−1
q

and in the operator norm if s > 1/p, s− N
p
> −N−1

q
. Notice also that

we have τ̂δ ◦ γδ = γ ◦ τ ∗δ
We refer to [7] for more details in the case of s = 1 and p = 2.

We can show the following lemma,

Lemma 2.1 Assume that v ∈ Hs,p(Ω) with 1
p
< s ≤ 2 and s− N

p
≥ − (N−1)

q
,

or v ∈ H1,1(Ω), i.e, s = 1 = p and q = 1 below.
Then for sufficiently small ε0, we have

i) The map

(2.2) [0, ε0] � σ �→
∫

Γσ

|v|q

is continuous.



188 J. M. Arrieta, Á. Jiménez-Casas and A. Rodŕıguez-Bernal

ii) There exist a positive constant C independent of ε and v such that for
any ε ≤ ε0, we have

(2.3) supσ∈[0,ε)‖v‖Lq(Γσ) ≤ C‖v‖Hs,p(Ω).

iii)

(2.4)

∫
ωε

|v|q =

∫ ε

0

( ∫
Γσ

|v|q
)
dσ.

with the same equality, without the absolute value, if q = 1.
In particular

(2.5)
1

ε

∫
ωε

|v|q ≤ C‖v‖q
Hs,p(Ω)

and

(2.6) lim
ε→0

1

ε

∫
ωε

|v|q =

∫
Γ

|v|q.

Proof. Throughout the proof we will use the bounds obtained above for
the isomorphisms τ ∗σ , τ̂σ and their inverses.

i) Notice that, under the change of variables given by the diffeomorphism τδ,
we have ∫

Γσ

|v(z)|qdSσ =

∫
Γ

|v ◦ τσ(x)|qJ(x, σ)dS0

where Sσ is the surface measure associated to Γσ, 0 ≤ σ ≤ ε0 and J(x, σ)
is the jacobian of the transformation τσ : Γ → Γσ. Notice that J(x, σ) is a
function involving the first derivatives of the function τσ and therefore it is
a C1 function in x . Moreover, the map σ → J(·, σ) ∈ C1 is a continuous
map. Also, from the smoothness of Γ and the definition of Γδ we have that
there exists constants 0 < J1 ≤ J2 such that J1 ≤ J(x, σ) ≤ J2 for all x ∈ Γ
and for all σ ∈ [0, ε0].

If v ∈ Hs,p(Ω) then v ◦ τσ ∈ Hs,p(Ω) and the map σ → v ◦ τσ ∈ Hs,p(Ω) is
continuous. For σ0 ∈ [0, ε0], we denote by Lq

σ0
(Γ), the space Lq(Γ) with the

weighted norm given by J(·, σ0), that is ‖f‖q
Lq

σ0
(Γ)

=
∫

Γ
|f(x)|qJ(x, σ0)dS0.

The norm of Lq
σ0

(Γ) is equivalent to the standard norm (without weight)
of Lq(Γ). Hence, by standard trace theory we have that the embedding
Hs,p(Ω) → Lq

σ0
(Γ) is continuous for any fixed σ0 ∈ [0, ε0]. In particular, for

any fixed σ0 ∈ [0, ε0] we have that the map σ → ∫
Γ
|v ◦ τσ(x)|qJ(x, σ0)dS0 is

continuous.
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To show the continuity of the map σ → ∫
Γ
|v ◦ τσ(x)|qJ(x, σ)dS0 at σ0

we notice that∣∣∣∣
∫

Γ

|v ◦ τσ(x)|qJ(x, σ)dS0 −
∫

Γ

|v ◦ τσ0(x)|qJ(x, σ0)dS0

∣∣∣∣
≤

∣∣∣∣
∫

Γ

|v ◦ τσ(x)|qJ(x, σ0)dS0 −
∫

Γ

|v ◦ τσ0(x)|qJ(x, σ0)dS0

∣∣∣∣
+

∫
Γ

|v ◦ τσ(x)|q|J(x, σ) − J(x, σ0)|dS0

and both terms go to 0, the first one by the continuity of the map σ →∫
Γ
|v ◦ τσ(x)|qJ(x, σ0)dS0 and the second one by the continuity of the map

σ → J(·, σ) ∈ C1(Γ).

ii) Observe that, if v ∈ Hs,p(Ω), we have

‖γσ(v)‖Lq(Γσ) ≤ C‖τ̂σ(γσ(v))‖Lq(Γ) = C‖γ(τ ∗σ(v))‖Lq(Γ)

≤ C‖τ ∗σ(v)‖Hs,p(Ω) ≤ C‖v‖Hs,p(Ωσ) ≤ C‖v‖Hs,p(Ω),

where C is a constant independent of v and σ ∈ (0, ε0). This shows (2.3).

iii) Statement (2.4) follows from Fubini’s theorem.

iv) Statement (2.5) follows from (2.3) and (2.4). Finally, statement (2.6)
follows from (2.4) and the continuity of (2.2). �

Using this result, we can now analyze how concentrating integrals con-
verge for certain families of functions which vary with ε and have weak
regularity properties. More precisely we have the following.

Lemma 2.2 Assume that a given family fε defined on ωε satisfies (1.2),
that is, for some 1 ≤ r <∞ and a constant C independent of ε,

1

ε

∫
ωε

|fε|r ≤ C,

or

sup
x∈ωε

|fε(x)| ≤ C

for the case r = ∞.
Then, for every sequence converging to zero (that we still denote ε→ 0)

there exist a subsequence (that we still denote the same) and a function
f0 ∈ Lr(Γ) (or a bounded Radon measure on Γ, f0 ∈ M(Γ) if r = 1) such
that
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i) For any smooth function ϕ, defined in Ω, we have

(2.7) lim
ε→0

1

ε

∫
ωε

fε ϕ =

∫
Γ

f0 ϕ.

ii) If uε → u0 weakly in Hs,p(Ω) with s > 1/p and

(2.8) s− N

p
> −N − 1

r′
,

or strongly in case of equal sign in (2.8), then

(2.9) lim
ε→0

1

ε

∫
ωε

fεu
ε =

∫
Γ

f0u
0.

Proof. Define, for s0 >
1
p0

and s0 − N
p0

≥ −N−1
r′ , the linear forms

Lε(ϕ) =
1

ε

∫
ωε

fε ϕ

on Hs0,p0(Ω). Note that Lemma 2.1 and the assumption on fε imply that Lε

are well defined and indeed

(2.10) |Lε(ϕ)| ≤
(1

ε

∫
ωε

|fε|r
)1/r(1

ε

∫
ωε

|ϕ|r′
)1/r′

≤ C‖ϕ‖Hs0,p0(Ω)

(with obvious modifications for the case r = ∞). Hence {Lε} is bounded in
the dual space of Hs0,p0(Ω).

Hence, by the Banach–Alaouglu–Bourbaki theorem and taking subse-

quences if necessary, we have that there exists L0 ∈
(
Hs0,p0(Ω)

)′
:=H−s0,p′0(Ω)

such that
Lε(ϕ) → L0(ϕ), for all ϕ ∈ Hs0,p0(Ω)

as ε→ 0 and the limit is uniform for ϕ in compact sets of Hs0,p0(Ω).
In particular, from (2.10) and Lemma 2.1, we get

|L0(ϕ)| ≤ C
(∫

Γ

|ϕ|r′
)1/r′

and since traces of Hs0,p0(Ω) are dense in Lr′(Γ) we get that there exist
f0 ∈ Lr(Γ) such that

L0(ϕ) =

∫
Γ

f0 ϕ

which proves i). Note that if r = 1 then we obtain f0 ∈ M(Γ) =
(
C(Γ)

)′
.

Now if uε is as in ii) note that, in the case of weak convergence, there
exist s0 and p0 as above such that Hs,p(Ω) ↪→ Hs0,p0(Ω) with compact em-
bedding, which proves ii). In the case of strong convergence, the conclusion
follows from the argument leading to L0. �
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Remark 2.3 Observe that the Lemma above implies that Fε = 1
ε
X ωεfε is a

bounded family in H−s,p(Ω) =
(
Hs,p′(Ω)

)′
for s > 1

p′ and s+ N
p
≥ 1 + N−1

r
.

In the following example we characterize the limiting boundary integral
in two different situations.

Example 2.4 Assume that f ∈ C(Ω).

i) Define fε = X ωεf . Then Lemma 2.2 applies with 1 ≤ r ≤ ∞ and f0 = f|Γ.

ii) Define fε = X θεf , where θε ⊂ ωε is defined as θε = {x − σ�n(x), x ∈ Γ,
εk1(x) < σ < εk2(x)} for some continuous and nonnegative functions 0 ≤
k1(x) < k2(x) ≤ 1 defined on Γ. Then, Lemma 2.2 applies with 1 ≤ r ≤ ∞
and f0(x) = (k2(x) − k1(x))f(x) .

We can also prove,

Lemma 2.5 Assume we have a family of functions Vε, 0 ≤ ε ≤ ε0, verifying
the hypotheses of Lemma 2.2. Moreover, assume that (taking subsequences if
necessary) there exists a function V0 ∈ Lr(Γ) (or a bounded Radon measure
on Γ, V0 ∈ M(Γ) if r = 1) such that for any smooth function ϕ, we have

lim
ε→0

1

ε

∫
ωε

Vε ϕ =

∫
Γ

V0 ϕ.

Then, for s > 1
p
, σ > 1

q
and s + σ − N

p
− N

q
> −N−1

r′ , if we define the

operators, Pε : Hs,p(Ω) → H−σ,q(Ω) for 0 ≤ ε ≤ ε0 by

< Pε(u), ϕ >=
1

ε

∫
ωε

Vεu
ε ϕ

< P0(u), ϕ >=

∫
Γ

V0uϕ,

then Pε → P0 in L(Hs,p(Ω), H−σ,q(Ω)).

Proof. Note that for every u ∈ Hs0,p0(Ω) and ϕ ∈ Hσ0,q0(Ω) using Lemma 2.1,
we have ∣∣∣1

ε

∫
ωε

fεuϕ
∣∣∣ ≤ (1

ε

∫
ωε

|fε|r
) 1

r
(1

ε

∫
ωε

|u|m
) 1

m
(1

ε

∫
ωε

|ϕ|n
) 1

n

≤ C‖u‖Hs0,p0(Ω)‖ϕ‖Hσ0,q0 (Ω)

where 1
r
+ 1

m
+ 1

n
= 1 and r,m, n are such that s0− N

p0
≥ −N−1

m
, with s0 >

1
p0

,

and σ0 − N
q0

≥ −N−1
n

, with σ0 >
1
q0

.
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Then the operator Pε from Hs0,p0(Ω) into H−σ0,q′0(Ω) :=
(
Hσ0,q0(Ω)

)′
is

uniformly bounded.
Hence, fixed u ∈ Hs0,p0(Ω) we have by Lemma 2.2 that

< Pε(u), ϕ >=
1

ε

∫
ωε

Vεuϕ→
∫

Γ

V0uϕ =< P0(u), ϕ >

uniformly for ϕ in compact sets of Hσ0,q0(Ω). Hence if q ≥ q0 with σ > 1
q

and σ > σ0 then Hσ,q(Ω) ⊂ Hσ0,q0(Ω) with compact embedding, and then,
in particular

Pε(u) → P0(u) in H−σ,q′(Ω).

Again this implies uniform convergence for u in compact sets ofHs0,p0(Ω).
Hence if p ≥ p0 with s > 1

p
and s > s0 then Hs,p(Ω) ⊂ Hs0,p0(Ω) with

compact embedding, and then, in particular, we have

(2.11) Pε → P0 in L(Hs,p(Ω), H−σ,q′(Ω))

which gives the result. �

3. Elliptic problems with smooth coefficients

In this section we analyze the behavior, as ε → 0, of the solutions of the
elliptic problem (1.4) with smooth coefficients a, c ∈ C1(Ω), b ∈ C1(Γ), with
suitable nonhomogeneous given terms gε, jε and concentrating potentials Vε

and concentrating nonhomogeneous terms fε.
Throughout this section we will assume, as in (1.2) and (1.3), that

(3.1)
1

ε

∫
ωε

|fε|r ≤ C,
1

ε

∫
ωε

|Vε|ρ ≤ C

and that there exist functions f0 ∈ Lr(Γ) and V0 ∈ Lρ(Γ) (or bounded
Radon measures on Γ, f0, V0 ∈ M(Γ) if r = 1 = ρ) such that for any smooth
function ϕ, we have

(3.2) lim
ε→0

1

ε

∫
ωε

fε ϕ =

∫
Γ

f0 ϕ, lim
ε→0

1

ε

∫
ωε

Vε ϕ =

∫
Γ

V0 ϕ,

where ωε is defined by (1.1), see Lemma 2.2 and Lemma 2.5. We will always
assume that ρ > N − 1 and that

(3.3)
gε → g0 weakly in Lz(Ω)

jε → j0 weakly in Lt(Γ)

for some z, t ≥ 1.
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Now we consider an adequate setting for the elliptic problems (1.4)
and (1.5). For this define the elliptic operatorA0 by A0(u) = −div(a(x)∇u)+
c(x)u, regarded as an unbounded operator in X0,p := Lp(Ω), for 1 < p <∞,
with domain given by X1,p := {u ∈W 2,p(Ω) : u = 0 in ΓD, a(x)∂u

∂n
+b(x)u =

0 in Γ}. Using the interpolation–extrapolation techniques in [2], for which
the reader is referred for further details, the operator A0 has also an as-
sociated scale of interpolated Banach spaces Xα,p, 0 < α < 1 with the
property that Xα,p ↪→ H2α,p(Ω) where we denote by Hs,p(Ω) the Bessel
Potential spaces. We also have that the scale can be extended to the neg-
ative exponents with X−α,p = (X−α,p′)′, for 0 < α < 1. Moreover, we have
H−2α,p(Ω) = (H2α,p′(Ω))′ ↪→ X−α,p.

Now using the different realization of A0 in the extrapolated spaces,
see [2], problems (1.4) and (1.5) can be written as a perturbation of a fixed
elliptic operator, i.e.

A0u
ε + λuε + Pεu

ε = kε,

for 0 ≤ ε ≤ ε0. Note that we identify (1.5) with the case ε = 0 and Pε

and P0 are defined as in Lemma 2.5, that is, < Pεu, ϕ >= 1
ε

∫
ωε
Vεuϕ and

< P0u, ϕ >=
∫

Γ
V0uϕ. Also, note that kε accounts for nonhomogeneous

terms and from Lemmas 2.2 and 2.5 we have Pε → P0 and kε → k in some
sense.

In fact this convergence will be used to prove that solutions of (1.4)
actually converge to solutions of (1.5).

With regards to the behavior of the operators A0 + λI + Pε we have the
following

Theorem 3.1 Assume the conditions above and also that Vε satisfy (3.1)
with ρ > N − 1. Then, there exists some λ0 independent of ε, such that
for λ > λ0 the elliptic operator A0 + λI + Pε in (1.4) is invertible and for
σ ∈ ( 1

p′ , 2 − 1
p
), 0 ≤ ε ≤ ε0 we have

‖(A0 + λI + Pε

)−1‖L(H−σ,p(Ω),H2−σ,p(Ω)) ≤ C,

where C is independent of ε and λ.

Proof. With the notations of Lemma 2.5, taking q = p′, we have that

< Pε(u), ϕ > =
1

ε

∫
ωε

Vεuϕ, for all u ∈ Hs,p(Ω), ϕ ∈ Hσ,p′(Ω)

< P0(u), ϕ > =

∫
Γ

V0uϕ, for all u ∈ Hs,p(Ω), ϕ ∈ Hσ,p′(Ω)
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is uniformly bounded, for s > 1/p, σ > 1/p′ and

s + σ > 1 +
N − 1

ρ
.

Moreover
Pε → P0 in L(Hs,p(Ω), H−σ,p(Ω)).

Since ρ > N − 1 we can take s + σ < 2 and then A0 + λI + Pε is well
defined from H2−σ,p(Ω) into H−σ,p(Ω) for any σ ∈ ( 1

p′ , 2 − 1
p
), 0 ≤ ε ≤ ε0.

In particular for given g ∈ H−σ,p(Ω) the equation A0u + λu + Pεu = g can
be written as

u =
(
A0 + λI

)−1(
g − Pεu) = (A0 + λI

)−1
g − (A0 + λI

)−1
Pεu = T ε

λ(u).

If g ∈ H−σ,p(Ω), (A0 + λI
)−1

g ∈ H2−σ,p(Ω) and

‖(A0 + λI
)−1

g‖H2−σ,p(Ω) ≤ C‖g‖H−σ,p(Ω).

Moreover, from Lemma 2.5, Pε → P0 in L(H2−σ,p(Ω), H−σ̃,p(Ω)) for some
σ̃ < σ and close to σ. Using now the resolvent estimates for A0, see [3],

‖(A0 + λ)−1‖L(H−σ̃,p(Ω),H2−σ,p(Ω)) ≤ C

|λ|(σ−σ̃)/2
,

and we get that the Lipschitz constant of T ε
λ : H2−σ,p(Ω) → H2−σ,p(Ω) is

bounded by C
|λ|(σ−σ̃)/2 . Therefore it is a contraction, with Lipschitz constant

θ < 1 uniform for large enough λ and 0 ≤ ε ≤ ε0. This implies that the
unique fixed point of T ε

λ satisfies

‖u‖H2−σ,p(Ω) ≤ 1

1 − θ
‖(A0 + λ)−1g‖H2−σ,p(Ω) ≤ C

1 − θ
‖g‖H−σ,p(Ω),

which proves the result. �

We can prove now,

Corollary 3.2 Assume we are in the conditions of Theorem 3.1 and also
that (3.1), (3.2) and (3.3) holds with ρ > N − 1, z ≥ Nr/(N − 1 + r) and
t ≥ r. Assume also that λ > λ0 is fixed. Then, uε, the solution of (1.4),
satisfies

uε → u in Hs,r(Ω)

for any s < 1+ 1
r

where u is the unique solution of the limiting problem (1.5).

In particular, if r > N − 1, z > N/2 and t > N − 1, then

uε → u in Cβ(Ω),

for some β > 0.
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Proof. First note that from Remark 2.3, Fε = 1
ε
X ωεfε is bounded in

H−σ,r(Ω) for σ > 1
r′ . Also, f0 belongs to H−σ,r(Ω) for σ > 1

r′ . More-
over, for the choice of z and t, gε ∈ Lz(Ω) and jε ∈ Lt(Γ) are also bounded
in H−σ,r(Ω) for σ > 1

r′ and 0 ≤ ε ≤ ε0.
Hence, from Theorem 3.1, the solutions of (1.4) and (1.5) are unique and

they are bounded in H2−σ,r(Ω), provided we can take σ < 2− 1
r
. These two

conditions are satisfied since we can always choose 1
r′ < σ < 2 − 1

r
= 1 + 1

r′ .
Notice that choosing σ > 1/r′ but arbitrarily close to 1/r′, we have that

2−σ < 1+1/r but it is arbitrarily close to 1 +1/r. Hence, by Theorem 3.1
the sequence uε is bounded in Hs,r(Ω) for all s < 1 + 1

r
and therefore it is

a relatively compact sequence in these spaces. Hence, under a subsequence
we have that uε → u ∈ Hs,r(Ω).

Next, we prove u satisfies the elliptic problem (1.5). In effect, multiplying
the equation (1.4) by ϕ ∈ C∞

ΓD
(Ω), the space of C∞ functions in Ω̄ which

are identically zero in a neighborhood of ΓD, we obtain

(3.4)

∫
Ω

(a(x)∇uε∇ϕ+ (c(x) + λ)uε)ϕ+

∫
Γ

b(x)uε ϕ+
1

ε

∫
wε

Vε(x)u
εϕ

=
1

ε

∫
ωε

fε ϕ+

∫
Ω

gε ϕ+

∫
Γ

jε
εϕ.

Now we assume first ϕ ∈ C∞
c (Ω) and taking the limit as ε goes to zero,

using (1.3), we get∫
Ω

a(x)∇u∇ϕ +

∫
Ω

(c(x) + λ)uϕ =

∫
Ω

g0uϕ.

Therefore the limit function satisfies

(3.5) −div(a(x)∇u) + (c(x) + λ)u = g0, in Ω.

Now, we consider ϕ ∈ C∞
ΓD

(Ω) in (3.4) and using (1.3) and the conver-
gence of the traces above, we get∫

Ω

a(x)∇u∇ϕ+

∫
Ω

(c(x)+λ)uϕ+

∫
Γ

(b(x)+V0)uϕ =

∫
Ω

g0uϕ+

∫
Γ

(f0+j0)ϕ.

Now, since λ > λ0, from the uniqueness of solutions for the limit prob-
lem (1.5) obtained above, we have that all the family uε converges to u.

If r > N − 1, z > N/2 and t > N − 1, we get that, maybe choosing
a smaller r but still r > N − 1 we have z ≥ Nr/(N − 1 + r) and t ≥ r
and therefore uε → u0 in Hs,r(Ω) for all s < 1 + 1

r
. Hence, the Hölder

convergence is obtained using the embedding Hs,r(Ω) ↪→ Cβ(Ω̄) for s < 1+ 1
r

but arbitrarily close to it and r > N − 1. �
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We will be able to include a non homogeneous Dirichlet boundary con-
ditions in ΓD. More precisely we have,

Corollary 3.3 Assume we are in the conditions of Theorem 3.1. Let h be
a function defined in ΓD such that h ∈ H1/2(ΓD) ∩ Cβ(ΓD). Then if in
problems (1.4) and (1.5) we substitute the condition u = 0 on ΓD by u = h
on ΓD, then the same conclusions of Corollary 3.2 hold.

Proof. Let us denote by H the unique solution of the following problem

(3.6)

⎧⎪⎪⎨
⎪⎪⎩

−div(a(x)∇H) = 0 in Ω,

a(x)
∂H

∂n
= 0 on Γ,

H = h on ΓD,

which, by standard elliptic theory, it is known to exists and H ∈ H1(Ω) ∩
Cβ(Ω̄).

Rewriting both equations (1.4) and (1.5) in terms of the new variables
vε = uε −H and v = u−H , we obtain,

(3.7)

⎧⎪⎨
⎪⎩
−div(a(x)∇vε) + c(x)vε + λvε + 1

ε
X ωεVε(x)v

ε = 1
ε
Xωε f̃ε + g̃ε in Ω

a(x)∂vε

∂n
+ b(x)vε = j̃ε on Γ

vε = 0 on ΓD

and

(3.8)

⎧⎪⎪⎨
⎪⎪⎩

−div(a(x)∇v) + c(x)v + λv= g̃0 in Ω,

a(x) ∂v
∂n

+ b(x)v + V0(x)v= f̃0 + j̃0 on Γ,

v= 0 on ΓD,

where

f̃ε = fε − Vε(x)H, g̃ε = gε − (c(x) + λ)H, j̃ε = jε − b(x)h,

and similarly

f̃0 = f0 − V0(x)h, g̃0 = g0 − (c(x) + λ)H, j̃0 = j0 − b(x)h.

Applying Corollary 3.2 to problems (3.7) and (3.8) we obtain that vε → v
in Cβ(Ω̄). This implies that uε → u in Cβ(Ω̄). �
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4. Elliptic problems with nonsmooth coefficients

In the arguments of the previous section we have used in an essential way
that the coefficients in the elliptic operator are smooth so we can use the
associated scale of interpolation-extrapolation spaces which are well char-
acterized in terms of the Bessel potential spaces. In case the coefficients
are not that smooth, still some analysis can be carried out in a Hilbert
space setting. More precisely, we consider the elliptic problem (1.4) with
0 < a0 ≤ a ∈ L∞(Ω) and

(4.1) c ∈ Lp(Ω), p >
N

2
, b ∈ Ls(Γ), s > N − 1.

Assume, as before, that

(4.2)
1

ε

∫
ωε

|fε|r ≤ C,
1

ε

∫
ωε

|Vε|ρ ≤ C

and there exist functions f0 ∈ Lr(Γ) and V0 ∈ Lρ(Γ) (or bounded Radon
measures on Γ, f0, V0 ∈ M(Γ) if r = 1 = ρ) such that for any smooth
function ϕ, we have

(4.3) lim
ε→0

1

ε

∫
ωε

fε ϕ =

∫
Γ

f0 ϕ, lim
ε→0

1

ε

∫
ωε

Vε ϕ =

∫
Γ

V0 ϕ.

Moreover, we will always assume that ρ > N − 1 and that

(4.4)
gε → g0 weakly in Lz(Ω)
jε → j0 weakly in Lt(Ω)

for some z, t ≥ 1 and consider the formal limit problem (1.5).

We have the following,

Theorem 4.1 Assume the above notations and assumptions. Moreover,
assume r > 2(N − 1)/N , ρ > N − 1, z > 2N/(N + 2) and t > 2(N − 1)/N .
Then there exists some λ0 such that for λ > λ0 the family of solutions of
(1.4), uε, converges in H1(Ω), as ε → 0, to the unique solution of (1.5).
Even more λ0 = 0 if b, c, Vε ≥ 0.

Proof. We split the proof in several steps.

Step 1 We prove that there exists λ0 such that for λ > λ0 the bilinear forms
in H1(Ω)

aε(φ, ξ) =

∫
Ω

a(x)∇φ∇ξ +

∫
Ω

(c(x) + λ)φξ +

∫
Γ

b(x)φξ +
1

ε

∫
ωε

Vεφξ
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and

a0(φ, ξ) =

∫
Ω

a(x)∇φ∇ξ +

∫
Ω

(c(x) + λ)φξ +

∫
Γ

(
b(x) + V0(x)

)
φξ

are uniformly coercive. In particular, from the choice of r, z and t, there
exists a unique solution in H1(Ω) of (1.4) and (1.5).

For this note that for every φ ∈ H1(Ω) we have that, for the negative
parts we have the bound

1

ε

∫
ωε

(
Vε

)
−|φ|2 ≤

(1

ε

∫
ωε

|(Vε

)
−|ρ

) 1
ρ
[1

ε

∫
ωε

|φ|2ρ′
] 1

ρ′
.

Now, since ρ > N − 1, from Lemma 2.5, with p = 2 = q, r = ρ, we have, for
some s = σ < 1 and s ≥ N−1

2ρ
+ 1

2

1

ε

∫
ωε

(
Vε

)
−|φ|2 ≤ C‖φ‖2

Hs(Ω) ≤ C‖φ‖2s
H1(Ω)‖φ‖2(1−s)

L2(Ω) .

Finally using Young’s inequality, we get for any δ > 0

1

ε

∫
ωε

(
Vε

)
−|φ|2 ≤ δ‖φ‖2

H1(Ω) + Cδ‖φ‖2
L2(Ω).

On the other hand, from Holder’s inequality we have

(4.5)

∫
Ω

c−(x)|φ|2 ≤
∫

Ω

c−(x)|φ|2 ≤ ‖c−‖Lp(Ω)‖φ‖2
L2p′(Ω)

.

Since p > N
2

we have that H1(Ω) ⊂ L2p′(Ω), and there exist 0 < s < 1 such

that Hs(Ω) ⊂ L2p′(Ω), and then we have∫
Ω

c−(x)|φ|2 ≤ δ‖φ‖2
H1(Ω) + Cδ‖φ‖2

L2(Ω)

with δ << 1 and Cδ independent of ε.
Finally, since s > N − 1, we have H1(Ω) ⊂ L2s′(Γ) and there exits

0 < s < 1 such that Hs(Ω) ⊂ L2s′(Γ) and then we have that

(4.6)

∫
Γ

b−(x)|φ|2 ≤ ‖b−‖Ls(Γ)‖φ2‖Ls′ (Γ) = ‖b−‖Ls(Γ)‖φ‖2
L2s′ (Γ)

≤ δ‖φ‖2
H1(Ω) + Cδ‖φ‖2

L2(Ω).

Hence, we can take δ small enough and λ large enough such that

(4.7)
aε(φ, φ) =

∫
Ω

a(x)|∇φ|2 +

∫
Ω

(c(x) + λ)|φ|2+

+

∫
Γ

b(x)|φ|2 +
1

ε

∫
ωε

Vε|φ|2 ≥ C‖φ‖2
H1(Ω)

with C = C(λ) > 0 independent of ε.
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A similar argument using that V0 ∈ Lρ(Γ) and ρ > N−1 gives the result
for the bilinear form a0.

Step 2 For λ > λ0, the family uε is uniformly bounded with respect to ε in
H1(Ω).

In fact from (1.4) we have

(4.8) aε(u
ε, uε) =

1

ε

∫
ωε

fεu
ε +

∫
Ω

gεu
ε +

∫
Γ

jεu
ε.

From Remark 2.3, with s = 1, p = 2, or (2.10), we get that, for sufficiently
small δ > 0,

(4.9)
∣∣∣1
ε

∫
ωε

fεu
ε
∣∣∣ ≤ c‖uε‖H1(Ω) ≤ δ‖uε‖2

H1(Ω) + Cδ

since r ≥ 2(N−1)
N

. On the other hand, from the assumptions on z and t, we
have

(4.10)
∣∣∣ ∫

Ω

gεu
ε
∣∣∣ ≤ ‖gε‖Lz(Ω)‖uε‖Lz′(Ω) ≤ δ‖uε‖2

H1(Ω) + Cδ‖gε‖2
Lz(Ω)

and

(4.11)
∣∣∣ ∫

Γ

jεu
ε
∣∣∣ ≤ ‖jε‖Lt(Γ)‖uε‖Lt′(Γ) ≤ δ‖uε‖2

H1(Ω) + Cδ‖jε‖2
Lt(Γ).

From this, using the boundedness of ‖gε‖Lz(Ω) and ‖jε‖Lt(Γ) and (4.7) we
obtain

(4.12) ‖uε‖2
H1(Ω) ≤ C

for some C independent of ε.
From this, there exists a subsequence that we still denote uε which con-

verges weakly to u in H1(Ω). Moreover, from Sobolev’s embedding, we can
assume the subsequence converges also strongly in Hs(Ω), with s < 1, and
in Lp(Ω) with p < 2N

N−2
and almost everywhere. Even more, we can assume

the traces converge in Lq(Γ) for q < 2(N−1)
N−2

and almost everywhere on Γ.

Step 3 The limit function satisfies (1.5). From this and the uniqueness of
solutions of (1.5), we get that the whole family uε converges to u.

Note that from (1.5), for any smooth test function ϕ ∈ C∞(Ω̄) we obtain∫
Ω

a(x)∇uε∇ϕ+

∫
Ω

(c(x) + λ)uε ϕ+

∫
Γ

b(x)uε ϕ+
1

ε

∫
ωε

Vε(x)u
εϕ

=
1

ε

∫
ωε

fε ϕ+

∫
Ω

gε ϕ+

∫
Γ

jε ϕ .
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Now note that since ρ > N − 1, from Lemma 2.5, with p = 2 = q, r = ρ
and for some s = σ < 1 we can pass to the limit in the first term of the
right hand side. This and the convergence of uε in Step 2, allows us to pass
to the limit above, to get∫

Ω

a(x)∇u∇ϕ+

∫
Ω

(c(x)+λ)uϕ+

∫
Γ

(
b(x)+V0(x)

)
uϕ =

∫
Ω

g0 ϕ+

∫
Γ

(j0+f0)ϕ.

Hence, u is the weak solution of the limit problem (1.5).

Step 4 Now we prove that uε converges to u strongly in H1(Ω). Note that
for this it is enough to prove convergence of the norms.

For this, note that in (4.8), using the convergence from Step 2 and

Lemma 2.2 with s = 1, p = 2 and r > 2(N−1)
N

, we have

(4.13) lim
ε→0

(1

ε

∫
ωε

fεu
ε +

∫
Ω

gεu
ε +

∫
Γ

jεu
ε
)

=

∫
Γ

f0u+

∫
Ω

g0u+

∫
Γ

j0u

and also

lim
ε→0

∫
Ω

(c(x) + λ)|uε|2 =

∫
Ω

(c(x) + λ)|u|2,

lim
ε→0

∫
Γ

b(x)|uε|2 =

∫
Γ

b(x)|u|2.
(4.14)

On the other hand, using again ρ > N−1, from Lemma 2.5, with p = 2 = q,
r = ρ and for some s = σ < 1, we get

lim
ε→0

1

ε

∫
ωε

Vε(x)|uε|2 =

∫
Γ

V0(x)|u|2.

With this, passing to the limit in (4.8), we get∫
Ω

a(x)|∇u|2 ≤ lim inf
ε

∫
Ω

a(x)|∇uε|2 ≤ lim sup
ε

∫
Ω

a(x)|∇uε|2

≤ −
∫

Ω

(c(x) + λ)|u|2 −
∫

Γ

V0(x)|u|2 +

∫
Γ

(j + f0)u+

∫
Ω

g0u.

Finally from the variational formulation of the limit problem we have∫
Ω

a(x)|∇u|2 = −
∫

Ω

(c(x) + λ)|u|2 −
∫

Γ

V0(x)|u|2 +

∫
Γ

(j + f0)u+

∫
Ω

g0u

and we conclude. �
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In particular, from this we can obtain

Corollary 4.2 Under the assumptions and hypotheses of Theorem 4.1, we
denote by Aε and A, respectively, the linear unbounded selfadjoint operators
in L2(Ω) induced by the bilinear forms aε(·, ·) and a0(·, ·) above.

Then, a point in the resolvent set ξ ∈ ρ(A) also satisfies ξ ∈ ρ(Aε) for
small ε, and

(4.15) ‖(Aε − ξI)−1 − (A− ξI)−1‖L(L2(Ω),H1(Ω)) → 0, ε→ 0.

Even more, if γ denotes a simple closed curve contained in ρ(A), then the
corresponding projection

(4.16) Pγ(Aε) =
1

2πi

∫
γ

(Aε − µI)−1dµ

converges to Pγ(A) as ε → 0 in L(L2(Ω), H1(Ω)). Moreover, if µ0 is an
isolated eigenvalue of A with finite multiplicity m, then any curve γ enclosing
µ0 but not other point of σ(A) encloses, for sufficiently small ε, eigenvalues
of Aε with total multiplicity m.

Proof. Using Theorem 4.1 we obtain that the resolvents converge in norm
at some point µ, i.e.

(4.17) ‖(Aε − µI)−1 − (A− µI)−1‖L(L2(Ω),H1(Ω)) → 0, ε → 0.

Therefore, from the theory developed in [10] or applying directly Theo-
rem 9.10 in [13] we conclude the spectral convergence of the corollary. �

Remark 4.3 i) The convergence of the spectra given by Corollary 4.2 can
be restated in the following way: if {λε

n}∞n=1 is the set of eigenvalues of Aε,
for 0 ≤ ε ≤ ε0, with λε

1 ≤ λε
2 ≤ . . . λε

n and counting multiplicity then, for all
n = 1, 2, . . .,

λε
n → λ0

n as ε→ 0.

Moreover, if we denote by {ϕε
n}∞n=1 a corresponding set of orthonormal eigen-

functions of Aε, if λ0
n1
< λ0

n = . . . = λ0
m < λ0

m+1 and if we consider the finite
dimensional spaces Uε = span{ϕε

n, . . . , ϕ
ε
m} for 0 ≤ ε ≤ ε0, then Uε → U0

in the sense that the unit balls of Uε converge in the symmetric Haussdorf
distance to the unit ball of U0.

ii) From the Corollary above the following can also be obtained. Assume
{λε

n}∞n=1 is the set of eigenvalues of Aε, for 0 ≤ ε ≤ ε0, with λε
1 ≤ λε

2 ≤ . . . λε
n

and counting multiplicity. Also, assume for each ε and n an associated
eigenfunction is chosen such that {ϕε

n(x)}∞n=1 is a Hilbert basis of L2(Ω).
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Then there exists a subsequence, that we still denote ε → 0 such that for
every n ∈ N,

ϕε
n(x) → ϕn(x) in H1(Ω)

and {ϕn(x)}∞n=1 is a Hilbert basis of L2(Ω) of eigenfunctions of {λ0
n}∞n=1.

iii) Note that the spectral convergence above also apply in case the coefficients
of the elliptic operators are smooth, as in Section 3.

Now we will show that under natural but more restrictive assumptions
than in Theorem 4.1, we can actually conclude the uniform convergence of
solutions, that is

uε → u in C(Ω̄).

For this we will use the classical De Giorgi-Moser technique; see [11] and we
follow closely the approach in [4].

Our first result shows that under suitable conditions, the solutions uε

are uniformly bounded in L∞(Ω). Note that, even if V ε = 0 this result does
not follow straight from [11] nor [4], since in such cases one needs the right
hand side to be uniformly bounded in Lp(Ω) for p > N/2, which is not the
case here, since we only have uniform bounds in L1(Ω) .

Theorem 4.4 Under the above assumptions and notations and assuming
r, ρ, t > N − 1 and z > N/2, we have uε ∈ L∞(Ω), and

‖uε‖L∞(Ω) ≤ C1

for some constant C1 > 0 independent of ε and depending on s, p, r, ρ, N ,
‖b‖Ls, ‖c‖Lp, ‖gε‖Lz , ‖jε‖Lt(Γ1).

Proof. We proceed in several steps.

Step 1 We will prove first that uε ∈ Ly(Ω) for all 1 ≤ y < ∞ and that
‖uε‖Ly(Ω) ≤ C(y) for some constant C(y) independent of ε.

For this, we will show that for any 2N
N+2

≤ d < N
2
, then uε ∈ L

dN
N−2d (Ω)

and

(4.18) ‖uε‖
L

dN
N−2d (Ω)

≤ C(d)

for some constant C independent of ε. Throughout the proof we will denote
m = infΩ a.

Note first that for 2N
N+2

≤ d < N
2
, we have that q = (N−2)d

N−2d
≥ 2. If we

multiply the equation by |uε|q−2uε and integrate by parts we obtain

4(q−1)
q2

∫
Ω

a|∇|uε|
q
2 |2+

∫
Ω

(c+ λ)(|uε|
q
2 )2 +

∫
Γ

b(|uε|
q
2 )2 +

1

ε

∫
ωε

Vε(|uε|
q
2 )2

=
1

ε

∫
ωε

fε|uε|q−2uε +

∫
Γ

jε|uε|q−2uε +

∫
Ω

gε|uε|q−2uε.
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Denoting by vε = |uε| q
2 , we have

∣∣∣∫
Ω

gε|uε|q−2uε

∣∣∣ ≤ [ ∫
Ω

|gε|d
] 1

d
[ ∫

Ω

|uε|(q−1)d′
] 1

d′
=

= ‖gε‖Ld[

∫
Ω

|vε| 2d′
q′ ]

1
d′ = ‖gε‖Ld(Ω)‖vε‖

2
q′

L
2d′
q′ (Ω)

.

Now, since 2d′
q′ = 2N

N−2
we have

(4.19)
∣∣∣ ∫

Ω

gε|uε|q−2uε

∣∣∣ ≤ C‖vε‖
2
q′
H1(Ω).

If we denote by n = (N−1)d
N−d

< N − 1, we have

∣∣∣1
ε

∫
ωε

fε|uε|q−2uε

∣∣∣ ≤ [1

ε

∫
ωε

|fε|n
] 1

n
[1

ε

∫
ωε

|uε|(q−1)n′
] 1

n′≤ C0

[1

ε

∫
ωε

|vε|
2n′
q′

] 1
n′
.

Now, since 2n′
q′ = 2(N−1)

N−2
, we have, using Lemma 2.1, that

(4.20)
∣∣∣1
ε

∫
ωε

fε|uε|q−2uε

∣∣∣ ≤ C0

[
1

ε

∫
ωε

|vε|
2(N−1)

N−2

] N−2
2(N−1)

· 2
q′
≤ C‖vε‖

2
q′
H1(Ω).

In a similar way, we have

∣∣∣ ∫
Γ

jε|uε|q−2uε

∣∣∣ ≤ [ ∫
Γ

|jε|n
] 1

n
[ ∫

Γ

|uε|(q−1)n′
] 1

n′
= ‖jε‖Ln(Γ)

[1

ε

∫
Γ

|vε|
2n′
q′

] 1
n′

and using again that 2n′
q′ = 2(N−1)

N−2
, we get

(4.21)
∣∣∣ ∫

Γ

jε|uε|q−2uε

∣∣∣ ≤ C‖vε‖
2
q′
H1(Ω).

Putting all these estimates together, we have

(4.22)
4(q − 1)

q2

∫
Ω

a|∇vε|2+
∫

Ω

(c+λ)v2
ε+

∫
Γ

bv2
ε +

1

ε

∫
ωε

Vε|vε|2 ≤ C‖vε‖
2
q′
H1(Ω).

We can add to both sides of the previous inequality a term of the type
µ

∫
Ω
v2

ε , with µ = µ(q), so that the left hand side is uniformly coercive,
obtaining,

C(q)‖vε‖2
H1(Ω) ≤ C‖vε‖

2
q′
H1(Ω) + C‖vε‖2

L2(Ω).
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Hence,

C(q)‖vε‖2
H1(Ω) ≤ C‖vε‖

2
q′
H1(Ω) + C‖vε‖2

L2(Ω)

≤ C‖vε‖
2
q′
H1(Ω) + C‖vε‖

2
q′
H1(Ω)‖vε‖

2
q

Lq(Ω).

From where we get

‖vε‖
2
q

L
2N

N−2 (Ω)
≤ C(q)

(
1 + ‖uε‖Lq(Ω)

)
,

and since vε = |uε| q
2 and q = (N−2)d

N−2d
, we get

‖uε‖
L

q+ 2d
N−2d (Ω)

≤ C(q)
(
1 + ‖uε‖Lq(Ω)

)
.

and since 2d
N−2d

≥ 2
N−2

we get

‖uε‖
L

q+ 2
N−2 (Ω)

≤ C(q)
(
1 + ‖uε‖Lq(Ω)

)
.

Applying a bootstrap argument, starting at q = 2 we obtain that uε ∈
Lq(Ω) for all q <∞ and that

‖uε‖Lq(Ω) ≤ C

where C may depend on q but it is independent of ε.

Step 2 We now prove that we have uε ∈ L∞(Ω) and

‖uε‖L∞(Ω) ≤ C

for some constant C independent of ε.
Let k > 0, φε = (uε − k)+ ≤ |uε| and Ak = {x ∈ Ω : uε(x) > k}, where

we drop the dependence of ε in these sets to simplify the notations. Notice
first that, from Step 1, for any q ≥ 2 the following inequality holds

(4.23) ‖φε‖Lq(Ω) ≤ ‖uε‖Lq(Ω) ≤ C,

where C is independent of ε and k, but may depend on q. Now note that
using interpolation we have

‖φε‖2
L2(Ω) ≤ ‖φε‖Lq(Ω)|Ak|

1
2
− 1

q ‖φε‖
L

2N
N−2 (Ω)

|Ak| 1
N

≤ C‖φε‖Lq(Ω)‖φε‖H1(Ω)|Ak|
1
2
+ 1

N
− 1

q .
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From here, taking q = 2N and using (4.23), we obtain

(4.24) ‖φε‖2
L2(Ω) ≤ C‖φε‖H1(Ω)|Ak| 12+ 1

2N .

Using φε as a test function in the equation we have, for λ > 0,∫
Ω

a|∇φε|2 +

∫
Ω

(c+ λ)φ2
ε +

∫
Γ

bφ2
ε +

1

ε

∫
ωε

Vε|φε|2

=
1

ε

∫
ωε

fεφε +

∫
Γ

(jε − kb)φε +

∫
Ω

[gε − k(c+ λ)]φε − 1

ε

∫
ωε

kVεφε.(4.25)

Next we estimate each term on the right hand side of the above expres-
sion, for this, we use extensively Holder’s inequality, Sobolev embeddings
and trace theorems.

Now, denoting g∗ε = gε − k(c+ λ) and taking N/2 < p0 ≤ p, z, we have

∣∣∣ ∫
Ω

g∗εφε

∣∣∣ ≤ ‖g∗ε‖Lp0(Ω)‖φε‖Lp′
0 (Ω)

≤ C(1 + k)‖φε‖
L

2N
N−2 (Ak)

|Ak|
1
2
− 1

p0
+ 1

N

≤ C(1 + k)‖φε‖H1(Ω)|Ak|
1
2
− 1

p0
+ 1

N .

On the other hand, using Lemma 2.1

∣∣∣1
ε

∫
ωε

fεφε

∣∣∣ ≤ [1

ε

∫
ωε

|fε|r
] 1

r
[1

ε

∫
ωε

|φε|r′
] 1

r′

≤ C0‖φε‖
H

1, Nr′
N+r′−1 (Ω)

= C0‖φε‖
H

1, Nr
Nr−N+1 (Ω)

.

Hence, using Nr
Nr−N+1

< 2 we get

(4.26)
∣∣∣1
ε

∫
ωε

fεφε

∣∣∣ ≤ C‖φε‖H1(Ω)|Ak| 12− 1
r
+ 1

Nr ,

and in a similar way we get

(4.27)
∣∣∣1
ε

∫
ωε

Vεkφε

∣∣∣ ≤ Ck‖φε‖H1(Ω)|Ak| 12− 1
r
+ 1

Nr .

For the terms on the boundary, if we note that j∗ε = jε − kb and we
choose a N − 1 < s0 < s, t, we have

∣∣∣ ∫
Γ

j∗εφε

∣∣∣ ≤ [ ∫
Γ

|j∗ε |s0

] 1
s0

[ ∫
Γ

|φε|s′0
] 1

s′
0

≤ C(1 + k)‖φε‖Ls′0 (Γ)
≤ C(1 + k)‖φε‖

H
1,

Ns0
Ns0−N+1 (Ω)
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and using again Ns0

Ns0−N+1
< 2 and proceeding as for (4.26), we get

(4.28)
∣∣∣ ∫

Γ

j∗εφε

∣∣∣ ≤ C(1 + k)‖φ‖H1(Ω)|Ak|
1
2
−N−1

s0N .

Now, using the estimates above and choosing δ enough small, we obtain

m

2
‖φε‖2

H1(Ω) ≤
∫

Ω

a|∇φε|2 + λ

∫
Ω

φ2
ε(4.29)

≤ C(1 + k)‖φε‖H1(Ω)

× (|Ak| 12− 1
r
+ 1

Nr + |Ak|
1
2
− 1

s0
+ 1

Ns0 + |Ak|
1
2
+ 1

N
− 1

p0 + |Ak| 12+ 1
N )

while we also have

‖φε‖L1(Ak) ≤ ‖φε‖
L

2N
N−2 (Ak)

|Ak|N+2
2N ≤ C‖φε‖H1(Ω)|Ak|N+2

2N ,

where C = C(Ω, N). With these, we get that

‖φε‖L1(Ω) ≤ γ(1 + k)|Ak|1+α

where

α = min
{r − (N − 1)

Nr
,
s0 − (N − 1)

Ns0
,
2p0 −N

Np0
,

2

N

}
> 0.

In particular, for k ≥ 1 we have

‖φε‖L1(Ω) ≤ 2γk|Ak|1+α.

Now, using the Lemma 5.1 in [11] we have that

max{uε(x); x ∈ Ω} ≤ C.

With a similar argument for wε = −uε, we obtain the desired result. �

Remark 4.5 Let us observe that to obtain the results of Theorem 4.4, that
is, the uniform boundedness of uε in L∞(Ω) we do not need the convergence
hypotheses of (4.3) and (4.4), but it will be sufficient to guarantee the bound-
edness hypothesis given by (4.2) and to assume that the family gε and jε are
bounded in Lz(Ω) and Lt(Γ) with the appropriate z and t.

Now we can show the uniform convergence.

Theorem 4.6 Under the conditions above, we have

uε → u in L∞(Ω).
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Proof. Note that vε = uε − u satisfies

(4.30)

⎧⎪⎪⎨
⎪⎪⎩
−div(a(x)∇vε)+c(x)vε+λvε+

1
ε
XωεVε(vε+u)=

1
ε
Xωεfε+gε−g0 in Ω

a(x)∂vε

∂n
+ b(x)vε=−f0 − V0u on Γ

vε=0, on ΓD.

As in Theorem 4.4 if Ak = {x ∈ Ω : vε > k}, we obtain

(4.31) ‖(vε − k)+‖L1(Ω) ≤ γ(1 + k)|Ak|1+α, for every k > 0.

From (4.31) we get that there exists a constant K0 independent of ε such
that ‖v+

ε ‖L∞(Ω) ≤ K0 uniformly in ε. Hence, if 0 < k ≤ K0 we have

‖(vε − k)+‖L1(Ω) ≤ γ(1 +K0)|Ak|1+α, for every 0 < k < K0

and if k > K0 we have (vε − k)+ ≡ 0. Hence we can assure that we always
have for γ̃ = γ(1 +K0) that

‖(vε − k)+‖L1(Ω) ≤ γ̃|Ak|1+α, for every k > 0.

Since for every k > k0 > 0 we have |Ak| ≤ |Ak0|, then

‖(vε − k)+‖L1(Ω) ≤ γ̃|Ak0|
α
2 |Ak|1+ α

2 , for every k > k0

and using Lemma 5.1 from [11] we get

‖vε‖L∞(Ω) ≤ k0 + C|Ak0 |
α

α+2 .

where C is independent of k0, k and ε. Now, observe that the convergence
in Theorem 4.1 implies that |Ak0| → 0 as ε→ 0. Since k0 is arbitrarily small
we get the result. �

As in the case of smooth coefficients, analyzed in the previous section, we
can also obtain the convergence in the case where we have a nonhomogeneous
Dirichlet boundary condition in ΓD. We have

Corollary 4.7 Assume we are in the conditions of Theorem 4.6. Let h be
a function defined in ΓD such that h ∈ H1/2(ΓD) ∩ L∞(ΓD). Then if in
problems (1.4) and (1.5) we substitute the condition u = 0 in ΓD by u = h
in ΓD, then the convergence result of Theorem 4.6 also holds.

Proof. The proof follows the same ideas as the one from Corollary 3.3. �
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5. Final remarks

We present in this section some important remarks related to the results
obtained in the preceding sections.

Remark 5.1 Note that the convergence results in Sections 3 and 4 for (1.4)
and (1.5) can be seen as a tool for transfering information from the interior
to the boundary. In particular, the results above, allow to approximate the
solution of the particular case of (1.5)

(5.1)

⎧⎨
⎩
−div(a(x)∇u) + c(x)u+ λu = g in Ω

a(x)
∂u

∂n
+ V0(x)u = f0 on Γ = ∂Ω

by the solutions of the concentrated problem

(5.2)

⎧⎨
⎩
−div(a(x)∇uε) + c(x)uε + λuε + 1

ε
XωεVε(x)u

ε = g + 1
ε
Xωεfε in Ω

∂u

∂n
= 0 on Γ = ∂Ω.

As a matter of fact, we may define Vε and fε extending the functions V0

and f0 to ωε in the direction of the normal. That is, if z ∈ ωε then z can be
written in a unique way as z = x−σ�n(x), for some σ ∈ (0, ε). Therefore, we
define Vε(z) = V0(x) and fε(z) = f0(x). With this definition we may easily
prove that if V0 ∈ Lρ(Γ), f0 ∈ Lr(Γ), then Vε ∈ Lρ(ωε), fε ∈ Lr(ωε) and that
both (1.2) and (1.3) hold. If we also assume r, ρ > N − 1, g ∈ Lz(Ω) with
z > N/2 and λ is large enough, then we may apply the results of Section 3 if
we are in the case of smooth coefficients a, b, c or we may apply the results
of Section 4 if a, b and c are not smooth and in both cases we obtain the
convergence of the solution of (5.2) to the solution of (5.1), see Corollary 3.2
and Theorem 4.6.

In other words, nonhomogeneous Robin problems can be approximated
by homogeneous Neumann problems efficiently. Note that this leads to some
applications for numerical approximations, since Neumann conditions are
easier to implement; see [8].

Remark 5.2 Observe that in case the domain is not smooth, it may be dif-
ficult to give a meaning to the boundary condition in (5.1), although (5.2)
has a natural and simple variational formulation not involving surface inte-
grals or traces. Hence the limit functions of (5.2) can be taken as proper
way of defining solutions of (5.1).
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Remark 5.3 It is not difficult to see that all the results from Sections 3
and 4 can be carried out with minor changes to the case in which ωε col-
lapses to a regular hyper–surface Γ ⊂ Ω, not necessarily the boundary of
the domain. In such a case, for the problem

(5.3)

⎧⎪⎪⎨
⎪⎪⎩

−div(a(x)∇uε) + c(x)uε + λuε + 1
ε
XωεVεu

ε = 1
ε
Xωεfε + g in Ω

a(x)∂uε

∂n
+ b(x)uε = j on ∂ΩR

uε = 0 on ∂ΩD

the limit problem reads

(5.4)

⎧⎨
⎩

−div(a(x)∇u) + c(x)u+ λu+ V0δΓu= f0δΓ + g in Ω
a(x)∂u

∂n
+ b(x)u= j on ∂ΩR

u= 0 on ∂ΩD

where we denote by f0δΓ and V0δΓu the functionals

< f0δΓ, ϕ >=

∫
Γ

f0 ϕ and < V0u, ϕ >=

∫
Γ

V0uϕ.

We also denote by ∂ΩR and ∂ΩD two disjoint sets of ∂Ω where Robin and
Dirichlet type boundary condition are imposed, respectively.

By this we mean that if Vε, fε, V0 and f0 satisfy (1.2) and (1.3), then if
ρ > N − 1, r > N − 1, g ∈ Lz(Ω) with z > N/2 and λ is large enough, then
Corollary 3.2 holds for the case of smooth coefficients a, b and c and Theo-
rem 4.6 holds for the nonsmooth coefficients case, where uε is the solution
of (5.3) and u is the solution of (5.4).

Observe also that by taking test functions with support near points on Γ
it is easy to see that the limit problem (5.4) is in fact a transmission problem
across Γ, where the jump condition reads

[u]Γ = 0, [a(x)
∂u

∂n
+ V0(x)u]Γ = f0.

Hence, in particular, the solution of the transmission problem⎧⎪⎨
⎪⎩
−div(a(x)∇u) + c(x)u+ λu = g in Ω

[u]Γ = 0, [a(x)∂u
∂n

+ V0(x)u]Γ = f0 on Γ

u = 0 on ∂Ω

can be approximated by the solutions of the concentrated problems{
−div(a(x)∇uε) + c(x)uε + λuε + 1

ε
XωεVεu

ε = g + 1
ε
Xωεfε in Ω

uε = 0 on ∂Ω.
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This approach may lead to significant applications to numerical schemes for
such problems.

In this direction observe that (1.4) and (5.3) can be understood as ap-
proximate regularized problems for (1.5) and (5.4) respectively.
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C/ Mártires de Alcalá 11
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