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A finiteness theorem for the space
of Lp harmonic sections

Stefano Pigola, Marco Rigoli and Alberto G. Setti

Abstract
In this paper we give a unified and improved treatment to finite

dimensionality results for subspaces of Lp harmonic sections of Rie-
mannian or Hermitian vector bundles over complete manifolds. The
geometric conditions on the manifold are subsumed by the assump-
tion that the Morse index of a related Schrödinger operator is finite.
Applications of the finiteness theorem to concrete geometric situa-
tions are also presented.

0. Introduction

The aim of this note is to explore some geometric aspects of the “finite Morse
index” for natural Schrödinger operators on a complete manifold (M, 〈, 〉) .
Specifically, we are interested in relating the finiteness of the index with the
finiteness of the dimension of the space of p-integrable harmonic sections
of a Riemannian vector bundle over M . Needless to say, the operators
under consideration will arise from appropriate Weitzenböck formulas on
the bundle.

In the special case p = 2, finiteness results have been largely investigated
by many authors under different assumptions. We limit ourselves to quote
[13], [14] by P. Li and J. Wang, where Morse index assumptions are used in
a way similar to the present note, and [2] by G. Carron where quantitative
dimensional estimates are obtained assuming that the underlying manifold
supports a global Sobolev inequality. Further references in the Kähler case
are given in Section 1.2.2 below.

The present paper should be considered as a continuation of [19] where
we proved Lp-vanishing results under the assumption of the vanishing of the
Morse index of the operators involved. The underlying philosophy is also
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similar in that a crucial step in our arguments is to combine the solutions
of two differential inequalities into a single one. This approach enables us
to deal with very general situations as shown by Theorem 1.1 below. See
also Remark 1.3. Along the way, we prove a weak Harnack inequality for
solutions of differential inequalities involving gradient terms which may be
of independent interest, and we provide a new nonlinear proof of a Poincaré
inequality with mixed boundary conditions. In a final Appendix we also
present technical regularity results needed in the distributional computations
of the paper.

Geometric situations where the main finiteness theorem applies are ex-
plicitly considered; see Corollary 1.2, Theorem 1.4 and Theorem 1.5. We also
provide a new application to the reduction of the codimension of a harmonic
immersion into Euclidean space; see Theorem 1.6.

1. Main result, spectral remarks, and geometric conse-
quences

The main goal of the paper is the following abstract, very general, finiteness
Theorem.

Theorem 1.1. Let (M, 〈, 〉) be a connected, complete, m-dimensional Rie-
mannian manifold and E a Riemannian (Hermitian) vector bundle of rank l
over M . The space of its smooth sections is denoted by Γ (E). Having fixed

a (x) ∈ C0 (M) , A ∈ R, H ≥ p

satisfying the further restrictions

(1.1) p ≥ A + 1, p > 0,

let V =V (a, A, p,H) ⊂ Γ (E) be any vector space with the following property:

(P) Every ξ ∈ V has the unique continuation property, i.e., ξ is the null sec-
tion whenever it vanishes on some domain; furthermore the locally-Lipschitz
function u = |ξ| satisfies

(1.2)

⎧⎪⎨⎪⎩
u
(
∆u+ a (x) u

)
+ A

∣∣∇u∣∣2 ≥ 0 weakly on M∫
Br

u2p = o
(
r2
)

as r → +∞.

If there exists a solution 0 < ϕ ∈ Liploc of the differential inequality

(1.3) ∆ϕ+Ha (x)ϕ ≤ 0

weakly outside a compact set K ⊂M , then

(1.4) dim V < +∞.
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1.1. Spectral counterparts of assumption (1.3)

Condition (1.3) is equivalent to the existence of a C1 function ϕ > 0 satis-
fying

(1.5) ∆ϕ +Ha (x)ϕ = 0 weakly in the complement of K,

and it is intimately related with the spectral properties of the Schrödinger
operator LH = −∆ − Ha (x) . Indeed, associated to LH we have the usual
notions of (generalized) first eigenvalue λLH

1 (M) and Morse index Ind (LH) .
Recall that, by definition,

(1.6) λLH
1 (M) = inf

v∈C∞
c (M)\{0}

∫
M
|∇v|2 −Ha (x) v2∫

M
v2

and

(1.7) Ind (LH) = sup
Ω⊂⊂M

Ind
(LΩ

H

)
where LΩ

H stands for the Friedrichs extension of (LH , C
∞
0 (Ω)) in L2 (Ω), and

Ind
(LΩ

H

)
denotes the (finite) number, counting multiplicity, of the strictly

negative Dirichlet eigenvalues of LΩ.
Observe that the non-negativity of the first (generalized) eigenvalue cor-

responds precisely to the fact that the Morse index is zero. Moreover, it is
known from classical work by D. Fischer-Colbrie, [5], that Ind (LH) < +∞
implies the validity of (1.5) for some C1 function ϕ > 0; see also [19].

As a matter of fact, assumption (1.3) seems to be slightly weaker than
the request Ind (LH) < +∞. Indeed, its validity is equivalent to saying that

(1.8) λLH
1 (M \K) ≥ 0

which, in turn, is implied by the finiteness of the Morse index; see [5] and [19].
Condition (1.8) is easier to handle. By way of example, suppose that

(M, 〈, 〉) supports a global, L2 Sobolev inequality of the type

S−1
α

(∫
M

v
2

1−α

)1−α

≤
∫

M

|∇v|2 , ∀v ∈ C∞
c (M) ,

for some Sα > 0 and 0 < α < 1. Then, it is readily seen that the validity
of (1.8), hence of (1.3), follow from an L

1
α -control of the potential a+ (x) =

max {a (x) , 0} . Indeed, suppose ‖a+‖L
1
α (M)

< +∞ so that, up to choosing

the compact set K ⊂⊂ M large enough, we have ‖a+‖L
1
α (M\K)

≤ (HSα)−1 .
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Then, for every 0 �≡ v ∈ C∞
c (M \K), using also Hölder inequality, we

deduce∫
M\K

|∇v|2 −Ha (x) v2 ≥ S−1
α

(∫
M−K

v
2

1−α

)1−α

−
∫

M\K
Ha+ (x) v2

≥
{
S−1

α −H ‖a+‖L
1
α (M\K)

}(∫
M\K

v
2

1−α

)1−α

≥ 0,

that is (1.8).

1.2. Geometric applications of the main theorem

The spaces of harmonic functions, and more generally, harmonic forms on a
Riemannian manifold are the most typical examples of spaces of sections for
which the conditions of the theorem hold. This situation can be generalized
to the following setting. Let E be a Riemannian (Hermitian) vector bundle
of rank l over M with a compatible connection D and let ∆E be a differential
operator acting on the space of smooth sections Γ(E) of the form

(1.9) ∆E = ∆B + R

where ∆B = −Trace (D2) is the rough Laplacian, and R is a smooth sym-
metric endomorphism of E. We will refer to an operator ∆E as above as an
admissible Laplacian.

A smooth section ξ ∈ Γ (E) is called ∆E-harmonic if ∆Eξ = 0. We define
the vector spaces

H (E) =
{
ξ ∈ Γ (E) : ∆Eξ = 0

}
and

L2pH (E) =
{
ξ ∈ H (E) : |ξ| ∈ L2p (M)

}
.

Note that ∆E-harmonic sections satisfy the (strong) unique continuation
property. In local coordinates, the condition ∆Bξ+Rξ = 0 becomes a system
of l elliptic differential equations satisfying the structural assumptions of
Aronszajn-Cordes, see e.g. [11].

From (1.9) we deduce the Bochner-Weitzenböck formula, ∀ξ ∈ H (E),

−1

2
∆
∣∣ξ∣∣2 =

〈
∆Bξ, ξ

〉− ∣∣Dξ∣∣2 = −〈Rξ, ξ〉− ∣∣Dξ∣∣2
which in turn implies that the following differential inequality holds in the
sense of distributions,

(1.11)
∣∣ξ∣∣∆∣∣ξ∣∣− 〈Rξ, ξ〉 =

∣∣Dξ∣∣2 − ∣∣∇ |ξ| ∣∣2 ≥ 0.
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The last inequality in (1.11) is known as “the first Kato inequality”. We
recall for completeness that, when there exists a constant k > 0 such that

(1.12)
∣∣Dξ∣∣2 − ∣∣∇ |ξ| ∣∣2 ≥ k

∣∣∇ |ξ| ∣∣2,
one says that a “refined Kato inequality” holds.

If we let
R− (x) = sup∣∣ξ∣∣=1

〈−Rξ, ξ〉

then, from (1.11), we obtain

|ξ| (∆ |ξ| + R− (x) |ξ| ) ≥ 0.

and we are naturally led to considering the Schrödinger operator

LH = −∆ −HR− (x)

with H > 0 a real number. Accordingly, from Theorem 1.1 we immediately
deduce the following

Corollary 1.2. Maintaining the notation introduced above, assume that, for
some H ≥ 1

Ind (LH) < +∞.

Then,
dimL2pH (E) < +∞

for every 1 ≤ p ≤ H.

As examples of bundles where the above considerations apply, we men-
tion the space of spinors and of exterior differential q-forms. In these set-
tings the role of the operator ∆E is played by the Dirac and the Hodge-De
Rham Laplacians, respectively. Both operators can be written in terms of
the rough Laplacian via a Bochner-type formula. In the spinorial case the
endomorphism R is given by the formula

〈
R (x) v, v

〉
=

MScal (x)

4

∣∣v∣∣2, , ∀v ∈ Ex,

where MScal denotes the scalar curvature of M (see [21]). For differential
1-forms R is given by 〈

R (x) v, v
〉

= MRicci (x) (v, v)

where MRicci is the Ricci tensor of M .
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In the case of differential k-forms on a locally, conformally flat mani-
fold M of even dimension m = 2k ≥ 4, one has (see [1])

〈
R (x) v, v

〉
=
k!k MScal (x)

2 (2k − 1)
|v|2 .

The expression of R for the exterior bundle Λq (T ∗M) , q ≥ 2, on a general
manifold is quite complicated but can be estimated in terms of the sectional
curvature MSec of M by (see [6])〈

R (x) v, v
〉 ≥ −Cλ (x) |v|2

where C = C(m, q) > 0 is a constant depending on m and q and

λ (x) = max
Π⊂TxM

∣∣MSecx (Π)
∣∣.

Remark 1.3. Comparing with [13] and [14] we see that our approach, on
the one hand allows us to deal with different integrability exponents, and on
the other hand it enables us to avoid the request that u = |ξ| be a solution
of the more stringent inequality

u
(
∆u+ a (x) u

) ≥ k
∣∣∇u∣∣2

for some constant k > 0. The geometric counterpart of this is that we do
not need to use any refined Kato inequality a fact that seems to be essential
in the Li-Wang papers cited above. Thus, we can deal with, e.g., the whole
space of harmonic, 2p-integrable q-forms instead of restricting ourselves to
the closed and co-closed ones (for which a refined Kato inequality does hold).

1.2.1. Line bundles over Kähler manifolds

Suppose (M, 〈, 〉 , J) is a complete Kähler manifold of complex dimension
m and Ricci form Rij . Let E be a holomorphic line bundle over M en-
dowed with a Hermitian metric (, ) with curvature form Ωij . The complex
vector space of Lp holomorphic (k, 0)-forms with values in E is denoted
by LpΛ(k,0) (E) . We also set LpH

(⊗kE
)

for the space of Lp holomorphic
sections of tensor powers of E.

In [18], L. Ni, Y. Shi and L.F. Tam investigate geometric conditions
forcing dimL2pΛ(k,0) (E) = 0. In the L2 setting, vanishing results and
corresponding quantitative finiteness theorems for dimL2H

(⊗kE
)

are es-
tablished e.g. in works by N. Mok, [15], and by L. Ni, [17]. In this sec-
tion, as a direct application of Theorem 1.1, we prove qualitative Lp finite-
dimensionality results in both these situations.
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To begin with, we consider the space LpΛ(k,0) (E) . To simplify the writ-
ings, for any fixed H > 0, let us define the Schrödinger operator

LH = −∆ − 4H

(
s (x) − min

1≤i1<···<ik≤m
(γi1 + · · ·+ γik)

)
where γ1, . . . , γm are the eigenvalues of the Ricci form Rij of M and s (x)
the trace, with respect to (, ) , of the curvature form Ωij of E. We have the
following

Theorem 1.4. Suppose that

Ind (LH) < +∞
for some H > 0. Then,

dimL4pΛ(k,0) (E) < +∞
for every 0 < p ≤ H.

Proof. As explained above, the index assumption guarantees the existence
of a solution ϕ > 0 of

LHϕ = 0 on M \K
for some compact set K ⊂ M. Moreover, the Kodaira-Bochner formula
states that, for every ξ ∈ Λ(k,0) (E), the smooth function u = |ξ|2 satisfies

−uL1 (u) − |∇u|2 ≥ 0 on M ;

see [16] Chapter 3, Section 6. Therefore, the result follows directly from
Theorem 1.1. �

We now come to the case of LpH
(⊗kE

)
.

Theorem 1.5. Let k ∈ N and assume that, for some H > 0,

Ind
(− ∆ − 2Hks (x)

)
< +∞.

Then
dimL2pH

(⊗kE
)
< +∞

for every 0 < p ≤ H.

Proof. The proof goes as above. The only difference is that now we use the
Bochner formula

|ξ| (∆ |ξ| + 2ks (x) |ξ| )− ∣∣∇ |ξ| ∣∣2 ≥ 0

which is valid, in the sense of distributions, for every ξ ∈ H
(⊗kE

)
; see [17].

�
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1.2.2. Reduction of codimension of harmonic immersions

From a somewhat different perspective, Theorem 1.1 applies to codimen-
sional problems for (non-isometric) harmonic immersions into Euclidean
spaces. R. Greene and H.H. Wu, [7], [8], proved that anym-dimensional Rie-
mannian manifold (M, 〈, 〉) can be imbedded into R2m+1 and immersed into
R2m via a proper, harmonic immersion f : M → RT . The properness condi-
tion insures that the induced metric f ∗canRT is complete. Observe that, due
to e.g. volume growth restrictions, the immersion is in general non-isometric;
see Remark 1.9 below. Equivalently, one in general has |df |2 �= const.

Theorem 1.6. Let
(
M, 〈, 〉 ) be a complete (m≥3)-dimensional Riemannian

manifold satisfying

(1.13) MRicci ≥ R (x) on M

and assume that

(1.14) Ind
(− ∆ −HR (x)

)
< +∞

for some H ≥ m−2
m−1

. Then, there exist a compact set K ⊂M and an integer
N ≥ m depending on H and on the geometry of (M, 〈, 〉) in a neighborhood
of K such that the following holds.

Let f : M → RT>N be a harmonic immersion whose energy density
satisfies the growth condition

(1.15)

∫
BR

|df |2p = o
(
R2
)
, as R → +∞,

for some m−2
m−1

≤ p ≤ H. Then, there is an N-dimensional affine subspace

AN ⊂ RT such that f (M) ⊂ AN .

Proof. Let H (p) be the real vector space of harmonic functions u : M → R

satisfying ∫
BR

|du|2p = o
(
R2
)
, as R → +∞,

with p as in the assumptions of the theorem. Define V (p) = Im d|H(p) , a

vector subspace of H (Λ1 (T ∗M)), and observe that, for every du ∈ V (p) ,

|du| (∆ |du| +R (x) |du| )− 1

m− 1

∣∣∇ |du| ∣∣2 ≥ 0.

This is the well known Bochner formula with refined Kato inequality for
harmonic functions. Since, by (1.14), there exists a solution ϕ > 0 of

∆ϕ +R (x)ϕ = 0 on M \K,
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for some compact set K ⊂ M, we can apply Theorem 1.1 to deduce the
existence of N ∈ N depending on p and on the geometry of (M, 〈, 〉) in a
neighborhood of K such that,

(1.16) dimV (p) ≤ N.

Let f =
(
fA
)

: M → RT>N be a harmonic immersion satisfying (1.15). Note
that, for each A,

dfA ∈ V (p)

and from the estimate (1.16) we deduce

span
{
df 1, ..., dfT

}
= span

{
dfA1, ..., dfAN

}
for some A1, .., AN , where of course N ≥ m. Without loss of generality, we
can assume A1 = 1, ..., AN = N . Thus,

dfα =

N∑
A=1

λα
Adf

A, α = N + 1, ..., T,

for some appropriate real coefficients {λα
A}. This latter clearly implies the

existence of suitable constants {cα} such that

fα =

N∑
A=1

λα
Af

A + cα.

It follows that f (M) is contained in the affine subspace AN of RT passing

through
(
0, ..., 0, cN+1, ..., cT

)t
and spanned by

span
{
eA +

(
0, ..., 0, λN+1

A , ..., λT
A

)t
: A = 1, ..., N

}
,

where {eA} is the standard basis of RT . �

Remark 1.7. The result of Theorem 1.6 is qualitative. It would be very
interesting to get a quantitative version, where the dimension N of the affine
ambient subspace is governed by the geometric data. In particular, forcing
N = dimM would yield a Bernstein type result.

Remark 1.8. The above arguments can be applied to holomorphic immer-
sions of Kähler manifolds into CT .
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Remark 1.9. The harmonic immersion f in the statement of Theorem 1.6
cannot be isometric. For otherwise we would have

vol (BR) = o
(
R2
)

as R → +∞

and this is impossible by the monotonicity formula applied to the minimal

immersion f : (M, 〈̃, 〉) → RT , with 〈̃, 〉 = f ∗can.

As a consequence, for dimensions m ≥ 3, the immersion f cannot be
conformal, because conformal harmonic maps are homotetic; see e.g. [3].

As a matter of fact, the standard monotonicity argument shows that
some restriction appears even if f is a harmonic bi-Lipschitz immersion.
Indeed, if

sup
x∈M

sup
v∈TxM\{0}

〈̃v, v〉x
〈v, v〉x

= A < +∞; inf
x∈M

inf
v∈TxM\{0}

〈̃v, v〉x
〈v, v〉x

= B > 0

then we must have
d

dR

(
vol (BR)

R
√

mBA−1

)
≥ 0.

It follows that a bi-Lipschitz harmonic immersions with “small” energy
growth has to satisfy

√
mBA−1 < 2. However, we stress that, here, the

quadratic-form inequality 〈̃, 〉 ≥ B 〈, 〉 plays an essential role.

Here are some special situations where Theorem 1.6 applies.

Corollary 1.10. Let (M, 〈, 〉) be a complete, m-dimensional Riemannian
manifold satisfying both

vol (BR) = o
(
R2
)

as R → +∞.

and
MRicci ≥ 0 on M \K

for some compact set K ⊂ M . Then, there exists N ∈ N depending on the
geometry of (M, 〈, 〉) in a neighborhood of K such that, any (non-isometric)
harmonic, Lipschitz immersion f : M → RT>N must satisfy f (M) ⊂ AN

for some N-dimensional affine subspace AN ⊂ RT .

We say that a Riemannian metric (, ) on the smooth manifold M is
dominated by the metric 〈, 〉 if (, ) ≤ C2 〈, 〉, in the sense of quadratic forms,
for some constant C > 0.
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Corollary 1.11. Let (M, 〈, 〉) be a complete, m-dimensional Riemannian
manifold satisfying

MRicci ≥ 0 on M \K
for some compact set K ⊂ M . Then, there exists N ∈ N depending on the
geometry of (M, 〈, 〉) in a neighborhood of K such that the following holds.

Let f : M → RT>N be a harmonic immersion whose induced metric

f ∗can is dominated by a metric 〈̃, 〉 in the conformal class of 〈, 〉 satisfying

ṽol (M) < +∞.

Then, f is in fact a harmonic immersion into some N-dimensional affine
subspace AN ⊂ RT .

Proof. We set 〈̃, 〉 = u2 (x) 〈, 〉 and we note that∫
M

|df |m dvol ≤ C

∫
M

umdvol = Cṽol (M)

for some constant C > 0. �
Suppose f : (M, 〈, 〉M) → (N, 〈, 〉N) be a smooth map between Rie-

mannian manifolds of dimensions m and n respectively. Denote by

λ1 (x) ≥ λ2 (x) ≥ ... ≥ λm (x) ≥ 0

the eigenvalues of the quadratic form f ∗
x 〈, 〉N . We say that f has bounded

kth dilation if
λ1 (x) ≤ Ckλk (x) on M

for some constant Ck ≥ 1. When k = m we (perhaps improperly) say that
f is of bounded distortion (or, equivalently, quasi-regular).

Corollary 1.12. Let (M, 〈, 〉) be a complete, m-dimensional Riemannian
manifold satisfying

MRicci ≥ 0 on M \K
for some compact set K ⊂ M . Then, there exists N ∈ N depending on the
geometry of (M, 〈, 〉) in a neighborhood of K such that, any (non-isometric)
harmonic immersion f : M → RT>N of bounded distortion and satisfying

volf∗can (M) < +∞,

is in fact a harmonic immersion into some N-dimensional affine subspace
AN ⊂ RT .

Proof. We set 〈̃, 〉 = f ∗can and we observe that

|df |m
dṽol

=
{tr (f ∗can)}m

2

{det (f ∗can)} 1
2

=
(
∑
λi)

m
2

(Πλi)
1
2

≤ C

(
λ1

λm

)m
2

≤ CCk,

for a suitable constant C = C (m) > 0 �
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2. Proof of Theorem 1.1

The proof of the main theorem is based on a (suitable version of the) classical
estimating lemma due to Peter Li which we now recall (see [12, Lemma 11]).

Lemma 2.1. Let E be a Riemannian (Hermitian) vector bundle of rank l
over a Riemannian manifold (M, 〈, 〉) and let T be a finite dimensional sub-
space of L2Γ (E|Ω) , the space of square-integrable sections of E on Ω⊂⊂ M .
Then, there exists a (non-zero) section ξ̄ ∈ T such that, for any p > 0,

(2.1) (dimT )min(1,p)

∫
Ω

∣∣ξ̄∣∣2p ≤ vol (Ω) min
{
l, dimT

}min(1,p)
sup

Ω

∣∣ξ̄∣∣2p
,

Proof. The original version was stated for p = 1. To deduce the validity
of (2.1) simply note that, if p > 1, then

dimT

∫
Ω

∣∣ξ̄∣∣2p
= dimT

∫
Ω

∣∣ξ̄∣∣2(p−1) ∣∣ξ̄∣∣2
≤
(

dimT

∫
Ω

∣∣ξ̄∣∣2) sup
Ω

∣∣ξ̄∣∣2(p−1)

≤
{
vol (Ω) min (l, dimT ) sup

Ω

∣∣ξ̄∣∣2} sup
Ω

∣∣ξ̄∣∣2(p−1)
.

On the other hand, if p < 1, we can use Hölder inequality to obtain

dimT

∫
Ω

∣∣ξ̄∣∣2p ≤ dimT

(∫
Ω

∣∣ξ̄∣∣2)p

vol (Ω)1−p

= (dimT )1−p

(
dimT

∫
Ω

∣∣ξ̄∣∣2)p

vol (Ω)1−p

≤ (dimT )1−p

(
vol (Ω) min {l, dimT } sup

Ω

∣∣ξ̄∣∣2)p

vol (Ω)1−p

which implies

(dimT )p

∫
Ω

∣∣ξ̄∣∣2p ≤ vol (Ω) min {l, dimT }p sup
Ω

∣∣ξ̄∣∣2p
. �

In view of Peter Li’s lemma, the strategy of the proof consists of showing
that there are a geodesic ball BR̄ ⊂M and a constant C > 0, such that the
following a-priori local estimate holds true

(2.2) sup
BR̄

|ξ|2p ≤ C

∫
BR̄

|ξ|2p

for every ξ ∈ V . This is obtained in Lemma 2.7 below combining two main
ingredients: the annuli-estimate technique contained in [13], [14] and a local,
weak Harnack inequality for solutions of (1.2), see Proposition 2.4 below.
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Our technique, in the spirit of [19], is based on the interaction of the
two differential inequalities (1.2) and (1.3) and represents the crucial step
towards the extension of the result to situations where a refined Kato in-
equality does not hold (see Remark 1.3 above).

The following Caccioppoli type inequality will play an important rôle.

Lemma 2.2. Let (M, 〈, 〉) be a Riemannian manifold and Ω ⊂⊂ M any
relatively compact domain. Let 0 < w ∈ C0

(
Ω̄
)

and v ∈ Liploc (Ω) satisfy
the differential inequality

(2.3) vdiv (w∇v) ≥ 0

weakly on Ω. Then, for any fixed q ≥ 0,

(2.4) Dq

∫
Ω

w|v|q |∇v|2 η2 ≤
∫

Ω

w|v|q+2 |∇η|2 , ∀η ∈ C∞
0 (Ω)

where

Dq =
(1 + q)2

4
.

Proof. We assume that v > 0. The general case can be handled using the

function vδ = (v2 + δ2)
1/2

and letting δ → 0+ (see [19]).
Inequality (2.3) means that, for each 0 ≤ ρ ∈ Lip0 (Ω) ,

−
∫ 〈

w∇v,∇ (vρ)
〉

= −
∫
wρ
∣∣∇v∣∣2 − ∫ wv

〈∇v,∇ρ〉 ≥ 0.

Choosing
ρ = vqη2

with η ∈ C∞
0 (Ω) and using the Schwarz and Young inequalities we get

0 ≥
∫
wvqη2 |∇v|2 +

∫
qwvqη2 |∇v|2 +

∫
2wvq+1η

〈∇v,∇η〉
≥ (1 + q)

∫
wvqη2 |∇v|2 − 2

∫
wvq+1 |η| |∇η| |∇v|

= (1 + q)

∫
wvqη2 |∇v|2 − 2

∫
w

1
2 v

q
2 |η| |∇v|
ε

· εw 1
2 v

q
2
+1 |∇η|

≥ (1 + q − ε−2
) ∫

wvqη2 |∇v|2 − ε2

∫
wvq+2 |∇η|2 .

The required conclusion now follows optimizing with respect to ε. �
We note that (2.4) implies the usual L2-Caccioppoli inequality

infΩw

4 supΩw

∫
Ω

|∇v|2 η2 ≤
∫

Ω

v2 |∇η|2 , ∀η ∈ C∞
0 (Ω)
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It is known that once we have both a Caccioppoli and a Sobolev type
inequality, the Moser iteration procedure gives the validity of a weak Har-
nack inequality (see e.g. [20, pp. 486-487]). Since, locally, an L2-Sobolev
inequality is always available, from Lemma 2.2 we deduce the following

Corollary 2.3. Let BR+1 (o) be a relatively compact geodesic ball in a Rie-
mannian manifold (M, 〈, 〉) of dimension m ≥ 2, and let w be a positive con-
tinuous function. Then, for any fixed 0 < δ < 1 there exists a constant C > 0
depending only on w|B̄R+1(o)

, R, δ and the geometry of BR+1 (o) such that

(2.5) sup
BR(o)

v2 ≤ C

∫
BR+δ(o)

v2

for every non-negative function v ∈ Liploc (BR+1 (o)) satisfying,

vdiv
(
w∇v) ≥ 0

weakly on BR+1 (o) .

Our next step is to obtain the validity of an L2p-version of (2.5) for
non-negative, weak solutions of differential inequalities of type (1.2).

Proposition 2.4. Let BR+1 (o) be a relatively compact geodesic ball in a
Riemannian manifold (M, 〈, 〉) of dimension m ≥ 2. Let

(2.6) a (x) ∈ C0
(
BR+2 (o)

)
, A ∈ R

and

(2.7) p ≥ A+ 1, p > 0

Then, there exists a constant C > 0 depending on the above data and the
geometry of BR+1 (o), such that

(2.8) sup
BR(o)

u2p ≤ C

∫
BR+1(o)

u2p

for every non-negative, locally Lipschitz, weak solution u of

(2.9) u
(
∆u+ a (x) u

)
+ A

∣∣∇u∣∣2 ≥ 0.

Proof. We shall show that, for every x ∈ B̄R (o), there exists 0 < ε << 1
and a constant C ′ > 0 independent of u such that

(2.10) sup
Bε(x)

u2p ≤ C ′
∫

B2ε(x)

u2p.

Since B̄R (o) is compact, the desired inequality (2.8) will follow from (2.10)
using a covering argument.
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Let us consider the Schrödinger operator

L = −∆ − pa (x)

on L2 (B3ε (x)) . Since the first Dirichlet eigenvalue λ−∆
1 (Br (x)) of −∆ on

L2 (Br (x)) growths like r−2 as r → 0+, we can choose ε > 0 so small that

λL1
(
B3ε (x)

)
> 0.

Let w be the corresponding, positive, first eigenfunction, i.e., a solution of
the eigenvalue problem

(2.11)

⎧⎨⎩
∆w + pa (x)w = −λL1 (Bε+2 (x))w ≤ 0 on B3ε (x)
w > 0 on B3ε (x)
w ≡ 0 on ∂B3ε (x) .

The regularity theory for elliptic equations implies that w ∈ C1 (B3ε (x)).
Combining u and w, we define a new function

v = w−1up.

Arguing as in the proof of [19], Thoerem 1.4, a computation that uses (2.11),
(2.9), (2.6) and (2.7) and the results in the Appendix, shows that

vdiv
(
w2∇v) ≥ 0

weakly on B3ε (x). Therefore Corollary 2.3 applies and we have

sup
Bε(x)

v2 ≤ C

∫
B2ε(x)

v2,

for some constant C > 0 depending on w|B̄2ε(x) and the geometry of B2ε (x) .
Whence, the validity of (2.10) with

C ′ =

(
supB2ε

w

infBε w

)2

C. �

In order to obtain the integral estimate (2.2) above, we shall use a lo-
cal Poincaré inequality on annuli for functions which vanish only on the
interior boundary component. Although the result is well known, we take
the opportunity to give an elementary nonlinear proof of the inequality in
the form we are going to use. In Euclidean setting, more general and so-
phisticated forms of these type of inequalities can be found is some papers
by L. Hedberg. In particular, we refer the interested reader to Lemma 2.1
in [9] and Theorem 4.1 in [10].
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Proposition 2.5. Let BR̄ (o) be a relatively compact geodesic ball in the
Riemannian manifold (M, 〈, 〉). Assume that

MRicci ≥ − (m− 1) k on BR̄ (o)

for some k ≥ 0. Having fixed q > 1 and 0 < R1 < R2 < R̄, there exists a
constant

C = q (R2 − R1)

(
sinh

(√
kR2

)
sinh

(√
kR1

))m−1
q−1

such that

C−q

∫
BR2

\BR1

|u|q ≤
∫

BR2
\BR1

|∇u|q

for every u ∈ C0
(
BR2 \BR1

) ∩W 1,q
(
BR2 \BR1

)
satisfying

u = 0 on ∂BR1 .

The proof of the Theorem is based on the the next (non-linear) lemma.
For the sake of completeness we recall that, for any p > 1, the p-Laplacian
of a function u ∈W 1,p

loc is defined by the expression

∆pu = div
(|∇u|p−2 ∇u)

where the divergence has to be understood in the weak sense.

Lemma 2.6. Let Ωi, i = 1, 2, be open relatively compact domains in M with
Ω1 ⊂ Ω2 and let A be the annular domain Ω2 \ Ω1 with compact boundary
∂Ω1 ∪ ∂Ω2. Let q > 1 and 0 ≤ φ ∈ Lip

(
Ā
)

be a non-null solution of the
problem

(2.12)

{
∆qφ ≥ 0 weakly on A

φ = 0 on ∂Ω2.

Suppose also that

(2.13) |∇φ| > 0 on Ā.

Then, there exists an explicit constant

C =
infĀ |∇φ|q
qq supĀ φ

q
> 0

such that

(2.14) C

∫
A

|u|q ≤
∫

A

|∇u|q

for every u ∈ C0
(
A
) ∩W 1,q (A) satisfying

(2.15) u = 0 on ∂Ω1.
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Proof. By assumption,

(2.16) −
∫

A

〈 |∇φ|q−2 ∇φ,∇ρ〉 ≥ 0,

for every 0≤ρ ∈ C∞
0 (A). As a matter of fact, since φ∈Lip (Ā) ⊂W 1,q (A) ,

we have the validity of (2.16) for every 0 ≤ ρ ∈ W 1,q
0 (A) . Note that φ |u|q ∈

W 1,q
0 (A). Indeed φ |u|q lies in W 1,q (A) and vanishes continuously on ∂A.

Therefore, we can use ρ=φ |u|q in (2.16). Using Schwarz and Hölder inequal-
ities we get

0 ≤ −
∫

A

〈 |∇φ|q−2 ∇φ,∇ (φ |u|q) 〉(2.17)

= −
∫

A

|∇φ|q |u|q −
∫

A

q |u|q−1 φ |∇φ|q−2 〈∇φ,∇ |u| 〉
≤ −

∫
A

|∇φ|q |u|q + q

∫
A

φ |u|q−1
∣∣∇ |u| ∣∣∣∣∇φ∣∣q−1

≤ −
∫

A

|u|q |∇φ|q + q

(∫
A

φq |∇u|q
)1/q (∫

A

|u|q |∇φ|q
)(q−1)/q

proving the Caccioppoli type inequality

(2.18)

∫
A

uq |∇φ|q ≤ qq

∫
A

φq |∇u|q .
Whence, we conclude the validity of (2.14). �
Proof (of Theorem 2.5). We simply have to choose the test function φ in
Lemma 2.6. One observes that, in case of model manifolds, the q-equilibrium
potential of the condenser E =

(
BR2 , BR1

)
is suitable for the purpose. Thus,

the general case can be obtained by a model-comparison argument. More
precisely, up to renormalizing the metric, we can suppose k = 1. Set r (x) =
distM (x, o) and define

φ (r (x)) =

∫ R2

r(x)

dt

sinh (t)
m−1
q−1

Then φ ≥ 0, φ = 0 on ∂BR2 , φ > 0 on ∂BR1 and

|∇φ| (x) = sinh
(
r (x)

) 1−m
q−1 > 0 on BR2 \BR1 .

Moreover , since φ′ ≤ 0, using the Laplacian comparison theorem, we obtain,
pointwise outside of cut (o),

∆qφ = (q − 1) (−φ′)q−2
φ′′ − (−φ′)q−1

∆r

≥ (q − 1) (−φ′)q−2
φ′′ − (−φ′)q−1

(m− 1) coth r = 0.

As usual, this latter extends weakly on all of the annulus. Therefore,
Lemma 2.6 applies and the desired inequality follows. �



108 S. Pigola, M. Rigoli and A. G. Setti

Here is the local a-priori estimate alluded to above.

Lemma 2.7. Keeping notation and assumptions of Theorem 1.1, having
fixed an origin o ∈ M , there exist R̄ > 0 and a constant C > 0 depending
on p, H and the geometry of BR̄ (o) such that

(2.19) sup
BR̄(o)

u2p ≤ C

∫
BR̄(o)

u2p

for every u = |ξ| , ξ ∈ V .

Proof. From now on, we assume that all the geodesic balls under consider-
ation are centered at the point o ∈ M and so, to simplify the notation, we
omit it from the writing.

We choose R0 > 0 so large that K ⊂ BR0 . We shall show that (2.19) is
met with R̄ = R0 +1. To this end, let us note that by Proposition 2.4 there
exists a constant D > 0 independent of u such that

sup
BR0+1

u2p ≤ D

∫
BR0+2

u2p = D

(∫
BR0+2\BR0+1

+

∫
BR0+1

)
u2p.

The goal is to prove that

(2.20)

∫
BR0+2\BR0+1

u2p ≤ E

∫
BR0+1

u2p

for some constant E > 0 independent of u.
We set

α =
p

H

and consider the function

v = ϕ−αup on M \BR0 .

As in the proof of Proposition 2.4, a direct computation which uses the
results of the Appendix shows that

(2.21) vdiv
(
ϕ2α∇v) ≥ 0

weakly on M \BR0 . Moreover, since∫
BR0+2\BR0+1

u2p =

∫
BR0+2\BR0+1

ϕ2α
(
ϕ−αup

)2
≤
(

sup
BR0+2\BR0+1

ϕ2α

)∫
BR0+2\BR0+1

v2
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the desired inequality (2.20) will follow once we prove that

(2.22)

∫
BR0+2\BR0+1

v2 ≤ E

∫
BR0+1

u2p.

Towards this aim, we consider the family of compactly supported, Lipschitz
functions {φk} defined by

φk (x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 on BR0

r (x) −R0 on BR0+1 \BR0

1 on BR0+2 \BR0+1

Rk − r (x)

Rk − R0 − 2
on BRk

\BR0+2

0 on M \BRk
.

Furthermore, we set

φ∞ =

⎧⎨⎩
0 on BR0

r (x) − R0 on BR0+1 \BR0

1 on M \BR0+1 .

According to (2.21) we can apply Lemma 2.2 with q = 0 to obtain

D0

∫
BR0+2\BR0

φ2
∞ |∇v|2

≤ D0 sup
BR0+2\BR0

ϕ−2α

∫
BR0+2\BR0

ϕ2αφ2
∞ |∇v|2

≤ D0 sup
BR0+2\BR0

ϕ−2α

∫
M\BR0

ϕ2αφ2
k |∇v|2

≤ sup
BR0+2\BR0

ϕ−2α

∫
M\BR0

ϕ2αv2 |∇φk|2

≤ sup
BR0+2\BR0

ϕ−2α

{∫
BR0+1\BR0

ϕ2αv2 +

∫
BRk

\BR0+2

ϕ2αv2 |∇φk|2
}

≤ sup
BR0+2\BR0

ϕ−2α

{∫
BR0+1\BR0

u2p + 1
(Rk−R0−2)2

∫
BRk\BR0

u2p

}
.

Letting k → +∞ we deduce

(2.23)

∫
BR0+2\BR0

φ2
∞ |∇v|2 ≤ D̃

∫
BR0+1\BR0

u2p
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where we have set

D̃ =
1

D0 supBR0+2\BR0
ϕ−2α

> 0.

On the other hand, applying Proposition 2.5 with q = 2 to the function φ∞v,
and using the Schwarz and Young inequalities, we get

C1

∫
BR0+2\BR0

φ2
∞v

2 ≤

≤
∫

BR0+2\BR0

|∇ (φ∞v)|2

=

∫
BR0+2\BR0

φ2
∞ |∇v|2 + v2 |∇φ∞|2 + 2vφ 〈∇v,∇φ∞〉

≤
∫

BR0+2\BR0

2φ2
∞ |∇u|2 + 2v2 |∇φ∞|2

≤ 2

∫
BR0+2\BR0

φ2
∞ |∇v|2 + 2

∫
BR0+1\BR0

v2

≤ 2

∫
BR0+2\BR0

φ2
∞ |∇v|2 + 2 sup

BR0+1\BR0

ϕ−2α

∫
BR0+1\BR0

u2p,

whence, using (2.23), we conclude

C1

∫
BR0+2\BR0+1

v2 ≤ C1

∫
BR0+2\BR0

φ2
∞v

2

≤ 2

(
D̃ + sup

BR0+1\BR0

ϕ−2α

)∫
BR0+1\BR0

u2p

≤ 2

(
D̃ + sup

BR0+1\BR0

ϕ−2α

)∫
BR0+1

u2p,

as required to prove (2.22). �
We are now in the position to prove Theorem 1.1.

Proof (of Theorem 1.1). Let BR̄ ⊂ M and C > 0 be as in Lemma 2.7.
From the unique continuation property we have that the restriction map

ξ �−→ ξ|BR̄

defines an injective homomorphism of V into L2Γ (E|BR̄), the space of
square-integrable sections of E on BR̄.
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Let T be any finite dimensional subspace of V. We have to prove that
t = dimT is bounded from above by an absolute constant. To this end we
apply Peter Li’s Lemma to deduce that there exists ξ̄ ∈ T such that

tmin(1,p)

∫
BR̄

∣∣ξ̄∣∣2p ≤ vol (BR̄) min {l, t}min(1,p) sup
BR̄

∣∣ξ̄∣∣2p
.

On the other hand, using u =
∣∣ξ̄∣∣ in (2.19) of Lemma 3 we see that

sup
BR̄

∣∣ξ̄∣∣2p ≤ C

∫
BR̄

∣∣ξ̄∣∣2p
.

As a consequence

tmin(1,p) ≤ vol (BR̄) min {l, t}min(1,p)C

which in turn implies

t = dimT ≤ lmax
{
C

1
min(1,p)vol (BR̄)

1
min(1,p) , 1

}
.

�

3. Appendix

This section gives the technical support for the distributional computations
needed in the proofs of Proposition 2.4 and Lemma 2.7. First, we present a
regularity result.

Lemma 3.1. Let a (x) ∈ L∞
loc (M) and A ∈ R. Let ψ ∈ Liploc (M) be a weak

solution of
ψ∆ψ + a (x)ψ2 + A |∇ψ|2 ≥ 0 on M.

Then

(3.1) |ψ|p−1ψ ∈W 1,2
loc (M)

provided ⎧⎨⎩
p ≥ 1 if A ≥ 1

p > max

{
0, A+1

2

}
if A < 1

and, furthermore,

(3.2) ∇
((
ψ2 + ε

)(p−1)/2
ψ
)

L2

⇀ ∇ (|ψ|p−1ψ
)

as ε → 0+
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Proof. We suppose A < 1 and p < 1, which is the delicate case. Consider

the family of functions
(
ψ2 + ε

)(p−1)/2
ψ and note that, as ε→ 0+(

ψ2 + ε
)(p−1)/2

ψ → |ψ|p−1ψ in L2
loc

We are going to use the fact that if a sequence {fn} is uniformly bounded
in W 1,2

loc and converges to f strongly in L2
loc, then the limit function f is in

W 1,2
loc and ∇fn converges to ∇f weakly in L2

loc (see [4, Lemma 6.2, page 16]).
Since ∣∣∇((ψ2 + ε)(p−1)/2ψ

)∣∣ =
(
ψ2 + ε

)(p−1)/2 pψ2 + ε

ψ2 + ε

∣∣∇ψ∣∣
≤ (ψ2 + ε

)(p−1)/2∣∣∇ψ∣∣
it suffices to show that the right hand side is uniformly bounded in L2

loc as
ε→ 0 + .

By assumption, for any 0 ≤ ρ ∈ Lipc (M) , we have

−
∫ 〈∇ψ,∇ (ρψ)

〉 ≥ −
∫
a (x)ψ2ρ−A

∫
|∇ψ|2 ρ,

that is,

(3.3) −
∫
ψ
〈∇ψ,∇ρ〉 ≥ −

∫
a (x)ψ2ρ+ (−A+ 1)

∫
|∇ψ|2 ρ.

Fix ε > 0 and choose
ρ =

(
ψ2 + ε

)p−1
φ2

where 0 ≤ φ ∈ C∞
c (M) . Then,

∇ρ = 2(p− 1)φ2
(
ψ2 + ε

)p−2
ψ∇ψ + 2φ

(
ψ2 + ε

)p−1∇φ,

so that, using the Cauchy-Schwarz and Young inequalities and the fact that
p− 1 < 0, we estimate

LHS of (3.3)

= −2

∫
φ
(
ψ2 + ε

)p−1
ψ〈∇ψ,∇φ〉 − 2 (p− 1)

∫
φ2
(
ψ2 + ε

)p−2
ψ2|∇ψ|2

≤ 2

∫
φ
(
ψ2 + ε

)p−1/2|∇ψ| |∇φ| − 2 (p− 1)

∫
φ2
(
ψ2 + ε

)p−1|∇ψ|2

≤ 4

η

∫ (
ψ2 + ε

)p|∇φ|2 − (2p− 2 − η)

∫
φ2
(
ψ2 + ε

)p−1|∇ψ|2.
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Moreover

RHS of (3.3)

= −
∫
a(x)ψ2

(
ψ2 + ε

)p−1
φ2 + (−A+ 1)

∫
φ2
(
ψ2 + ε

)p−1|∇ψ|2

≥ −
∫

|a(x)|(ψ2 + ε
)p
φ2 + (−A + 1)

∫
φ2
(
ψ2 + ε

)p−1|∇ψ|2,

for η > 0. Combining the two inequalities and rearranging we obtain

(2p−A− 1 − η)

∫
φ2
(
ψ2 + ε

)p−1|∇ψ|2

≤ 4

η

∫ (
ψ2 + ε

)p|∇φ|2 +

∫ ∣∣a(x)∣∣(ψ2 + ε
)p
φ2.

≤
∫

max
{
1, |ψ|2p

}(4

η
|∇φ|2 + |a(x)|φ2

)
.

Since 2p− A− 1 > 0, we may choose η > 0 small enough that (2p− A− 1
−η) > 0, and conclude that the left hand side is uniformly bounded as
ε→ 0+, as required to conclude. �

Next we prove that, in the above assumptions, one can use the ordinary
chain rule to compute the weak gradient of ψp even if p < 1. Note that, in
this situation, the function x �−→ xp is not Lipschitz so that standard results
in the literature do not apply directly.

Lemma 3.2. Let 0 < δ (< 1) and assume that 0 ≤ ψ ∈ Liploc (M) satisfies
(3.1) and (3.2), for every δ < p. Then

(3.4)
∇ψ
ψ1−p

∈ L2
loc (M)

and

(3.5) ∇ (ψp) = p
∇ψ
ψ1−p

, a.e. on M,

the LHS of this latter being understood in the sense of distribution.

Proof. Let δ < p′ (< 1) be any real number, and Ω ⊂⊂ M a fixed domain.
Using ψ ∈ Lip (Ω) as a test function in (3.2) we have∫

Ω

〈
p′ (ψ + ε)p′−1 ∇ψ,∇ψ

〉
→
∫

Ω

〈
∇
(
ψp′
)
,∇ψ

〉
, as ε ↘ 0.
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On the other hand, by monotone convergence,∫
Ω

〈
p′ (ψ + ε)p′−1 ∇ψ,∇ψ

〉
↗
∫

Ω

p′
|∇ψ|2
ψ1−p′ , as ε↘ 0

proving that ∫
Ω

p′
|∇ψ|2
ψ1−p′ =

∫
Ω

〈
∇
(
ψp′
)
,∇ψ

〉
< +∞.

Therefore ∇ψ
ψ

1−p′
2

∈ L2 (Ω) .

We now use this function in (3.2) to get, as above,

∇ψ
ψ

3(1−p′)
4

∈ L2 (Ω) .

Iterating this procedure n-times finally gives

(3.6)
∇ψ

ψ(1−p′) 2n−1
2n

∈ L2 (Ω)

which readily implies the validity of (3.4). Indeed, having fixed δ < p (< 1)
we can choose p′ ∈ (δ, p) and n ∈ N sufficiently large so that

1 − p = (1 − p′)
2n − 1

2n
.

Then, according to (3.6),

∇ψ
ψ1−p

=
∇ψ

ψ(1−p′) 2n−1
2n

∈ L2 (Ω)

as desired.
Finally, to conclude the validity of (3.5), we observe that (3.4) enable us

to apply the dominated convergence theorem in (3.2). �
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