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Abstract

We prove Serre’s conjecture for the case of Galois representations
of Serre’s weight 2 and level 1. We do this by combining the poten-
tial modularity results of Taylor and lowering the level for Hilbert
modular forms with a Galois descent argument, properties of univer-
sal deformation rings, and the non-existence of p-adic Barsotti-Tate
conductor 1 Galois representations proved in [6].

1. Introduction

In this article we prove the non-existence of odd, two-dimensional, irre-
ducible representations of the absolute Galois group of Q with values in a
finite field of odd characteristic p, in the case of Serre’s weight 2 and level
(conductor) 1.

Equivalently, we prove modularity of such representations, thus solving
Serre’s conjecture (cf. [15]) for them; non-existence follows from the fact
that S2(1) = {0}.

We will prove the result for p > 3, the case of p = 3 was solved by Serre
(cf. [16, pag. 710]), based on a previous analogous non-existence result of
Tate for the case p = 2 (cf. [18]). In fact, in our proof we will at some step
need the validity of the result for p = 3: it is used to prove the modularity
of certain compatible family of λ-adic conductor 1 representations (cf. [6]).
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Before going on, let us recall to the reader the general statement of
Serre’s conjecture (cf. [15]). Perhaps a good starting point is Deligne’s
proof of the existence of compatible families of λ-adic Galois representations
attached to classical modular forms of arbitrary level and weight (cf. [3]),
whose corresponding residual representations are precisely the kind of Ga-
lois representations we are interested in: odd, two-dimensional, with values
on a finite field and, for almost every prime, irreducible. The idea of Serre,
which appears first in print in his 1987 celebrated paper [15], is that a
converse result should be true, namely, every such two-dimensional Galois
representation, with values on a finite field, should come from a classical
modular form in the sense that the representation should be attached to it
via Deligne’s construction. This is known as the “weak version” of Serre’s
conjecture. He gives also a more precise version of the conjecture, known as
the “strong version”, which specifies that a couple of Galois-theoretic invari-
ants of a given Galois representation known as the Serre’s level and Serre’s
weight should agree with the level and weight of at least one of the modular
forms corresponding to this representation (cf. [15]). The recipes for the
predicted level and weight are clearly influenced by several ideas that were
emerging at that moment, for example, by Frey’s strategy regarding mod-
ularity of elliptic curves and Fermat’s Last Theorem (as for the level) and
by Fontaine-Laffaille’s description of residual inertial weights of crystalline
representations of small weight and Fontaine-Messing’s comparison theorem
between étale and crystalline cohomologies (as for the weight). Serre’s es-
sential contribution is to synthesize all this information and make it part
of his previously vaguer ideas regarding modularity, thus providing a more
precise and much more useful conjecture. It should be emphasized that in
some sense by making such an effort in giving us such a precise conjecture
Serre was making an important contribution to its solution.

The first spectacular result in connection to Serre’s conjecture was the
proof that the strong version is equivalent to the weak version. The proof of
this result in full generality follows from the work of many people, the most
important contributions being the control of the weight obtained by Edix-
hoven (see [7]) and the results of level-lowering of Ribet (cf. [12]). It should
be stressed that due to this result of Ribet the proof of Fermat’s Last The-
orem was reduced to the proof of the semistable case of the Taniyama-
Shimura-Weil conjecture (in agreement with Frey’s strategy), later proved
by Wiles in [23].

In this paper, when proving the first cases of Serre’s conjecture, we will
prove directly the strong version, in fact this is inherent to our method.
Nevertheless, one of the tools that we will use is a generalization of Ribet’s
level-lowering result to the case of Hilbert modular forms. The only cases
of Serre’s conjecture that were proved previous to our work are the cases
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already mentioned of Serre’s level 1 in characteristic 2 and 3 proved by Tate
and Serre. A similar result was also proved for p = 5 in [2], assuming the
Generalized Riemann Hypothesis.

Results similar to ours have been obtained independently and in the same
period of time by Khare and Wintenberger (cf. [10]).

What follows is a description of the strategy of our proof: given a
residual conductor 1 representation ρ̂ of Serre’s weight 2, we use results
of Ramakrishna to construct a p-adic representation ρ deforming ρ̂ which
is Barsotti-Tate at p and semistable at its finite set of ramifying primes.
Then, the potential modularity results of Taylor imply that this represen-
tation when restricted to some totally real number field F agrees with a
representation attached to a Hilbert modular form over F . Over F , we ap-
ply the “lowering the level” results of Jarvis, Rajaei and Fujiwara to obtain
a conductor 1 modular p-adic deformation of the restriction to F of ρ̂. Using
a Galois descent argument and properties of universal deformation rings, we
will see that among these conductor 1 modular p-adic representations there
is at least one that can be extended to a conductor 1 Barsotti-Tate p-adic
deformation µ of ρ̂. As we will see in section 3, this is an automatic conse-
quence of our Galois descent argument and a result of Boeckle. The entire
process can be described as “lowering the conductor” of potentially modular
Galois representations.

To conclude the proof, we recall that in a previous article (see [6]) we
have shown modularity, and therefore non-existence, of such p-adic repre-
sentations, a result that was predicted by the Fontaine-Mazur conjecture.
For the reader’s convenience, we recall the main ingredients in the proof of
that result (cf. [6]): using potential modularity, one can build a compat-
ible family of Barsotti-Tate conductor 1 representations containing µ, and
looking at a prime above 3 we derive modularity of this family from the
following two facts: the residual mod 3 representation must be reducible, as
follows from the result of Serre for p = 3 alluded above, and then a result
of Skinner and Wiles (the main result of [17]) gives modularity of one, thus
all, the representations in the family.

We stress that the main new idea introduced in this article is the use of
potential modularity to obtain from lowering the level of Hilbert modular
forms the existence of “minimal p-adic deformations” of certain residual
Galois representations. This reduces the problem of proving cases of Serre’s
conjecture with small ramification to proving modularity of p-adic Galois
representations of small ramification. The advantage is that in the p-adic
case one can use the “existence of families” result proved in [6] which, in the
case of conductor 1 or in more general cases, can be used to switch to a
small prime and deduce modularity there.
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Remark: Except for section 3, the results in this article appeared already
in a preliminary version written in March 2004 (the Galois descent argument
proposed in that version was incomplete, as remarked by Kevin Buzzard in
May 2004).

Finally, the argument presented in section 3 to complete the proof using
good properties of universal deformation rings dates from September 2004
(first the proof was thought to be “conditional to a proof that the ring R
is not too small” because the results of Boeckle were not yet known to the
author).

Acknowledgements: I want to thank Xavier Xarles, Jorge Jiménez, Joan-
Carles Lario, René Schoof, Santiago Zarzuela, Nuria Vila, and specially
Kevin Buzzard for several useful conversations. Thanks are also due to
Jean-Pierre Serre for some comments on an earlier version of the preprint.
I would also like to thank J.-F. Boutot, J. Tilouine and J.-P. Wintenberger,
organizers of the conference “Galois Representations” held at Strasbourg
on July 2005, and J. Porras, I. Fesenko and the other organizers of the
“International Conference on Arithmetic Geometry and Number Theory”
held at the Euler Institute in Saint Petersburg on June 2005, for inviting
me to present these results in these conferences; and also R. Schoof, K.
Ribet and M. Dimitrov for inviting me to give a talk in the Number Theory
Seminars at Rome, Berkeley and Caltech (respectively).

I also want to thank the referees for their useful comments.

2. Potential modularity, lowering the level and Galois
descent

Let p > 3 be a prime, and let ρ̂ be an odd, irreducible, two-dimensional
Galois representation with Serre’s weight 2 and level 1, with values on a finite
field Fq of characteristic p, i.e., such that the values of the representation
are 2-by-2 matrices with coefficients in Fq. The “level”, or “conductor”, is
defined as in [15] to be the prime-to-p part of the Artin conductor, see [15]
for the definition of the weight.

It is well-known that such a Galois representation has a model over its
“field of coefficients”, the field generated by the traces of all matrices in the
image, so we will assume that the field of coefficients is Fq. Observe that
since the conductor is 1 and the weight is 2, we have det(ρ̂) = χ, the mod p
cyclotomic character.

Applying the main result of [11] (see also [22] and [9] for variations of
this result) we know that there exists a Galois representation

ρ : GQ → GL2(O℘)
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deforming ρ̂, where O is the ring of integers of some number field and ℘ a
prime of O above p, such that ρ is Barsotti-Tate at p (i.e., it is crystalline
with Hodge-Tate weights 0 and 1), unramified outside p and a finite set of
primes S and semistable at every prime q ∈ S. Observe that in particular it
holds det(ρ) = χ (by abuse of notation, we denote by χ both the mod p and
the p-adic cyclotomic characters). For such a representation ρ, the results
of Taylor (cf. [21, Theorem B or Theorem 6.1], and also [20, Theorem B])
imply that there exists a totally real Galois number field F where p is totally
split such that the restriction of ρ to GF is modular, i.e., there exists h a
Hilbert cuspidal modular form over F of parallel weight 2 such that

ρ|GF
∼= ρh,℘′

for a prime ℘′ above p in the field Qh generated by the eigenvalues of h,
where ρh,℘′ denotes a representation in the family associated to h in [19].

So the restriction ρ̂|GF
has conductor 1 and it has a modular semistable

deformation corresponding to a cuspform h of parallel weight 2. Thus, we can
apply lowering the level results of Jarvis, Fujiwara and Rajaei for Hilbert
modular forms (see [8, section 1] for a description of the available lowering
the level results and section 8 for an application to a semistable case, and the
references therein) and conclude that there exists a level 1 Hilbert cuspform
h′ over F , also of parallel weight 2, such that the corresponding Galois
representation ρh′,℘′′ gives a minimally ramified deformation of ρ̂|GF

.
Thus, we have obtained a Barsotti-Tate p-adic conductor 1 deformation

of ρ̂|GF
. Observe that if E⊆F is a field with Gal(F/E) solvable, using solv-

able base change (cf. [21, Theorem 6.1]) we also have potential modularity
over E, and the above procedure gives a p-adic conductor 1 modular defor-
mation of ρ̂|GE

. In general such a field E will not be a Galois extension of Q.

Another important fact, proved by Ribet (cf. [13]) is that since ρ̂ has
weight 2 and conductor 1 its image must be “as large as possible”, more
precisely:

Image(ρ̂) ∼= {x ∈ GL2(Fq) : det(x) ∈ F∗
p}

From this we obtain that the image of the projectivization of ρ̂ is PGL2(Fq)
or PSL2(Fq).

Since ρ̂ is odd, the group PSL2(Fq) is simple and the field F is totally
real and p is totally split in F , we easily see that F is linearly disjoint from
the field fixed by the kernel of ρ̂. Therefore:

Image(ρ̂|GF
) ∼= Image(ρ̂) (∗)

In this (and any similar) situation we will say that “F is linearly disjoint
from ρ̂”.
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Let Sp be a Sylow p-subgroup of Gal(F/Q) (which may be trivial), and
E ⊆ F the corresponding fixed field.

Since Sp is solvable, as we mentioned before we can also construct over
E a conductor 1 Barsotti-Tate modular p-adic deformation of ρ̂|GE

.

Therefore, without loss of generality, we will assume that we have poten-
tial modularity, and existence of minimal p-adic deformations, over a field
such that [F : Q] is prime to p (but F may not be Galois).

Since ρ̂|GF
is absolutely irreducible, for any minimal deformation µ′ of it

that can be extended to a 2-dimensional representation of GQ, two different
extensions will differ by a twist by a character unramified outside the primes
that ramify in F , and in particular one and only one will correspond to a
deformation of ρ̂ (we are using the fact that [F : Q] is prime to p and that
the kernel of reduction is a pro-p group, which implies that the reduction
mod p of the twisting character can not be trivial).

Now, for such a minimal deformation µ′ that extends to GQ, if we call µ
the corresponding deformation of ρ̂, we can see that µ is a minimal defor-
mation: again, this follows from the fact that [F : Q] is prime to p and the
kernel of reduction is a pro-p group, because µ|GF

= µ′ has conductor 1 and
µ is a deformation of ρ̂, also of conductor 1. A similar argument also shows
that the equality (*) of residual images implies the equality of the images of
µ and µ′.

Observe finally that if µ′ is Barsotti-Tate the same also holds for µ be-
cause p is totally split in F/Q.

Let us record what we have proved in the following lemma:

Lemma 2.1. There is a one-to-one correspondence between minimally ram-
ified Barsotti-Tate deformations of ρ̂ and those minimally ramified Barsotti-
Tate deformations of ρ̂|GF

that can be extended to the full GQ. Furthermore,
for a deformation of ρ̂|GF

that can be extended, the image is not enlarged in
the descent process.

In the next section, we will conclude the proof that at least one of the
minimal modular Barsotti-Tate deformations of ρ̂|GF

that we have obtained
from lowering-the-level can be extended to GQ. This and the above lemma
give:

Conclusion: ρ̂ admits a conductor 1 Barsotti-Tate p-adic deformation
(assuming p > 3). As explained in section 1, we proved in a previous article
(cf. [6]) that such representations do not exist, by proving their modularity.
Thus, we conclude that ρ̂ can not exist. This result was proved for p = 3 by
Serre in [16, pag 710].
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Let us state our result in the following:

Theorem 2.2. For any odd prime p, an odd, irreducible, two-dimensional
Galois representation of GQ with values in a finite extension of Fp having
conductor 1 and Serre’s weight equal to 2 is modular, therefore it can not
exist.

In other words: the case k = 2 and N = 1 of Serre’s conjecture is true.

3. Minimal universal deformations and their properties

Let us call R the universal deformation ring of minimally ramified (Barsotti-
Tate at p) deformations of ρ̂, and let R′ denote a similar minimal universal
deformation ring, but of ρ̂|GF

.
Let W be the Witt ring of Fq. We know from the results of Taylor that R′

is a complete intersection ring and it is finite flat over W .
We will also need the following result of Boeckle (see [1, corollary 1],

and [11]):

Proposition 3.1. R is an W -algebra of the type:

W [[X1, ....Xr]]/(f1, ...., fs)

with r ≥ s.

Now, let us explain why this finer information on minimal deformation
rings is enough to conclude that in the complete intersection ring R′ there
is at least one p-adic deformation that can be extended to GQ.

This is straightforward because, since R′ is finite flat complete intersec-
tion, if we assume that none of the minimal p-adic deformations of ρ̂|GF

descends to GQ, using the correspondence in lemma 2.1 we would conclude
that R is too small (has Krull dimension 0) to match with the lower bound
given by proposition 3.1.

This concludes the proof that some of the minimal modular p-adic de-
formations above does descend, so by lemma 2.1 existence of minimal p-adic
deformations, and thus Serre’s conjecture in the level 1 weight 2 case, follow.

Remark: We know by lemma 2.1 that the coefficient ring of a deformation
of ρ̂|GF

that descends to GQ is not increased in the descent (recall that this
uses Ribet’s results, only valid in the semistable weight 2 case).

From this, it easily follows from the universal property defining R′ that,
in fact, R is a quotient of R′. Thus, R is finite, and this gives another proof
of existence of minimal deformations, as proved in [1, lemma 2].
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4. Two Applications

In the study of the images of certain 4-dimensional symplectic families of
Galois representations, theorem 2.2 has important consequences.

For the case of level 1 genus 2 Siegel cuspforms, the stronger version
of the result of determination of the images in [4] was conditional to the
validity of Serre’s conjecture precisely in the level 1 weight 2 case. Thus,
this result holds now unconditionally, and one can compute the images of
the Galois representations attached to level 1 Siegel cuspforms in any given
example.

In a similar way, the determination of the images of the Galois repre-
sentations attached to abelian surfaces with End(A) = Z was done in an
effective way in [5], under the assumption of the truth of Serre’s conjecture.

In the case of abelian surfaces of prime conductor (there are examples
constructed by Brumer and Kramer of such surfaces), it is enough to apply
the case of Serre’s conjecture proved in theorem 2.2 to determine the images
unconditionally. This is due to the fact that the only case of non-maximal
image requiring the validity of Serre’s conjecture (cf. [5]) was the case of
a residually reducible representation with two two-dimensional irreducible
components, both of Serre’s weight 2: if the surface has prime conductor,
one of this two-dimensional components should have conductor 1, thus con-
tradicting our theorem.

5. Final Comments

If we take an odd, irreducible, two-dimensional Galois representation, with
values in a finite field of odd characteristic p, ramified at a finite set of
primes S and semistable (in the sense of [13]), using the ideas described in
this article (assuming p > 3) one can construct a “minimally ramified” p-adic
deformation, i.e., a deformation ramifying only at p and S, also semistable at
every prime in S. In particular, this result allows to “lower the conductor”
of a semistable potentially modular representation ρ, i.e., if the conductor
c of the residual representation ρ̄ is a strict divisor of the conductor of ρ,
there exists a semistable representation ρ0 of conductor c deforming ρ̄.

One can generalize the results in this paper, and the results in [6] of
non-existence of p-adic representations, to prove in a similar way Serre’s
conjecture in the case of Serre’s weight k = 2 and small level (conductor) N ,
with N squarefree and prime to 3: for the non-existence result in [6] to hold
the value of the conductor must be small enough so that the result of Serre of
non-existence of irreducible odd two-dimensional Galois representations with
values in a finite extension of F3 and conductor 1 extends to conductor N .
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This extension is known to hold for example for N = 2 and N = 7 (cf. [14]).
Therefore, the cases of weight 2 and level (conductor) 1, 2 and 7 of Serre’s
conjecture are true.1
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