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Convergents and irrationality
measures of logarithms

Tanguy Rivoal

Abstract
We prove new irrationality measures with restricted denomina-

tors of the form ds�νm�B
m (where B,m ∈ N, ν > 0, s ∈ {0, 1} and

dm = lcm{1, 2, . . . ,m}) for values of the logarithm at certain rational
numbers r > 0. In particular, we show that such an irrationality mea-
sure of log(r) is arbitrarily close to 1 provided r is sufficiently close
to 1. This implies certain results on the number of non-zero digits in
the b–ary expansion of log(r) and on the structure of the denomina-
tors of convergents of log(r). No simple method for calculating the
latter is known. For example, we show that, given integers a, c ≥ 1,
for all large enough b, n, the denominator qn of the n–th convergent
of log(1 ± a/b) cannot be written under the form ds�νm�(bc)

m: this is
true for a = c = 1, b ≥ 12 when s = 0, resp. b ≥ 2 when s = 1 and
ν = 1. Our method rests on a detailed diophantine analysis of the
upper Padé table ([p/q])p≥q≥0 of the function log(1 − x). Finally, we
remark that worse results (of this form) are currently provable for the
exponential function, despite the fact that the complete Padé table
([p/q])p,q≥0 of exp(x) and the convergents of exp(1/b), for |b| ≥ 1, are
well-known, for example.

1. Introduction and statement of the results

In this article, we address the following question, amongst others: given
a rational r > 0, r �= 1 and an integer b ≥ 2, what bound can be put on
λ(b, r) > 0, defined as the infimum of the positive λ such that, for all integers
u and m�b,r,λ 1, we have

(1.1)
∣∣∣log(r) − u

bm

∣∣∣ ≥ 1

bλm
.
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proximants of the logarithm.



932 T. Rivoal

Such an irrationality measure with restricted denominators is not only
interesting for itself but it is also useful for studying normality or, less ambi-
tiously and more pragmatically, bounding the counting function of non-zero
digits in the b–ary expansion

∑∞
j=−k dj(α)/bj (with dj(α) ∈ {0, 1, . . . , b−1})

of an irrational number α, such as log(r). If we denote by (un/b
n)n the se-

quence of rational approximations to α deduced from the b–ary expansion
of α, then we have |bnα− un| ≤ 1, which implies that λ(b, r) ≥ 1.

If α is absolutely normal, as log(r) is believed to be, then there even
exists an unbounded function ϕα(n) such that |bnα−un| ≤ b−ϕα(n), because
there are infinitely many arbitrarily long sequences of zeros in the b–ary
expansion of α.

In the opposite direction, if α is normal, there does not exist a δ(α) > 0
such that, for all u ∈ Z and all m �α,b 1, we have |bmα− u| ≤ b−δ(α)m and
it is likely that λ(b, r) = 1. Hence, if we find a value of λ > 1 satisfying (1.1)
close to 1, this gives us evidence for the normality of log(r). Something like
this is true but the result obtained is very weak. Indeed, if we set log(r) =∑∞

j=1 ηj/b
ej with ηj ∈ {1, . . . , b− 1} and (ej)j a strictly increasing sequence

of integers, the bound (1.1) implies that ej+1 ≤ λej + O(1). Therefore
knowing that 1 < λ < +∞ only implies that ej � λj as N → +∞ or, in
other words, that

(1.2) #
{
j ≤ N : dj

(
log(r)

) �= 0
} ≥ log(N)/ log(λ) + O(1),

whereas one expects that the left hand side of (1.2) should be equivalent
to (b − 1)N/b. Thus, to obtain a better lower bound in (1.2), rather than
λ(b, r), one should look for an explicit function ψr such that ψr(m) = o(m)
and for all u ∈ Z and all m�b,r 1, | log(r) − u/bm| ≥ 1/bm+ψr(m).

A related result is the following (special case of a more general) theorem
of Ridout [18]: for any real irrational algebraic numbers α, all ε > 0, all
integers b ≥ 2, all u ∈ Z and all m ≥ 1, we have |bmα − u| �ε,b b

−εm.
Unfortunately, it is ineffective –the dependence of the implicit constants on
ε is not known– and Ridout’s theorem does not provide something asymp-
totically better than (1.2) for #{j ≤ N : dj

(
α
) �= 0} (1). In order to solve

certain Diophantine equations, Beukers [6], and then Bauer and Bennett [5],
proved weaker but completely effective bounds of Ridout’s type for quadratic
numbers: the present work is partly inspired by Beukers’ original method
but is more systematic.

1An important improvement was recently obtained by Bailey et al in [3]: in base b = 2,
we have #

{
j ≤ N : dj(α) = 1

} � N1/D, where D is the degree of α. It would be very
interesting to adapt their method to other types of real numbers.
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Nevertheless, proving that λ(b, r) < 2 has an interesting consequence.
Let (pn/qn)n denote the sequence of convergents of log(r): we have that
|qn log(r) − pn| < q−1

n for all n and, if λ(b, r) < 2, we can conclude that, for
all n�b,r 1, the denominator qn cannot be an integral power of b. Although
this result does not say what the convergents of log(r) are, it does at least
say something about what they aren’t.

To state our results, we first need to introduce some notations. From
now on, we suppose that a, b ∈ Z, κ, x ∈ R satisfy κ ≥ 1, 0 < |x| < 1, b ≥ 2
and 0 < |a/b| < 1. Let

(1.3) r0 = r0(κ, x) =
1

2κ|x|
(
(κ−1)(x−1)+

√
(κ− 1)2(1 − x)2 + 4κ(1 − x)

)
and

(1.4) t0 = t0(κ, x) =
1

2κx

(
κ(1+x)+1−x−

√
(κ(1 + x) + 1 − x)2 − 4κ2x

)
Let also

(1.5) β = β(κ, x) =
(1 + |x|r0)κ(1 − x+ |x|r0)

|x|r0
and ρ = ρ(κ, x) = |x|κ+1 t

κ
0(1 − t0)

1 − xt0
,

which satisfy bβ(κ, a/b) ≥ 1 (2) and ρ > 0.
Let L (a, b) = {κ ≥ 1 : bκeκρ(κ, a/b) < 1}; we do not exclude the

possibility that this set might be empty. For any κ ∈ L (a, b), we necessarily
have bρ < 1 and b eκρ < 1, hence log(β/ρ) (= log(bβ/bρ)) and − log(b eκρ)
are positive and the quantity

(1.6) L(κ, a, b) =
log

(
β(κ, a/b)/ρ(κ, a/b)

)
− log

(
b eκρ(κ, a/b)

)
is well-defined and positive.

The best possible upper bound Λ(a, b, c) of λ(bc, 1 − a/b) that we prove
in this article is given in Theorem 1. A more explicit version is produced in
Theorem 2. All the constants involved in the various symbols “�” spread
in the text, in principle, can be given explicitly if really necessary; we use
the notation �e1,e2,... to indicate that these constants depend at most on
e1, e2, etc.

2The fact that bβ(κ, a/b) ≥ 1 is not obvious from this definition and is proved in
Lemma 2 in Section 2.
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Theorem 1. Let a, b, c be integers such that 0 < |a/b| < 1, b ≥ 2, c ≥ 1
and L (ac, bc) �= ∅. Let ε be any positive real number. Then, for any u ∈ Z

and any m�ε,a,b,c 1, we have∣∣∣∣ log
(
1 − a

b

)
− u

(bc)m

∣∣∣∣ ≥ 1

(bc)(Λ(a,b,c)+ε)m
.(1.7)

with
Λ(a, b, c) = inf

κ∈L (ac,bc)
L(κ, ac, bc).

Remarks. 1) Since Λ(a, b, c) = Λ(ac, bc, 1), it is enough to prove the theo-
rem for c = 1.

2) It is not obvious that Λ(a, b, c) can ever be strictly less than 2. How-
ever, Theorem 2 shows that L(κ, ac, bc) takes values arbitrarily close to 1
when b�a,c 1.

3) Note that L(1, a, b) is the irrationality measure for log(1 − a/b) ob-
tained by Alladi and Robinson [2]: thus Λ(a, b, 1) is smaller than this classical
bound. Furthermore, for a given κ ∈ L (a, b), κ > 1, L(κ, a, b) is strictly
smaller than the general irrationality measure

log
(
β(κ, a/b)/ρ(κ, a/b)

)
− log

(
bκ eκρ(κ, a/b)

)
which can be deduced by the methods of this paper: see the discussion in
Section 4.

We now state a more explicit (but less precise) form of Theorem 1.

Theorem 2. Let a, b, c be integers such that 0 < |a/b| < 1, b ≥ 2, c ≥ 1.

(i) If a < 0 and 1 + 2 log |a| + log(c) ≤ log(b), then

K =
log(b/|a|)
1 + log |ac| ∈ L (ac, bc)

and

1 ≤ L(K, ac, bc) ≤ 1 +
K log(2) + log(2 − a/b) +K + log(bc)

log
(
K−K(K + 1)K+1 |b/a|K+1

) −K − log(bc)
.

(ii) If a > 0 and 1 + 2 log(a) + log(c) ≤ log(b) + log
√

1 − a/b, then

k =
log(b/a) + log

√
1 − a/b

1 + log(ac)
∈ L (ac, bc)
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and

1 ≤ L(k, ac, bc)

≤ 1 +
k log(2) + log(2 − a/b) + k + log(bc)

log
(
(2k)−k(2k + 1)k+1/2 (b/a)k+1(1 − a/b)1/2

) − k − log(bc)
.

(iii) As b→ +∞, we have

1 ≤ Λ(a, b, c) ≤ 1 +
2 + log(2|ac|)

log(bc)
+ O

(
1

log2(b)

)
.

Remark. As it will be clear from the proof of Theorem 2, better bounds
could be obtained at the cost of more complicated formulas.

As anticipated, an interesting consequence of point (iii) of Theorem 2 is
the following result.

Theorem 3. Let a, b, c be integers such that 0 < |a/b| < 1, b ≥ 2, c ≥ 1.
Let (pn/qn)n≥0 denotes the infinite sequence of convergents of log(1 − a/b).
Then, for all b �a,c 1 and all n �a,b,c 1, the denominator qn is not an
integral power of bc.

Remarks. 1) For similar results, see (iii) in Theorem 4 and the comments
around Equation (7.1) in Section 7.

2) It is notoriously difficult to compute the convergents of numbers like
log(2) efficiently, i.e, without going back to the definition of a continued
fraction and starting with more and more accurate approximations of log(2)
(which is cheating).

3) There exists a simple algorithm, due to Shanks, which enables us
to compute the continued fractions of � = log(a)/ log(b) for any integers
a > b > 1, in which only rational numbers intervene and no approximation
to � is ever calculated: see [14] for details. However, the involved integers
become quickly very large and this algorithm seems to be interesting more
from a theoretical than a practical point of view. Furthermore, it does
not give much information about what are or are not the convergents of �.
This is also the case of certain algorithms deviced to compute efficiently the
continued fractions of real algebraic numbers: see [8] for a survey.

In the particular case a = c = 1, we have Λ(1, b, 1) < 2 for |b| ≥ 12: the
formulas in Theorem 2 proves this for b ≤ −27 and b ≥ 37, the remaining
cases being proved using Theorem 1. Hence, in Theorem 3, the condition
b�a,c 1 can be replaced by |b| ≥ 12 when a = c = 1.
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The following table presents approximations for values of Λ(a, b, c). In
the third column, when 2 ≤ |a| ≤ 5, the value of b is the smallest such
that Λ(a, b, 1) < 2. The infimum Λ(a, b, c) is generally obtained at a κ > 1,
which justifies a posteriori our general construction. For example, for a =
c = 1, b = 4, we have κ ≈ 3.56.

b Λ(1, b, 1) b Λ(1, b, 1) (a, b) Λ(a, b, 1) (a, b, c) Λ(a, b, c)

2 4.6221 −2 3.5474 (2, 61) 1.9989 (1, 31, 1) 1.6917
3 3.5287 −3 3.2131 (−2, 60) 1.9995 (1, 31, 2) 1.9934
4 3.0045 −4 2.9016 (3, 179) 1.9986 (−1, 30, 1) 1.6978
5 2.6684 −5 2.6154 (−3, 177) 1.9992 (−1, 30, 2) 1.9995
6 2.4661 −6 2.4320 (4, 394) 1.9997 (1, 60, 1) 1.5684
7 2.3290 −7 2.3051 (−4, 392) 1.9994 (1, 60, 2) 1.8089
8 2.2291 −8 2.2113 (5, 737) 1.9998 (1, 60, 3) 1.9969
9 2.1523 −9 2.1385 (−5, 734) 1.9997 (−1, 59, 1) 1.5706
10 2.0912 −10 2.0801 (1, 28) 1.4071 (−1, 59, 2) 1.8111
11 2.0411 −11 2.0320 (1, 39) 1.2184 (−1, 59, 3) 1.9992
12 1.9992 −12 1.9915 (−1, 57) 1.1901 (2, 197, 2) 1.9997
13 1.9634 −13 1.9568 (1, 107) 1.1305 (−3, 3493, 5) 1.9999

The proof of Theorems 1 and 2 will be given in Sections 3 and 5, respec-
tively. Baker’s theory of linear form of logarithms is not sharp enough to
prove any of these results, even assuming such general conjectures as Lang-
Waldschmidt [20, p. 11]. Instead, we resort to the less general but much
sharper theory of Padé approximants of log(1−x), which we recall in details
in the Lemmas 1 and 2 in Section 2.

The irrationality measures of logarithm found in the litterature are proved
using diagonal Padé approximants [n/n] (Baker, Alladi and Robinson [2]) or
slightly modified versions of the same (Rukhadze [19], Hata [12], Heimonen
et al [13]); none deals with irrationality measures with restricted denomina-
tors. To treat this case, we will use Padé approximants [pn/qn] with p = κq
substantially larger than q in order to get a crucial asymmetric term b(p−q)n

in the estimates for log(1 − a/b). This trick was apparently first used by
Beukers [6].

Another noteworthy feature of the Padé approximants [pn/qn] of
log(1−x) is the presence of a factor dpn, where dm = lcm(1, 2, . . . , m). It is
fundamentally different from b(p−q)n but it also intervenes in an asymmetric
way (see eq. (2.1) of Lemma 1 in Section 2) and provides some non-trivial
diophantine information which we summarise in the following result, whose
proof in Section 6 will only be sketched since it is very similar to those of
Theorems 1, 2 and 3.



Convergents and irrationality measures of logarithms 937

Theorem 4. Let a, b, c be integers such that b, c ≥ 1 and 0 < |a/b| < 1.

(i) If ebρ(1, a/b) < 1, then for all u ∈ Z and m ∈ N, we have

(1.8)

∣∣∣∣ log
(
1 − a

b

)
− u

dm

∣∣∣∣ �a,b
1

d
2− 2 log |a|

log(bρ(1,a/b))
m

.

(ii) Let ν ∈ R, ν > 0, and suppose that

D(a, b, ν) =
{
κ ≥ 1 : eκbκ/ν+1ρ(κ, a/b) < 1 and e(κ−1)νbκρ(κ, a/b) < 1

} �= ∅.
Then, for all ε > 0, u ∈ Z and m�ε,ν,a,b,c 1, we have

(1.9)

∣∣∣∣ log
(
1 − a

b

)
− u

d�νm�(bc)m

∣∣∣∣ ≥ 1(
d�νm�(bc)m

)D(ac,bc,ν)+ε
.

where

D(a, b, ν) = inf
κ∈D(a,b,ν)

log
(
β(κ, a/b)/ρ(κ, a/b)

)
− log

(
bρ(κ, a/b)

) → 1 as b→ +∞.

(iii) For all b�a,c,ν1, n�a,b,c,ν1 and m∈N, we have that qn �=d�νm�(bc)m,
where qn is the denominator of the n–th convergent of log(1 − a/b).

Remarks. 1) In (i), we could have stated a result for κ ≥ 1 but numerically
it seems that the best value is always attained at κ = 1. The particular case
when a = ±1 of (1.8) reads | log(1−1/b)−u/dm| �b 1/d2

m for all |b| ≥ 2. It
is difficult to compute the implicit constant accurately and a rough estimate
gives a value smaller than 1; for this reason, we cannot deduce from (1.8) a
result similar to (iii) in this case. However, as indicated by a referee, such a
result is true when b = −1 by a theorem of Dubitskas [10] which implies that
| log(2)−u/dm| � log(dm)/d2

m, a stronger inequality than (1.8) in this case.

2) With a = c = ν = 1 in (1.9) for instance, we obtain that, for all u ∈ Z

and m� 1, ∣∣∣∣ log(2) − u

dm2m

∣∣∣∣ ≥ 1(
dm2m

)1.948967 .

Finally, it is easy to see why it is possible to improve irrationality mea-
sures when considering special denominators rather than arbitrary ones:
(bm)m≥0 and (dm)m≥1 are examples of sequences (um)m satisfying um|un for
m ≤ n. More precisely, to estimate the difference log(1 − a/b) − u/v using
the methods of this article, we need to find a lower bound of a certain dif-
ference D = |u/v − U/(dmb

kV )| between two distinct rationals (m, k ∈ N,
u, v, U, V ∈ Z). When v could be anything, the best we can say is that,
trivially, D ≥ (dmb

kV v)−1; however, if we know in advance that v = dMb
K

then we can improve our trivial bound to D ≥ (dmax(M,m)b
max(K,k)V )−1 and

thus save a crucial factor of dmin(M,m)b
min(K,k) in the process.
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2. The upper Padé table of the logarithm

Let p, q be integers such that p ≥ q ≥ 0. There exist non-zero polynomials
Ap,q(X) and Bp,q(X) in Q[X] of degree at most p and q respectively such
that the order at x = 0 of the (entire or formal) series

Rp,q(X) = Bp,q(X) log(1 −X) − Ap,q(X)

is at least p + q + 1. These polynomials, which are unique (3) up to a
multiplicative constant, define the Padé approximant Ap,q/Bp,q = [p/q] of
log(1−X) and we summarize their properties in the following lemma (which
belongs to folklore).

Lemma 1. (i) In the above conditions, when p ≥ q, we can choose the
multiplicative constant such that the following conditions are satisfied:

(2.1) dpAp,q(x) ∈ Z[x], Bp,q(x) ∈ Z[x],

(2.2) xqBp,q(1/x) = xq−p
(
xp(1 − x)q

)(q)
/q!

and

(2.3) Rp,q(x) = xp+q+1

∫ 1

0

tp(1 − t)q

(xt− 1)q+1
dt.

(ii) There exists a non-zero constant cp,q such that

(2.4) Ap+1,q+1(x)Bp,q(x) −Ap,q(x)Bp+1,q+1(x) = cp,qx
p+q+1.

(iii) For all x ∈ (−1, 1), Bp,q(x) �= 0.

Remark. Unfortunately, no such formulas are known when p < q. This
rules out the possibility of proving results like Theorems 1, 2, 3 and 4 for
the function 1/ log(1 − x) by similar methods.

Proof: (i) We define the Pocchammer symbol by (u)n = u(u + 1) · · · (u +
n− 1) and start with the hypergeometric series

R̂p,q(x) = (−1)q+1
∞∑
k=1

(k − q)q
(k + p− q)q+1

xp+k

=
(−1)q+1 xp+q+1(
p+q
p

)
(p+ q + 1)

2F1

[
p+ 1, q + 1
p+ q + 2

; x

]
,

which converges for |x| ≤ 1, x �= 1 and has a zero of order p+ q+1 at x = 0.

3This is not always true for other power series F . However the fraction [p/q]F is
unique: see [4] for the theory of Padé approximants.
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From the partial fractions expansion

(k − q)q
(k + p− q)q+1

=

q∑
j=0

(−1)j+q
(
q

j

)(
p+ j

q

)
1

k + j + p− q
,

we obtain that

R̂p,q(x) =

q∑
j=0

(−1)j+1

(
q

j

)(
p+ j

q

) ∞∑
k=1

xp+k

k + p− q + j

=

q∑
j=0

(−1)j+1

(
q

j

)(
p+ j

q

)(
xq−j

∞∑
k=1

xk

k
−

j+p−q∑
k=1

xk+q−j

k

)
= B̂p,q(x) log(1 − x) − Âp,q(x),

where

B̂p,q(x) =

q∑
j=0

(−1)j
(
q

j

)(
p+ j

q

)
xq−j ∈ Z[x]

is of degree q and

Âp,q(x) =

q∑
j=0

j+p−q∑
k=1

(−1)j+1

(
q

j

)(
p+ j

q

)
1

k
xk+q−j ∈ d−1

p Z[x]

is of degree p. Thus, we can define Ap,q(x), Bp,q(x) and Rp,q(x) as Âp,q(x),

B̂p,q(x) and R̂p,q(x) respectively. Classical computations can be used to prove
the expected formulas for Bp,q(x) and Rp,q(x): see [12, p. 100] and [13, pp.
186-187] for similar transformations.

(ii) We now turn our attention to the polynomial Cp,q = Ap+1,q+1Bp,q −
Ap,qBp+1,q+1, whose degree is obviously at most p + q + 1. Since Ap,q =
Bp,q log(1 − x) − Rp,q, we also have the identity Cp,q = Bp+1,q+1Rp,q −
Bp,qRp+1,q+1, which implies that the order at zero of Cp,q is at least p+ q+1.
Hence there exists a constant cp,q such that Cp,q(x) = cp,qx

p+q+1. Explicit
formulas for Bp,q and Rp,q yield the coefficients needed to compute cp,q: we
have that

(−1)q+1cp,q =

(
p+1
q+1

)(
p+q
p

)
(p+ q + 1)

+

(
p
q

)(
p+q+2
p+1

)
(p+ q + 3)

�= 0.

(iii) We will prove something more, i.e. that the zeros of Bp,q are all in
(1,+∞). It follows from the expression (2.2) for Bp,q(x) that this is equiv-

alent to proving that the zeros of the polynomial xq−p
(
xp(1 − x)q

)(q)
/q! are
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all in (0, 1). There exists a classical proof based on Rolle’s theorem. In-
stead, we propose the argument indicated by a referee. It is based on Gauß-
Lucas’ theorem claiming that all roots of the derivative P ′ of a polynomial
P lie in the convex hull of the roots of P . Starting from the polynomial
P (x) = xp(1 − x)q, the roots of P ′ are thus all in [0, 1], hence this is also
true for the roots of P ′′ and so on. �

The proofs of our theorems are based on the asymptotic behaviour of
the approximants [pn + η/qn + η], η ∈ {0, 1}, when the integer n tends to
infinity. We use the functions β and ρ defined by (1.5) in the introduction.

Lemma 2. (i) Let x such that |x| ≤ 1, x �= 1. Let η denotes either 0 or 1.
We have

(2.5) lim
n→+∞

∣∣Rpn+η,qn+η(x)
∣∣1/qn = ρ(p/q, x)

and

(2.6) lim sup
n→+∞

∣∣Bpn+η,qn+η(x)
∣∣1/qn ≤ β(p/q, x).

(ii) If a, b ∈ Z such that |a/b| < 1 and b ≥ 1, we have bβ(κ, a/b) ≥ 1 for
all κ ≥ 1.

Proof: (i) We will give a detailed proof of the case η = 0 and explain what
must be changed when η = 1. To simplify, we temporarily define κ to be p/q.

From (2.3) in Lemma 1, we have

Rpn,qn(x) = x(p+q)n+1

∫ 1

0

tpn(1 − t)qn

(xt− 1)qn+1
dt

so that

lim
n→+∞

∣∣Rpn,qn(x)
∣∣1/n = |x|p+q max

t∈[0,1]

tp(1 − t)q

(1 − xt)q
.

This maximum is attained at t̂0 (which depends on p, q, x), defined to be the
unique root in (0, 1) of the equation

d

dt

(
tp(1 − t)q

(1 − xt)q

)
= 0.

It turns out that t̂0 is a solution of the quadratic equation

κxt2 − (
κ(1 + x) + 1 − x

)
t+ κ = 0,

which means that t̂0 depends only on the quotient κ = p/q: this is exactly
the number t0 defined in (1.4).

Finally, we have

lim
n→+∞

∣∣Rpn,qn(x)
∣∣1/qn = |x|κ+1 t

κ
0(1 − t0)

1 − xt0
= ρ(κ, x) > 0.



Convergents and irrationality measures of logarithms 941

Using Cauchy’s integral formula and some straightforward simplifica-
tions, we transform (2.2) in Lemma 1 for Bpn,qn(x) in the following way:

Bpn,qn(x) =
x(p+q)n+1

2iπ

∫
C1/x,r

zpn(1 − z)qn

(xz − 1)qn+1
dz

=
(−x)−qn

2iπ

∫
C0,r

(1 + xz)pn(1 − x+ xz)qn

zqn+1
dz,

where CM,r denotes the circle of center M and radius r. Thus, we have

lim sup
n→+∞

|Bpn,qn(x)|1/n ≤ 1

|x|q min
r>0

(1 + |x|r)p(1 − x+ |x|r)q
rq

.

This minimum is obtained for r̂0 (depending a priori on p, q, x) defined as
the positive solution of the quadratic equation

κ|x|2r2 + (κ− 1)(1 − x)|x|r − (1 − x) = 0.

It follows that r̂0 depends only on the quotient κ = p/q and is exactly the
number r0 defined in (1.3). Finally, we obtain that

lim sup
n→+∞

|Bpn,qn(x)|1/qn ≤ (1 + |x|r0)κ(1 − x+ |x|r0)
|x|r0 = β(κ, x).

When η = 1, we use the formulas

Rpn+1,qn+1(x) = x(p+q)n+3

∫ 1

0

tpn+1(1 − t)qn+1

(xt− 1)qn+2
dt

Bpn+1,qn+1(x) =
x(p+q)n+3

2iπ

∫
C1/x,r

zpn+1(1 − z)qn+1

(xz − 1)qn+2
dz

and the proof follows in a similar way.

(ii) We know from (2.1) and (iii) in Lemma 1 that |bqnBpn,qn(a/b)| is
a non-zero integer, hence that |bqnBpn,qn(a/b)|1/qn ≥ 1: letting n → +∞
proves that bβ(p/q, a/b) ≥ 1 for all rational p/q ≥ 1. Since the function
κ �→ β(κ, a/b) is continuous on [1,+∞), we have bβ(κ, a/b) ≥ 1 for all real
κ ≥ 1. �

3. Proof of Theorem 1

Since the set L (a, b) is non-empty, it contains a rational κ = p/q; we may
suppose that p ≥ 1 and q ≥ 1 are coprime, so we can use parameters
depending on H = H(κ) = max(p, q). Throughout this section, we write
β(κ, a/b) and ρ(κ, a/b) as β and ρ, respectively.
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Since a/b ∈ (−1, 1), we have Bpn+η,qn+η(a/b) �= 0 by the last statement
of Lemma 1 and we can consider the fraction (Apn+η,qn+η/Bpn+η,qn+η)(a/b).
Now, let u ∈ Z and m ∈ N. We will have to compare the fractions u/bm and
(Apn,qn/Bpn,qn)(a/b): they might be equal, in which case Equation (2.4) in
Lemma 1 ensures that u/bm�=(Apn+1,qn+1/Bpn+1,qn+1)(a/b) (because a/b �=0).
Thus, for any given a, b,m, n, p, q, u, there exists η ∈ {0, 1} (depending on
these seven parameters) such that

(3.1)
u

bm
�= Apn+η,qn+η(a/b)

Bpn+η,qn+η(a/b)
.

According to Lemma 2, the value of η has no asymptotic influence: since
our results are proved for large enough n, there is no loss of generality
in supposing that we always have η = 0 in (3.1) in order to simplify the
notations.

From Lemma 1, we deduce that

Apn,qn(a/b) =
Un

dpn bpn
and Bpn,qn(a/b) =

Vn
dpn bqn

,

with Un, Vn ∈ Z, and∣∣∣∣log
(
1 − a

b

)
− Un
b(p−q)n Vn

∣∣∣∣ =

∣∣∣∣Rpn,qn(a/b)

Bpn,qn(a/b)

∣∣∣∣.
The definition of Vn and (2.6) imply that

(3.2) lim sup
n→+∞

∣∣Vn∣∣1/qn = bδ, with δ =
κ+ log(b) + log(β)

log(b)
.

We now distinguish two cases: (p− q)n ≥ m and (p− q)n < m.
First case. Suppose that (p − q)n ≥ m; in particular, we necessarily

have κ > 1.
Since

u

bm
�= Un
b(p−q)n Vn

,

we have∣∣∣log
(
1 − a

b

)
− u

bm

∣∣∣ ≥
∣∣∣∣ ubm − Un

b(p−q)n Vn

∣∣∣∣ − ∣∣∣∣log
(
1 − a

b

)
− Un
b(p−q)n Vn

∣∣∣∣
≥ 1

b(p−q)n |Vn| −
∣∣∣∣Rpn,qn(a/b)

Bpn,qn(a/b)

∣∣∣∣.
Hence, provided that

(3.3) |2b(p−q)n VnRpn,qn(a/b)| ≤ |Bpn,qn(a/b)|,
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we have

(3.4)
∣∣∣log

(
1 − a

b

)
− u

bm

∣∣∣ ≥ 1

2 b(p−q)n |Vn| .

Since b(p−q)nVn is an (essentially) increasing function of n, it is natural to
choose n to be as small as possible subject to the constraint that (p−q)n≥m,
i.e. we set

(3.5) n =

⌊
m

p− q

⌋
+ 1 =

⌊
m

q(κ− 1)

⌋
+ 1.

We now verify that with this definition of n, the condition (3.3) is also
satisfied for large m. Indeed, we can rewrite (3.3) as

2bκnd1/qn
pn

∣∣Rpn,qn(a/b)
∣∣1/qn ≤ 1

and it follows from (2.5) in Lemma 2, the relation dpn = epn+o(n) and to (3.5)
that this last inequality is satisfied for all m�a,b,κ,H 1 because it is implied
by the stronger inequality bκeκρ < 1, which holds by hypothesis. Hence, (3.4)
holds with our choice of n for large m.

We define

L̂(κ, a, b) =
κ+ κ log(b) + log(β)

(κ− 1) log(b)
.

Let us fix ε > 0. We deduce from (3.2) and (3.4) that, for all m ≥
M1(ε, κ,H, a, b) (it would in fact be possible to give an explicit bound),
we have

(3.6) − logb

∣∣∣log
(
1 − a

b

)
− u

bm

∣∣∣ ≤ m+
(
δ +

κ− 1

2
ε
)(⌊

m

q(κ− 1)

⌋
+ 1

)
q

≤
(

1 +
δ

κ− 1
+
ε

2

)
m+

(
δ +

κ− 1

2
ε

)
q =

(
L̂(κ, a, b) + ε

)
m

where the last equality holds provided that

m ≥ max

(
M1(ε, κ,H, a, b),

2δ + κ− 1

ε
q

)
= M2

(
ε, κ,H, a, b

)
.

Second case. We now turn our attention to the case (p− q)n < m, which
may happen in particular when p = q. We have∣∣∣log

(
1 − a

b

)
− u

bm

∣∣∣ ≥
∣∣∣∣ ubm − Un

b(p−q)n Vn

∣∣∣∣ − ∣∣∣∣log
(
1 − a

b

)
− Un
b(p−q)n Vn

∣∣∣∣
≥ 1

bm |Vn| −
∣∣∣∣Rpn,qn(a/b)

Bpn,qn(a/b)

∣∣∣∣.
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Hence, provided that

(3.7) |2bm VnRpn,qn(a/b)| ≤ |Bpn,qn(a/b)|,
we have

(3.8)
∣∣∣log

(
1 − a

b

)
− u

bm

∣∣∣ ≥ 1

2 bm |Vn| .

As in the first case, since Vn → +∞, we need to choose n as small as possible
satisfying (p− q)n < m and (3.7). We rewrite (3.7) as

(3.9) 2bm/qnb d1/qn
pn

∣∣Rpn,qn(a/b)
∣∣1/qn ≤ 1.

To find an optimal value of n satisfying (3.9), we note that the condition
bκeκρ < 1 implies that

− log(beκρ) > (κ− 1) log(b) ≥ 0

and therefore, for all m ≥ 1,

(3.10)
m

q(κ− 1)
> N =

m log(b)

−q log(beκρ)
≥ 0.

We note that we have bm/qNb eκρ = 1. Hence, the integer n defined by

(3.11) n = �N + 1 =

⌊
m log(b)

−q log(beκρ)

⌋
+ 1

satisfies bm/qnb eκρ < 1 and also (p− q)n < m if m�κ,H,a,b 1 (from (3.10)).
Thus (3.9) is also satisfied for large enough m �κ,H,a,b 1 and with the

definition (3.11) of n, the lower bound (3.8) holds.
Let us fix ε > 0. We deduce from (3.2) and (3.8) that, for all m ≥

M3(ε, κ,H, a, b),

− logb

∣∣∣ log
(
1 − a

b

)
− u

bm

∣∣∣ ≤ m+

(
δ− log(beκρ)

log(b)

ε

2

)(⌊
m log(b)

−q log(beκρ)

⌋
+1

)
q.

≤
(

1− δ log(b)

log(beκρ)
+
ε

2

)
m+

(
δ− log(beκρ)

log(b)

ε

2

)
q=

(
L(κ, a, b) + ε

)
m,

(3.12)

where the last equality holds provided that

m ≥ max

(
M3(ε, κ,H, a, b),

2δ − log(beκρ)
log(b)

ε

ε
q

)
= M4(ε, κ,H, a, b).
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Comparison of the two cases. We now prove that we have L̂(κ, a, b) ≥
L(κ, a, b) for any given κ∈L (a, b), κ > 1. For simplicity, we define X=β/ρ,
Y = bκ−1 and Z = (bκeκρ)−1. We note that, for any κ ∈ L (a, b), κ > 1, we
have X > 1, Y > 1, Z > 1 and

L̂(κ, a, b) − L(κ, a, b) =
log(bκeκβ)

log(bκ−1)
− log(β/ρ)

log((beκρ)−1)

=
log(X/Z)

log(Y )
− log(X)

log(Y Z)
=

log(Y Z) log(X/Z) − log(X) log(Y )

log(Y ) log(Y Z)
.

The denominator of the right hand side is clearly positive and it remains
to prove that this is also the case of the numerator. Let x, y, z be any real
number ≥ 1: by calculus, we prove that log(yz) log(x/z)− log(x) log(y) ≥ 0

if z ∈ [1, x/y]. To prove that L̂(κ, a, b) ≥ L(κ, a, b), it is therefore enough to
check that 1 ≤ Z ≤ X/Y and, indeed, this is true because 1) we already
know that Z > 1 and 2) we have X/(Y Z) = b eκβ > 1 since bβ ≥ 1.

Thus, for all m ≥M5 = max(M2,M4)(ε, κ,H, a, b), we have

− logb

∣∣∣log
(
1 − a

b

)
− u

bm

∣∣∣ ≤ (
L(κ, a, b) + ε

)
m.

Since we can find κ0 ∈ L (a, b) (depending on ε, a, b) such that L(κ0, a, b) ≤
Λ(a, b, 1) + ε, we finally obtain

− logb

∣∣∣log
(
1 − a

b

)
− u

bm

∣∣∣ ≤ (
Λ(a, b, 1) + 2ε

)
m

for all m ≥M5(ε, κ0, H(κ0), a, b)) = M6(ε, a, b).
Since Λ(a, b, c) = Λ(ac, bc, 1), the proof of Theorem 1 is complete.

4. Comparison with previous bounds

It is interesting to compare the bound L(κ, ac, bc) (which really depends
on the special shape of bm) with the general irrationality measure obtained
using the same approximations: the linear form

dpnb
pnRpn,qn(a/b) = dpnb

pnBpn,qn(a/b) log
(
1 − a

b

)
− dpnb

pnApn,qn(a/b) ∈ Z log
(
1 − a

b

)
+ Z

tends to 0 as n → +∞ exactly under the condition bκeκρ < 1, i.e. κ ∈
L (a, b). We then use a classical criterion (see [2, Lemma 3] for example) to
obtain

− logv

∣∣∣log
(
1 − a

b

)
− u

v

∣∣∣ ≤ − log(β/ρ)

log(bκeκρ)
+ ε = µ(κ, a, b) + ε

for all ε > 0, all u ∈ Z and v �ε,κ,a,b 1.
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Let µ(a, b) denote the infimum of µ(κ, a, b) over L (a, b), which is greater
than 2 because of the convergents of log(1 − a/b). It seems that µ(a, b) is
always attained at κ = 1 but we did not try to prove this.

Obviously, for all κ ∈ L (a, b), we have L(κ, a, b) ≤ µ(κ, a, b) and there-
fore, for c = 1, we have Λ(a, b, 1) ≤ µ(a, b). For c ≥ 2, we cannot rule out
the possibility that Λ(a, b, c) > µ(a, b) since this inequality holds if c�a,b 1
and hence in applications, it will be necessary to check which is the smallest
of the two.

5. Proof of Theorem 2

We first need a simple upper bound for ρ(κ, x) when 0 < |x| < 1 and for
this, we consider two separate cases.

Assume that −1 < x < 0. Then, for all t ∈ (0, 1), tκ(1−t)
1−xt ≤ tκ(1 − t),

which implies that

ρ(κ, x) ≤ κκ

(κ+ 1)κ+1
|x|κ+1.

Assume that 0 < x < 1. For all t ∈ (0, 1), we have (1−xt)2 ≥ (1−x)(1− t)
and hence

tκ(1 − t)

1 − xt
≤ tκ(1 − t)1/2

(1 − x)1/2
,

which implies that

ρ(κ, x) ≤ (2κ)κ

(2κ+ 1)κ+1/2

|x|κ+1

(1 − x)1/2
.

We shall use the simpler strict bounds : ρ(κ, x) < |x|κ+1 if −1 < x < 0
and ρ(κ, x) < |x|κ+1(1 − x)−1/2 if 0 < x < 1.

We also need an upper bound for β(κ, x): by definition, we have

(5.1) β(κ, x) =
1

|x|
(

min
r>0

(1 + |x|r)p(1 − x+ |x|r)q
rq

)1/q

≤ 2κ(2 − x).

We get the last inequality by using the special value r = 1/|x|. We are now
ready to prove the theorem. Let us suppose first that −1<a/b<0 and set
K = log(b/|a|)/(1+log|a|): the condition 1 + 2 log |a| ≤ log(b) ensures that
K ≥ 1 and we have

bKeKρ(K, a/b) < bKeK |a/b|K+1 = 1.

Thus K ∈ L (a, b).
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Let us now suppose that 0 < a/b < 1 and let

k =
log(b/a) + log

√
1 − a/b

1 + log(a)
.

The condition 1 + 2 log(a) ≤ log(b) + log
√

1 − a/b ensures that k ≥ 1 and
we have bkekρ(k, a/b) < bkek(a/b)k+1(1 − a/b)−1/2 = 1. Thus, once more,
k ∈ L (a, b). Clearly,

Λ(a, b, 1) = inf
κ∈L (a,b)

L(κ, a, b) ≤
{
L(K, a, b) if a < 0

L(k, a, b) if a > 0.

When a < 0, we have

L(K, a, b) = 1 +
log β(K, a/b) +K + log(b)

−(
log ρ(K, a/b) +K + log(b)

)
≤ 1 − log

(
2K(2 − a/b)

)
+K + log(b)

log
(
KK(K + 1)−K−1 |a/b|K+1

)
+K + log(b)

as desired, provided that the denominator of the right hand side is positive,
i.e. that

KK

(K + 1)K+1

∣∣∣a
b

∣∣∣K+1

eKb < 1.

But, independently of the definition of K, this inequality is just a con-
sequence of the hypothesis that 1 + 2 log |a| < log(b):∣∣∣a

b

∣∣∣K+1

eKb = |a|
∣∣∣ae
b

∣∣∣K <
1

|a|K−1
< 1.

(The factor KK(K + 1)−K−1 < 1 has been removed for clarity.)
When a > 0, we have

L(k, a, b) = 1 +
log β(k, a/b) + k + log(b)

−(
log ρ(k, a/b) + k + log(b)

)
≤ 1 − log

(
2k(2 − a/b)

)
+ k + log(b)

log
(
(2k)k(2k + 1)−k−1/2 (a/b)k+1(1 − a/b)−1/2

)
+ k + log(b)

again provided that the denominator of the right hand side is positive, i.e.
that

(2k)k

(2k + 1)k+1/2

(a
b

)k+1

(1 − a/b)−1/2ekb < 1.
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This inequality is now a consequence of the hypothesis that 1 + 2 log(a) <
log(b) + log

√
1 − a/b:

(a/b)k+1ekb(1 − a/b)−1/2 = a(1 − a/b)k−1/2

(
ae

b(1 − a/b)1/2

)k

<
(1 − a/b)k−1/2

ak−1
< 1.

(The factor (2k)k(2k + 1)−k−1/2 < 1 has been removed for clarity.) The
asymptotic expansions of these upper bounds for Λ(a, b, 1) is a tedious
exercise which can be done using a computer algebra. Finally, the theo-
rem follows on replacing a by ac and b by bc.

6. Proof of Theorem 4

In this section, we provide a sketch of the proof of Theorem 4 because it is
very similar to that of Theorem 1.

(i) We consider the approximations provided by Lemma 1 with p = q = 1
and κ = 1. We define vn = bnBn,n(a/b) ∈ Z and un = dnb

nAn,n(a/b) ∈ Z.
By the procedure described in the proof of Theorem 1, we can assume that
u/dm �= un/(dnvn) and we have∣∣∣∣log

(
1 − a

b

)
− u

dm

∣∣∣∣ ≥ ∣∣∣∣ udm − un
dnyn

∣∣∣∣ − ∣∣∣∣log
(
1 − a

b

)
− un

dnvn

∣∣∣∣
≥ 1

dm|vn| −
∣∣∣∣Rn,n(a/b)

Bn,n(a/b)

∣∣∣∣ for all m ≥ n.

Hence, if

(6.1) 2dmb
nRn,n(a/b) ≤ 1,

we have

(6.2)

∣∣∣∣log
(
1 − a

b

)
− u

dm

∣∣∣∣ ≥ 1

2dm|vn| .
We now remark that the proof of Lemma 2 yields the following results:

there exist two constants c1 =c1(a, b) and c2 =c2(a, b) such that, for all n≥0,

|Rn(a/b)| ≤ c1ρ(1, a/b)
n and |Bn(a/b)| ≤ c2β(1, a/b)n

Condition (6.1) is satisfied if the stronger inequality 2c1dmb
nρn ≤ 1 holds:

the smallest integer N which satisfies this is

N =

⌊
log(2c1dm)

− log(bρ)

⌋
+ 1.

Since we have supposed that ebρ < 1, we also have − log(bρ) > 1 and
therefore 0 < N ≤ m for large m.
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Hence (6.2) holds with n = N and we have∣∣∣∣log
(
1 − a

b

)
− u

dm

∣∣∣∣ ≥ 1

2dm|vN | ≥
1

2c2dmβN
≥ (2c1β)1/ log(bρ)

2c2 d− log(β/ρ)/ log(bρ)
m

.

It remains to note that β(1, a/b)ρ(1, a/b) = |a/b|2.
(ii) To simplify, let � = �νm, xn = dnb

nApn,qn(a/b) ∈ Z and yn =
bnBpn,qn(a/b) ∈ Z. Like in the proof of Theorem 1, we can assume that
u/(d�b

m) �= xn/(dnb
(p−q)nyn) and we have∣∣∣∣log

(
1 − a

b

)
− u

d� bm

∣∣∣∣ ≥
∣∣∣∣∣ u

d� bm
− xn

dnb
(p−q)n
n yn

∣∣∣∣∣
−

∣∣∣∣log
(
1 − a

b

)
− xn

dnb(p−q)nyn

∣∣∣∣ ≥ 1

d� bm|yn| −
∣∣∣∣Rpn,qn(a/b)

Bpn,qn(a/b)

∣∣∣∣
provided that � ≥ pn and m ≥ (p−q)n. Hence, under these two assumptions
and with

(6.3) 2d� b
mbqnRpn,qn(a/b) ≤ 1,

we have

(6.4)

∣∣∣∣log
(
1 − a

b

)
− u

d� bm

∣∣∣∣ ≥ 1

2d� bm|yn| .

The integer

n =

⌊
(ν + log(b))m

−q log(bρ)

⌋
+ 1

satisfies (6.3) for large enough m. Since p/q ∈ D(a, b, ν), we have 1) neces-
sarily − log(bρ) > 0 and therefore n > 0 and 2) the conditions � ≥ pn and
m ≥ (p − q)n are also satisfied. We conclude exactly as in the second case
of the proof of Theorem 1.

To prove that D(ac, bc, ν) → 1 as b → +∞, we use the same method as
in Theorem 2. Finally, (iii) is a consequence of (ii).

7. Further results

For values of a/b close to 1, the value of Λ(a, b, 1) may be greater than
certain refined irrationality measures for log(1 − a/b): this is the case for
log(2) whose best irrationality measure, due to Rukhadze [19], is:∣∣∣∣ log(2) − p

q

∣∣∣∣ ≥ 1

q3.891310
, p ∈ Z, q � 1.

A list of such improvements is available in [13, p. 186].
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In order to extend Theorem 3, it would be interesting to see if, using
Rukhadze’s method (in the generalised form of [12, 13] or (which in this
case amounts to the same thing here) using the “group structure” integral
method of Rhin-Viola [17]), it is possible to greatly improve our bounds and
obtain, for example, Λ(1, b, 1)<2 for smaller values of b.

There exist many examples of formal power series F for which we can
compute part of the Padé table

(
[p/q]F

)
p,q≥0

, or even sometimes the complete

table. For example, let us consider the Lerch function

Φ(x, 1, α) =

∞∑
k=0

xk

k + α
,

for any rational α ≥ 0. As in the case of log(1 − x) = −xΦ(x, 1, 0), the
upper part

(
[p/q]

)
p≥q≥0

of the Padé table of Φ(x, 1, α) is known (the proof

is a simple adaptation of Lemma 1, see also [11]) and one obtains results
similar to our Theorems 1, 2 and 3. We will state these results only in the
particular case α = 1/2 which is of interest because the function

xΦ(x2, 1, 1/2) = log
(1 + x

1 − x

)
,

evaluated at x = a/(2b+ a), produces an irrationality measure which com-
plements Theorem 1: for all ε > 0, all u ∈ Z and all m�ε,a,b,c 1,∣∣∣∣ log

(
1 − a

b

)
− u

(2bc + ac)2m

∣∣∣∣ ≥ 1

(2bc+ ac)2m(N(ac,bc)+ε)
,

where

N(a, b) = inf
κ∈T (A,B)

log
(
β(κ,A/B)/ρ(κ,A/B)

)
− log

(
4B e2κρ(κ,A/B)

) ,

with A = a2, B = (2b+a)2 and T (A,B) = {κ ≥ 1 : 4Bκe2κρ(κ,A/B) < 1}.
Clearly, N(a, b) = N(a− 2, b+ 1). We have for example∣∣∣∣ log(12/13)− u

729m

∣∣∣∣ ≥ 1

7291.969329m
.

The function xΦ(−x2, 1, 1/2) = 2 arctan(x) is also an interesting special case
because of its connection with the number π; however, the author found no
measure of the shape |π − u/bm| ≥ b−µ(π)m with µ(π) < 2 for at least one
value of b ≥ 2.

Alternatively, we could also obtain improved lower bounds like

(7.1)

∣∣∣∣ log
(
1 − a

b

)
− u

bqnBpn,qn(a/b)

∣∣∣∣ ≥ 1

(bqnBpn,qn(a/b))V (a,b)

with V (a, b) ≥ 1, and similar results for bpmBpm,qm(a/b), dpmb
qmBpm,qm(a/b),

etc, where Bpn,qn(X) is the Padé polynomial given in (2.2).
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Such sequences could be modified endlessly and are not usually express-
ible in a closed and attractive form. It would be also interesting to generalise
the simultaneous type II Padé approximants for the familly log(1 − a1x),
log(1−a2x), . . . , log(1−akx) considered by Rhin and Toffin in [16], in order
to obtain a result similar to Theorem 1 for certain rational linear forms in
logarithms.

Finally, we conclude this article by mentioning an example of a com-
pletely different nature. The complete Padé table of the exponential func-
tion is known explicitly (it was Padé’s case-study [15]). The diagonal Padé
approximants [n/n]exp contains a lot of diophantine information, for it is
well-known that [n/n]exp evaluated at a rational of the form 1/b provide the
convergents of exp(1/b) and a very precise irrationality measure of exp(1/b):
see [1, 9]. Hence it would be natural to expect that [p/q]exp could be used
to obtain irrationality measures with denominators of the shape bm. How-
ever, very surprisingly, this is not the case and we can not obtain something
better: the growth of the denominator and remainder of [pn/qn]exp behave
like C1(p, q)

n(pn!) and C2(p, q)
n/((p + q)n)! respectively, which completely

annihilates the effect of the term b(p−q)n, which was crucial in the proof of
Theorem 1.
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tion. Encyclopedia of Mathematics and its Applications 59. Cambridge
University Press, Cambridge, 1996.

[5] Bauer, M. and Bennett, M.A.: Applications of the hypergeometric
method to the generalized Ramanujan-Nagell equation. Ramanujan J. 6
(2002), 209–270.

[6] Beukers, F.: On the generalized Ramanujan-Nagell equation. I. Acta
Arith. 38 (1980/81), no. 4, 389–410.

[7] Beukers, F.: On the generalized Ramanujan-Nagell equation. II. Acta
Arith. 39 (1981), no. 2, 113–123.

[8] Brent, R., van der Poorten, A. and te Riele, H. J. J.: A compar-
ative study of algorithms for computing continued fractions of algebraic



952 T. Rivoal

numbers. In Algorithmic number theory (Talence, 1996), 35–47. Lecture
Notes in Comput. Sci. 1122. Springer, Berlin, 1996.
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