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The Navier–Stokes equations in the
critical Morrey–Campanato space

Pierre Gilles Lemarié–Rieusset

Abstract
We shall discuss various points on solutions of the 3D Navier-

Stokes equations from the point of view of Morrey-Campanato spaces
(global solutions, strong-weak uniqueness, the role of real interpola-
tion, regularity).

The classical Navier-Stokes equations describe the motion of a Newtonian
fluid; we consider only the case when the fluid is viscous, homogeneous,
incompressible and fills the entire space and is not submitted to external
forces; then, the equations describing the evolution of the motion �u(t, x) of
the fluid element at time t and position x are given by:

(1)

{
ρ ∂t�u=µ ∆�u− ρ (�u.�∇) �u− �∇p
�∇.�u= 0

ρ is the (constant) density of the fluid, and we may assume with no loss
of generality that ρ = 1. µ is the viscosity coefficient, and we may assume
as well that µ = 1. p is the (unknown) pressure, whose action is to maintain
the divergence of �u to be 0 (this divergence free condition expresses the
incompressibility of the fluid).

We shall use the scaling property of equations (1). When (�u, p) is a
solution on (0, T ) × R

3 of the Cauchy problem associated to equations (1)
and initial value �u0, then, for every λ > 0 and every x0 ∈ R

3,

(λ�u(λ2t, λ(x− x0)), λ
2p(λ2t, λ(x− x0)))

is a solution on (0, λ−2T ) × R
3 of the Cauchy problem with initial value

λ�u0(λ(x−x0)). Therefore, we shall consider the Cauchy problem with initial
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value in a critical shift-invariant Banach space: we shall require that �u0 ∈ B3

where B is a Banach space of distributions such that, for every λ > 0
and every x0 ∈ R

3 and for every f ∈ B, we have ‖f(x − x0)‖B = ‖f‖B

and λ‖f(λx)‖B = ‖f‖B. If we require moreover that B is continuously
embedded in the space of locally square integrable functions, then B must
be embedded into the homogeneous Morrey–Campanato space Ṁ2,3 which
will play a prominent part throughout the paper.

1. The Navier-Stokes equations in the critical Morrey-
Campanato space

In order to solve equations (1), we use the Leray–Hopf operator P which is
the orthogonal projection operator on divergence-free vector fields. We thus
consider the following Navier–Stokes equations on �u(t, x), t ∈ (0,∞), x ∈ R

3:

(2)

{
∂t�u=∆�u− P�∇ · (�u⊗ �u)

�∇.�u=0

(Every solution of (2) is a solution of (1). Conversely, under the restriction
that �u vanishes at infinity in a weak sense, every solution of (1) is a solution
of (2); see [6] or [18]). Solving the Cauchy problem associated to the initial
value �u0 then amounts to solve the integral equation

(3) �u = et∆�u0 −
∫ t

0

e(t−s)∆
P�∇.(�u⊗ �u) ds.

In order to solve (3), we define the bilinear operator B by

(4) B(�u,�v)(t) =

∫ t

0

e(t−s)∆
P�∇.(�u⊗ �v) ds.

We are going to describe the solutions of (3) when �u0 belongs to the
homogeneous Morrey–Campanato space Ṁ2,3.

Definition 1. For 1 < p ≤ q < ∞, the homogeneous Morrey–Campanato
space Ṁp,q(R3) is defined as the space of locally p-integrable functions f such
that

(5) sup
x0∈R3

sup
0<R<∞

R3(1/q−1/p)
( ∫

|x−x0|<R

|f(x)|p dx
)1/p

<∞;

the predual of Ṁp,q is then the space of functions f which may be decomposed
as a series

∑
n∈N

λnfn with fn supported by a ball B(xn, Rn) with

Rn > 0, fn ∈ Lp/(p−1), ‖fn‖p/(p−1) ≤ R3(1/q−1/p)
n and

∑
n∈N

|λn| <∞.
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For p = 1 ≤ q < ∞, the homogeneous Morrey–Campanato space Ṁ1,q(R3)
is defined as the space of locally bounded measures µ such that

(6) sup
x0∈R3

sup
0<R<∞

R3( 1
q
−1)|µ|(B(x0, R)) <∞;

the predual of Ṁp,q is then the space of functions f which may be decomposed
as a series

∑
n∈N

λnfn with fn supported by a ball B(xn, Rn) with

Rn > 0, fn continuous, ‖fn‖∞ ≤ R3(1/q−1)
n and

∑
n∈N

|λn| <∞.

When the initial value �u0 belongs to (Ṁ2,3)3, we may search for a solu-
tion in two ways: either we use the formalism of mild solutions introduced
by Kato in the study of solutions on Lebesgue spaces [11], or we use a molli-
fication of the equations and then construct a weak solution through energy
estimates and compactnes criteria (a process introduced by Leray in the
study of solutions in L2 [21]).

We then have the following result:

Theorem 1. Let �u0 ∈ (Ṁ2,3(R3))3 with �∇.�u0 = 0. Then the fixed-point
problem

(7) �u = et∆�u0 −
∫ t

0

e(t−s)∆
P�∇.(�u⊗ �u) ds

can be solved in the following three cases:

(A) Local mild solution for a regular initial value:

If �u0 belongs more precisely to (M̃2,3)3, where M̃2,3 is the closure of D(R3)
in Ṁ2,3, then there exists a positive T = T (�u0) such that the sequence �u(n)

defined by

(8) �u(0) = et∆�u0 and �u(n+1) = et∆�u0 − B(�u(n), �u(n))

remains bounded in the space (ET )3 where ET is defined as

f ∈ ET ⇐⇒

⎧⎪⎪⎨
⎪⎪⎩
f ∈ L2

loc((0, T ) × R
3),

sup0<t<T t
1/4‖f(t, .)‖Ṁ4,6 <∞ and

sup0<t<T t
1/2‖f(t, .)‖∞ <∞

and normed by

‖f‖ET
= sup

0<t<T
t1/4‖f(t, .)‖Ṁ4,6 + sup

0<t<T
t1/2‖f(t, .)‖∞.

Moreover, the sequence �u(n) converges in (ET )3 to a solution �u of (7) which
belongs to C([0, T ], (Ṁ2,3)3).
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(B) Global mild solution for a small initial value:

There exists a positive constant ε0 such that when �u0 belongs to (Ṁ2,3)3

with
‖�u0‖Ṁ2,3 ≤ ε0,

then the sequence �u(n) defined by

�u(0) = et∆�u0 and �u(n+1) = et∆�u0 − B(�u(n), �u(n))

remains bounded in the space (E∞)3 where E∞ is defined as

f ∈ E∞ ⇐⇒

⎧⎪⎪⎨
⎪⎪⎩
f ∈ L2

loc((0,+∞) × R
3),

sup0<t t
1/4‖f(t, .)‖Ṁ4,6 <∞ and

sup0<t t
1/2‖f(t, .)‖∞ <∞

and normed by

‖f‖E∞ = sup
0<t

t1/4‖f(t, .)‖Ṁ4,6 + sup
0<t

t1/2‖f(t, .)‖∞.

Moreover, the sequence �u(n) converges in (E∞)3 to a solution �u of (7) which
satisfies sup0<t ‖�u(t, .)‖Ṁ2,3 <∞.

(C) Global weak solution for a general initial value:

Let ω ∈ D(R3) with ω ≥ 0 and
∫

R3 ω dx = 1 ; then the mollified equations
are given for ε > 0 by

(9)

⎧⎪⎪⎨
⎪⎪⎩

∂t�u= ∆�u− P�∇.((�u ∗ ωε) ⊗ �u)

�∇.�u= 0

�u(0, .)= �u0

where ωε = 1
ε3
ω(x

ε
). The equations (9) have a unique global solution �uε such

that

(10) sup
x0∈R3, R>0, t>0

1

R +
√
t

∫
‖x−x0‖<R

|�uε(t, x)|2 dx <∞.

We have moreover

(11) sup
ε>0

sup
x0∈R3, R>0, t>0

1

R+
√
t

∫
‖x−x0‖<R

|�uε(t, x)|2 dx <∞.

and

(12) sup
ε>0

sup
x0∈R3, t>0

1√
t

∫ t

0

∫
‖x−x0‖<

√
t

|�∇⊗ �uε(s, x)|2 ds dx <∞.
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There exists a sequence (εk)k∈N (depending on �u0) such that εk decreases
to 0 and �uεk

converges strongly in L2
loc((0,∞) × R

3) to a solution �u of (7).
Moreover, this solution satisfies the local energy inequality: the pressure p
such that

∂t�u = ∆�u− �∇.(�u⊗ �u) − �∇p for all φ ∈ D(Q)

may be chosen in L
3/2
loc ((0,∞)×R

3)) and such that for all φ ∈ D((0,∞)×R
3)

with φ ≥ 0 we have

2

∫∫
|�∇⊗ �u|2φ dx dt ≤

∫∫
|�u|2(∂tφ+ ∆φ) dx dt

+

∫∫
(|�u|2 + 2p)(�u.�∇)φ dx dt.(13)

We discuss the proof of points (A) and (B) in Section 2, and the proof of
point (C) in Section 3. Whereas points (A) and (B) are classical (they were
first proved, in the setting of Morrey–Campanato spaces, by Kato [12]; see
also [30], [4] and [2]), point (C) may appear new (it is however a straightfor-
ward consequence of the theory of weak solutions in L2

uloc developed in [18]).

2. Mild solutions for the Navier–Stokes equations

In the formalism of mild solutions, we try to solve (7) by the fixed-point
algorithm:

�u = lim
n→∞

�u(n)

with
�u(0) = et∆�u0 and �u(n+1) = et∆�u0 − B(�u(n), �u(n)).

The resolution of this fixed-point problem is based on a general tool for
multilinear equations in a Banach space:

Lemma 1. Let E be a Banach space and T a bounded bilinear operator on E

(14) ‖T (x, y)‖E ≤ C0‖x‖E‖y‖E.

Let x0 ∈ E with ‖x0‖E < 1
4C0

. Then, the equation x = x0 + T (x, x) has at
least one solution. More precisely, it has one unique solution x ∈ E such
that ‖x‖E ≤ 1

2C0
.

This lemma is straightfoward, since the mapping x �→ x0 + T (x, x) is
then a contraction on the closed ball B̄(0, ‖x0‖E + 1

4C0
). We may remark

that the existence and uniqueness result holds in the closed ball [1], [18], [19]
(even though the mapping x �→ x0 + T (x, x) is no longer a contraction) and
can be extended to more general multilinear operators [19]:
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Lemma 2. Let k ≥ 2. Let E be a Banach space and Tk be a bounded k-linear
operator on E

‖Tk(x1, . . . , xk)‖E ≤ C0‖x1‖E . . . ‖xk‖E.

Let

(15) rk = (C0k)
− 1

k−1
k − 1

k
and Rk =

k

k − 1
rk.

Let Bk be the closed ball Bk = B̄(0, Rk). If x0 ∈ E with ‖x0‖E ≤ rk, then
the equation x = x0 +Tk(x, . . . , x) has at least one solution. More precisely,
it has one unique solution x∞ in Bk.

We may moreover precise the speed of convergence of the Picard-Duhamel
approximation of x∞ [19]:

Lemma 3. Under the assumptions of Lemma 2, let xn be defined from x0

by xn+1 = x0 + Tk(xn, . . . , xn). If ‖x0‖E ≤ rk, then we have

(16) lim sup
n→∞

n2‖xn+1 − xn‖E ≤ 2Rk

k − 1
.

Of course, if ‖x0‖E < rk, the rate of convergence is much better (exponen-

tially decreasing, due to contractivity:‖xn+1−xn‖E ≤( ‖x0‖E

rk

)(n+1)(k−1)‖x0‖E).

We now come back to the Navier–Stokes equations. The construction of
mild solutions relies on the fact that the operator e(t−s)∆

P�∇ is a matrix of
convolutions operators (in the x variable) whose kernels Ki,j(t − s, x) are
controlled by

|Ki,j(t− s, x)| ≤ C
1

(
√
t− s+ ‖x‖)4

.

In 1984, Kato [11] proved the existence of mild solutions in Lp, p ≥ 3. For
p > 3, he used the estimate

(17) ‖e(t−s)∆
P�∇.(�u⊗ �v)‖p ≤ Cp(t− s)−

1
2
− 3

2p ‖�u‖p‖�v‖p

to prove the boundedness of B on L∞([0, T ], (Lp)3):

(18) ‖B(�u,�v)(t, .)‖p ≤ Cpt
1
2
− 3

2p sup
0<s<t

‖�u(s, .)‖p sup
0<s<t

‖�v(s, .)‖p.

For the critical case p = 3, inequality (17) becomes

(19) ‖e(t−s)∆
P�∇.(�u⊗ �v)‖3 ≤ C

1

(t− s)
‖�u‖3‖�v‖3.



The Navier-Stokes equations in the critical Morrey-Campanato space 903

This is a very unconvenient estimate for dealing with �u,�v ∈ L∞([0, T ], (L3)3),
since

∫ t

0
ds
t−s

diverges both at the endpoints s = 0 and s = t. Kato then used
an idea of Weissler [32], namely to use the smoothing properties of the
heat kernel (when applied to �u0 ∈ (L3)3) to search for the existence of a
solution in a smaller space of mild solutions ; indeed, whereas the bilinear
operator B is unbounded on C([0, T ], (L3(R3))3) [28], it becomes bounded on

the smaller space {�f ∈ C([0, T ], (L3(R3))3) / sup0<t<T

√
t‖�f(t, .)‖∞ < ∞}.

Thus, we replace the estimate (19) (which leads to a divergent integral) by
the estimates

(20) ‖e(t−s)∆
P�∇.(�u⊗ �v)‖3 ≤ C

1√
t− s

√
s
‖�u‖3

√
s‖�v‖∞

and

‖e(t−s)∆
P�∇.(�u⊗ �v)‖∞

≤ C
1√
t− s

min

(
1

t− s
‖�u‖3‖�v‖3,

1

s

√
s‖�u‖∞

√
s‖�v‖∞

)
(21)

which lead to two convergent integrals.

In the same way, in order to construct mild solutions in Ṁ2,3, one uses
the smoothing properties of the heat kernel:

(22) sup
t>0

√
t ‖et∆�u0‖∞ ≤ C‖�u0‖Ṁ2,3 .

From (22), we find as well that

(23) ‖et∆�u0‖Ṁ4,6 ≤
√

‖et∆�u0‖Ṁ2,3‖et∆�u0‖∞ ≤
√
Ct−1/4‖�u0‖Ṁ2,3 .

Thus,
(
et∆�u0

)
0<t<T

belongs to the space (ET )3 defined in Theorem 1,
point (A) (T < ∞) or point (B) (T = ∞). Then, the proof of points (A)
and (B) relies on the estimates

(24) ‖e(t−s)∆
P�∇.(�u⊗ �v)‖Ṁ4,6 ≤ C

1

(t− s)1/2 s3/4
s1/4‖�u‖Ṁ4,6 s1/2‖�v‖∞

and

‖e(t−s)∆
P�∇.(�u⊗ �v)‖∞

≤ C
1√
t− s

min

(
s1/4‖�u‖Ṁ4,6s1/4‖�v‖Ṁ4,6√

t− s
√
s

,

√
s‖�u‖∞

√
s‖�v‖∞

s

)
(25)
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which prove that the bilinear operator B is bounded on (ET )3:

(26) ‖B(�u,�v)‖ET
≤ C0‖�u‖ET

‖�v‖ET

where C0 does not depend on T ∈ (0,+∞]. Since we have

(27) ‖et∆�u0‖ET
≤ C‖�u0‖Ṁ2,3

and

(28) lim
T→0

‖et∆�u0‖ET
= 0 when �u0 ∈ (M̃2,3)3,

we get the convergence of �u(n) in (ET )3 when ‖et∆�u0‖ET
≤ 1

4C0
, i.e. when �u0

is small (T = +∞) or when �u0 is regular and T is small enough. Moreover,
B is obviously bounded from (ET )3 × (ET )3 to (L∞((0, T ), Ṁ2,3)3. Thus, the
convergence of �u(n) to a solution �u holds as well in the norm of (L∞(Ṁ2,3)3

as in the norm of (ET )3. Moreover, when �u0 is regular, it is easy to check by
induction on n that �u(n) belongs to the space

{�f ∈ (ET )3 / lim
t→0

t1/4‖�f‖Ṁ4,6 = lim
t→0

t1/2‖�f‖∞ = 0} ∩ C([0, T ], (M̃2,3)3)

which is closed in (ET )3∩(L∞(Ṁ2,3)3. Thus, one gets the proof of points (A)
and (B) of Theorem 1.

3. Maximal solutions

The Navier–Stokes equations are locally well-posed in L∞, since the bilinear
operator B is bounded on (FT )3, where FT is defined as

f ∈ FT ⇔f ∈ L2
loc((0, T ) × R

3) and sup
0<t<T

‖f(t, .)‖∞ <∞

and normed by
‖f‖FT

= sup
0<t<T

‖f(t, .)‖∞.

We easily can check that

(29) ‖B(�u,�v)(t, .)‖∞ ≤ C0t
1
2 sup

0<s<t
‖�u(s, .)‖∞ sup

0<s<t
‖�v(s, .)‖∞.

so that, by lemma 1 or 2, we may conclude that the Navier–Stokes equations
associated to �u0 ∈ (L∞)3

(30) �u = et∆�u0 −
∫ t

0

e(t−s)∆
P�∇.(�u⊗ �u) ds
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has a (unique) mild solution in (FT )3 with

(31) T =
1

(4C0‖�u0‖∞)2
.

Thus, the solution described in point (A) of Theorem 1 can be continued on
a maximal interval [0, T ∗), with

(32) T ∗ = +∞ or lim inf
t→T ∗

√
T ∗ − t‖�u(t, .)‖∞ >

1

4C0
.

This maximal solution remains in Ṁ2,3:

Proposition 1. Let �u0 ∈ (M̃2,3)3 and let �u be the maximal continuation
in L∞

loc((0, T
∗), (L∞)3) of the mild solution associated to �u0 by Theorem 1.

Then, �u ∈ C([0, T ∗), (M̃2,3)3).

This is a direct consequence of Theorem 1. Indeed, if T < T ∗ is such
that �u ∈ C([0, T ), (M̃2,3)3) and if δ ∈ (0, T ), then �u is uniformly bounded on
[δ, T ]; moreover, we have, for t ∈ [δ, T ],

(33) �u(t, .) = e(t−δ)∆�u(δ, .) −
∫ t

δ

e(t−s)∆
P�∇.(�u⊗ �u) ds,

hence

‖�u(t, .)‖Ṁ2,3 ≤ ‖�u(δ, .)‖Ṁ2,3

+ C sup
δ≤s≤T

‖�u(s, .)‖∞
∫ t

δ

1

(t− s)
‖�u(s, .)‖Ṁ2,3 ds(34)

and the Gronwall lemma shows that the norm ‖�u(t, .)‖Ṁ2,3 remains bounded
as t → T . If 0 < t0 < T , the Kato algorithm provides a mild solution in
C([t0, t0 + t1], (M̃

2,3)3) where t1 is such that, for a positive constant ε0,

sup
0<t<t1

t1/4‖et∆�u(t0, .)‖Ṁ4,6 + t1/2‖et∆�u(t0, .)‖∞ ≤ ε0,

hence, at least, for t1 such that

t
1/4
1

√
‖�u(t0, .)‖Ṁ2,3‖�u(t0, .)‖∞ + t

1/2
1 ‖�u(t0, .)‖∞ ≤ ε0,

while the same Kato algorithm provides a mild solution in L∞([t0, t0 +
t2], (L

∞)3) where t2 is such that, for a positive constant ε1,

t
1/2
2 ‖�u(t0, .)‖∞ ≤ ε1.

Moreover, by uniqueness in L∞([t0, t0 + t2], (L
∞)3), this mild solution co-

incides with the maximal solution �u. Thus, we may conclude that �u re-
mains in C([0, t0 + inf(t1, t2)), (M̃

2,3)3) and that we may choose t0 such that
t0 + inf(t1, t2) > T . This proves Proposition 1.
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4. Global weak solutions for the Navier–Stokes equa-
tions

The proof of Point (C) in Theorem 1 is based on some local energy estimates
for the solution of the mollified equations

(35 − ε)

⎧⎪⎨
⎪⎩

∂t�uε = ∆�uε − P�∇.((�uε ∗ ωε) ⊗ �uε)

�∇.�uε = 0

�uε(0, .)= �u0

These estimates are described in [18] in the study of the Navier–Stokes equa-
tions in L2

uloc, where L2
uloc is the space of uniformly locally square integrable

functions:

f ∈ L2
uloc ⇔ sup

x0∈R3

∫
‖x−x0‖<1

|f(x)|2 dx <∞
normed with

‖f‖L2
uloc

= sup
x0∈R3

√∫
‖x−x0‖<1

|f(x)|2 dx.

We recall the main result proved in [18]:

Proposition 2. Let �u0 ∈ (L2
uloc(R

3))3 be such that �∇.�u0 = 0. Define α0 =
‖�u0‖L2

uloc
and α1 = min(1, α0). Then, there exists a positive constant C0

(which does not depend on �u nor on ε) such that the equations (35− ε) have

a solution �uε on (0, T0) × R
3 with T0 = min(1,

α2
1

α2
0C4

0
) and such that for all

0 < t < T0 we have

(36) ‖�uε(t, .)‖L2
uloc

≤
√
C0‖�u0‖L2

uloc

(
1 − α2

0C
4
0

α2
1

t
)−1/4

and

(37) sup
x0∈R3

∫ t

0

∫
‖x−x0‖<1

|�∇⊗�uε(s, x))| 2dx ds ≤ C0‖�u0‖2
L2

uloc

(
1− α2

0C
4
0

α2
1

t
)−1/2

.

We now use the scaling property of the Navier–Stokes equations. When �vε

is a solution on (0, T ) × R
3 of the Cauchy problem associated to equations

(35− ε) and initial value �v0, then, for every λ > 0, λ�vε(λ
2t, λx) is a solution

on (0, λ−2T ) × R
3 of the Cauchy problem associated to equations (35 − ε

λ
)

with initial value λ�v0(λx).

We now use the following points:

- we have uniqueness of the solutions of (35−ε) in the space L∞((L2
uloc)

3)

- the constant C0 in Proposition 2 does not depend on ε

- when u ∈ Ṁ2,3, then supλ>0 ‖λu(λx)‖L2
uloc

= ‖u‖Ṁ2,3.
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Thus, applying Proposition 2 to λ�u0(λx) and to equations (35 − ε
λ
), we

find a solution �v ε
λ

defined on (0, T0) where T0 depends only on ‖�u0‖Ṁ2,3 and
not on ε nor λ, hence the solution �uε of (35 − ε) associated to �u0 satisfies
�uε = 1

λ
�v ε

λ
( t

λ2 ,
x
λ
), hence is defined on (0, λ2T0) and satisfies for all 0 < t <

λ2T0

(38) sup
x0∈R3

∫
‖x−x0‖<λ

|�uε(t, x)|2 dx ≤ C0λ‖λu0(λx)‖2
L2

uloc

(
1 − α2

0C
4
0

α2
1λ

2
t
)−1/2

and

sup
x0∈R3

∫ t

0

∫
‖x−x0‖<λ

|�∇⊗ �uε(s, x))|2 dx ds

≤ C0λ‖λu0(λx)‖2
L2

uloc

(
1 − α2

0C
4
0

α2
1λ

2
t
)−1/2

.(39)

Since �uε is defined on (0, λ2T0) for every positive λ, �uε is defined on (0,+∞).
Moreover, we may estimate

∫
‖x−x0‖<R

|�uε(t, x)|2 dx by using (38): if t ≤
1
4
R2T0, then∫

‖x−x0‖<R

|�uε(t, x)|2 dx ≤ C0R‖Ru0(Rx)‖2
L2

uloc

(
1 − α2

0C
4
0

α2
1R

2
t
)−1/2

≤ 2C0R‖u0‖2
Ṁ2,3 ,

while if t ≥ 1
4
R2T0 we have∫

‖x−x0‖<R

|�uε(t, x)|2 dx ≤
∫
‖x−x0‖<

�
4t
T0

|�uε(t, x)|2 dx ≤ 2C0

√
4t

T0
‖u0‖2

Ṁ2,3 .

Thus, we have proved

(40) sup
ε>0

sup
x0∈R3, R>0, t>0

1

R+
√
t

∫
‖x−x0‖<R

|�uε(t, x)|2 dx <∞.

and we get similarly

(41) sup
ε>0

sup
x0∈R3, t>0

1√
t

∫ t

0

∫
‖x−x0‖<

√
t

|�∇⊗ �uε(s, x)|2 ds dx <∞.

Those estimates then allows one to use the limiting process of Leray [21] to
extract a subsequence �uεn that is convergent to a solution �u of the Navier-
Stokes equations associated to �u0. More precisely, when εn converges to 0, we
have for all φ ∈ D((0, T0)×R

3) strong convergence of φ�uε in Lp((0, T0), (L
2)3)

for all p < ∞ and weak convergence in L2((0, T0), (H
1)3)). The details of

the proof (and the proof of the local energy inequality) are exactly similar
to the case of weak solutions in L2

uloc [18].
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5. Comparison of weak and mild solutions

If �u0 ∈ (M̃2,3)3, we have a maximal regular solution which is described by
Point (A) of Theorem 1 and Proposition 1, and global weak solutions which
are described by Point (C) if Theorem 1. As a matter of fact, those solutions
coincide on the domain of definition of the regular solution. We have more
precisely the following convergence theorem:

Theorem 2. Let �u0 ∈ (M̃2,3)3 and let �u be the maximal continuation in
L∞

loc((0, T
∗), (L∞)3) of the mild solution associated to �u0 by Theorem 1, and

let �uε be the solution of the mollified equations (9).
Then, for every T∈(0, T ∗), there exists a positive εT such that, for every

ε ∈ (0, εT ), �uε ∈ C([0, T ], (M̃2,3)3) and moreover, we have

(42) lim
ε→0

‖�u− �uε‖C([0,T ],(M̃2,3)3) = 0.

Indeed, we have, for any positive θ,

(43) ‖B(�u,�v)‖Eθ
≤ C0‖�u‖Eθ

‖�v‖Eθ

and

(44) ‖B(�u ∗ ωε, �v)‖Eθ
≤ C0‖�u ∗ ωε‖Eθ

‖�v‖Eθ
≤ C0‖�u‖Eθ

‖�v‖Eθ

where the positive constant C0 does not depend on θ. If �v0 ∈ (M̃2,3)3)
satisfies the inequality

‖et∆�v0‖Eθ
≤ 1

4C0
,

then the Kato algorithm provides a mild solution in C([0, θ], (M̃2,3)3) of the
Navier-Stokes equations or of the mollified Navier–Stokes equations asso-
ciated to the initial value �v0. By compactness of [0, T ], hence of the set
{�u(t, .) / 0 ≤ t ≤ T} in (M̃2,3)3, there exists a positive θ such that

(45) sup
0≤t≤T

‖es∆�u(t, .)‖Eθ
≤ 1

16C0

Now, we are going to show that, if t0 ∈ [0, T ], if �uε(t0, .) ∈ (M̃2,3)3 for
0 < ε < ε(t0) and limε→0 ‖�u(t0, .) − �uε(t0, .)‖Ṁ2,3 = 0, then there exists a
positive η(t0) such that, for 0 < ε < η(t0), �uε ∈ C([t0, t0 + θ], (M̃2,3)3) and

lim
ε→0

‖�u− �uε‖C([t0,t0+θ],(M̃2,3)3) = 0.

Since θ does not depend on t0, we shall have proved the theorem.
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Since limε→0 ‖�u(t0, .) − �uε(t0, .)‖Ṁ2,3 = 0, we find that

lim
ε→0

‖et∆�u(t0, .) − et∆�uε(t0, .)‖Eθ
= 0.

Thus, there exists a positive η(t0) such that, for 0 < ε < η(t0),

‖et∆�uε(t0, .)‖Eθ
≤ 1

8C0

.

This proves that, for 0 < ε < η(t0), �uε ∈ C([t0, t0 + θ], (M̃2,3)3), with

‖�uε(t0 + t, .)‖Eθ
≤ 1

4C0

.

Now, for 0 ≤ t ≤ θ, we define �w(t, .) = �u(t0 + t, .) and �wε(t, .) = �uε(t0 + t, .);
we have

�wε(t, .) − �w(t, .) = et∆(�uε(t0, .) − �u(t0, .)) +B(�w, �w − �wε)

+B((�w − �wε) ∗ ωε, �wε) +B(�w − (�w ∗ ωε), �wε)

which gives

‖�wε(t, .) − �w(t, .)‖Eθ
≤ ‖et∆(�uε(t0, .) − �u(t0, .))‖Eθ

+ C0‖�w‖Eθ
‖�w − �wε‖Eθ

+ C0‖(�w − �wε) ∗ ωε‖Eθ
‖�wε‖Eθ

+ C0‖�w − �w ∗ ωε‖Eθ
‖�wε‖Eθ

≤ C‖�uε(t0, .) − �u(t0, .)‖Ṁ2,3

+ C0
1

4C0

‖�w − �wε‖Eθ
+ C0‖�w − �wε‖Eθ

1

4C0

+ C0‖�w − �w ∗ ωε‖Eθ

1

4C0

and finally

(46) ‖�wε(t, .) − �w(t, .)‖Eθ
≤ 2C‖�uε(t0, .) − �u(t0, .)‖Ṁ2,3 +

1

2
‖�w − �w ∗ ωε‖Eθ

.

The operators f �→ f ∗ωε are equicontinuous on Eθ and when ϕ ∈ D([0, θ]×
R

3) the functions ϕ ∗ ωε converge to ϕ in D (hence in Eθ) as ε goes to O.
Moreover, �w belongs to the closure of (D([0, θ]×R

3))3 in (Eθ)
3. Thus, we have

limε→0 ‖�w − �w ∗ ωε‖Eθ
= 0. Finally, we get limε→0 ‖�wε(t, .) − �w(t, .)‖Eθ

= 0,
which proves that limε→0 ‖�u− �uε‖C([t0,t0+θ],(M̃2,3)3) = 0.
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6. The condition limt→0
√
t‖�u‖∞ = 0

The results described above may be partially extended to the case when �u0 /∈
(M̃2,3)3, provided that we assume that �u0 ∈ (Ṁ2,3)3 and lim

t→0

√
t‖et∆�u0‖∞=0.

Under those assumptions, we have the following results:

i) local existence : there exists a positive T = T (�u0) such that the se-
quence �u(n) defined by

�u(0) = et∆�u0 and �u(n+1) = et∆�u0 − B(�u(n), �u(n))

remains bounded in the space (ET )3 where ET is defined as

f ∈ ET ⇐⇒

⎧⎪⎪⎨
⎪⎪⎩
f ∈ L2

loc((0, T ) × R
3),

sup0<t<T t
1/4‖f(t, .)‖Ṁ4,6 <∞ and

sup0<t<T t
1/2‖f(t, .)‖∞ <∞

Moreover, the sequence �u(n) converges in (ET )3 to a solution �u of (7)
which belongs to C([0, T ], (Ṁ2,3)3) and satisfies limt→0

√
t‖�u‖∞ = 0.

ii) uniqueness : if �u1 and �u2 are two solutions of (7) (associated to the
same initial value �u0) which satisfy (for j = 1, 2)

�uj ∈ L∞([0, T ], (Ṁ2,3)3) and lim
t→0

√
t‖�uj‖∞ = 0,

then �u1 = �u2.

iii) maximal solutions : let �u be the maximal continuation in L∞
loc((0, T

∗),
(L∞)3) of the mild solution associated to �u0 by Point i). Then, �u ∈
C((0, T ∗), (M̃2,3)3). More precisely, B(�u, �u) is locally Hölderian (of
exponent 1/2) [27] [18] and is continuous at t = 0. However, t �→ et∆�u0

may be not (strongly) continuous at t = 0.

iv) weak solutions : we cannot identify the weak solutions given by Point C)
in Theorem 1 to the maximal solution given by Point iii). However,
if �u is such a weak solution and if moreover �u ∈ L∞

loc((0, T
∗), (L∞)3)

with limt→0

√
t‖�u‖∞ = 0, then �u is the maximal solution given by

Point iii). This is a direct consequence of Point ii), since in that case
�u obviously belongs to L∞([0, T ], (Ṁ2,3)3) for every T < T ∗: indeed,
we already know that

∫
B(x0,R)

|�u(t, x)|2 dx ≤ C(R+
√
t); moreover, we

have |�u(t, x)| ≤ CT t
−1/2, hence

∫
B(x0,R)

|�u(t, x)|2 dx ≤ C ′
TR

3t−1, and

we conclude since min(R+
√
t, 2R3t−1) = 2R.
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7. Comparison of mild solutions

When �u0 ∈ (Ṁ2,3)3, Kato’s algorithm may converge to a solution of the
Navier–Stokes equations on other norms than the norm of ET . Indeed, we
have seen that there exists a positive constant C0 such that

(47) ‖B(�u,�v)‖ET
≤ C0‖�u‖ET

‖�v‖ET
;

Thus, the sequence �u(n) defined by

�u(0) = et∆�u0 and �u(n+1) = et∆�u0 − B(�u(n), �u(n))

will converge in E3
T to a solution �u of (7), as soon as ‖et∆�u0‖ET

≤ 1
4C0

.

On the other hand, we may use the embedding Ṁ2,3 ⊂ BMO(−1). Koch
and Tataru [13] have proved that there exists a positive constant C1 such
that

(48) ‖B(�u,�v)‖GT
≤ C0‖�u‖GT

‖�v‖GT

where GT is defined as

f ∈ GT ⇐⇒

⎧⎪⎪⎨
⎪⎪⎩
f ∈ L2

loc((0, T ) × R
3)

sup0<t<T, x0∈R3 t−3/2
∫ t

0

∫
B(x0,

√
t)
|f(s, x)|2 dx ds <∞

sup0<t<T t
1/2‖f(t, .)‖∞ <∞

Thus, the sequence �u(n) will converge in G3
T to a solution �u of (7), as soon

as ‖et∆�u0‖GT
≤ 1

4C1
. Due to Lemma 3, this sequence will then satisfy

(49) sup
0<t<T

√
t‖�u(n+1) − �u(n)‖∞ ≤ C

1

(n+ 1)2
.

We may as well use the embedding L3,∞ ⊂ Ṁ2,3. Meyer [27] has proved
that there exists a positive constant C2 such that

(50) ‖B(�u,�v)‖HT
≤ C2‖�u‖HT

‖�v‖HT

where HT is defined as HT = Cw([0, T ], L3,∞(R3)) (f ∈ HT means that f
is continuous and bounded from (0, T ] to L3,∞ and is weakly continuous at
t = 0). Thus, the sequence �u(n) will converge in H3

T to a solution �u of (7), as
soon as ‖et∆�u0‖HT

≤ 1
4C2

. Due to Lemma 3, this sequence will then satisfy

(51) sup
0<t<T

‖�u(n+1) − �u(n)‖Ṁ2,3 ≤ C
1

(n+ 1)2
.
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A frequently asked question on mild solutions is the regularity of those
solutions. Since Meyer’s solutions do not use the smoothing properties of
the heat kernel, one may wonder if the solution �u obtained in (HT )3 will
satisfy sup0<t<T

√
t‖�u(t, .)‖∞ < ∞. Such a question is raised for instance

in [9]. As a matter of fact, the answer is positive, due to the persistency
formalism developed in [7], [18], [19] which gives a more precise answer:

Theorem 3. Let �u0 ∈ (Ṁ2,3(R3))3 with �∇.�u0 = 0. Let the sequence �u(n) be
defined by

(52) �u(0) = et∆�u0 and �u(n+1) = et∆�u0 −B(�u(n), �u(n)).

Let T ∈ (0,+∞]. Then the following assertions are equivalent:

(A)
∑
n∈N

sup
0<t<T

‖�u(n+1)(t, .) − �u(n)(t, .)‖Ṁ2,3 <∞

(B)
∑
n∈N

sup
0<t<T

√
t‖�u(n+1)(t, .) − �u(n)(t, .)‖∞ <∞

Let AT and BT be the norms

AT (f) = sup
0<t<T

‖f(t, .)‖Ṁ2,3 and BT (f) =
√
t‖f(t, .)‖∞.

We easily get

AT (B(�u,�v)) ≤ Cmin(AT (�u)BT (�v), BT (�u)AT (�v))

≤ C
√
AT (�u)BT (�v)BT (�u)AT (�v).(53)

On the other hand, we have, for 0 < τ < t < T

‖B(�u,�v))‖∞ ≤ C

∫ τ

0

ds

(t− s)3/2
AT (�u)AT (�v) + C

∫ t

τ

ds

s
√
t− s

BT (�u)BT (�v).

Hence, we have

‖B(�u,�v))‖∞ ≤ C(t− τ)−1/2AT (�u)AT (�v) + Cτ−1
√
t− τBT (�u)BT (�v).

For

τ = t
BT (�u)BT (�v)

AT (�u)AT (�v) +BT (�u)BT (�v)

we find

(54) BT (B(�u,�v)) ≤ C
√
AT (�u)AT (�v)(AT (�u)AT (�v) +BT (�u)BT (�v)).
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Inequalities (53) and (54) then give

AT (B(�u,�v))+BT (B(�u,�v))

≤ C
√
AT (�u)AT (�v)(AT (�u) +BT (�u))(AT (�v) +BT (�v)).(55)

From (55) (to get (A) ⇒ (B)) and (53) (to get (B) ⇒ (A)), we see that
Theorem 3 is a direct consequence of the following lemma:

Lemma 4. Let N1 and N2 be two norms on a vector space E and T a
bilinear operator on E such that there exists a positive constant C0 such that

(56) ∀x, y ∈ E N2(T (x, y)) ≤ C0

√
N1(x)N2(x)N1(y)N2(y).

Let x0 ∈ E and let the sequence (xn) be defined by

(57) xn+1 = T (xn, xn).

If
∑

n∈N
N1(xn+1 − xn) <∞, then

∑
n∈N

N2(xn+1 − xn) <∞.

Indeed, let α0 =N1(x0), αn+1 =N1(xn+1−xn) and, similarly, β0 =N2(x0),
βn+1 =N2(xn+1 − xn). We write

xn+2 − xn+1 = T (xn+1, xn+1) − T (xn, xn)

= T (xn+1 − xn, xn+1) + T (xn, xn+1 − xn),

hence

βn+2 ≤ C0

√√√√2αn+1βn+1

( n+1∑
k=0

αk

)( n+1∑
j=0

βj

)
(58)

≤ 1

2
βn+1 + C2

0αn+1

( n+1∑
k=0

αk

)( n+1∑
j=0

βj

)
.

Now, if N0 is big enough to grant that

C2
0

( +∞∑
k=N0+1

αk+1

)( +∞∑
j=0

αj

)
≤ 1

4

we get that, for N ≥ N0 + 2 we have

N∑
j=0

βj ≤ β0 + β1 +
1

2

N−1∑
j=1

βj +

N0∑
j=1

C2
0αj

( j∑
k=0

αk

)( j∑
l=0

βl

)
+

1

4

N−1∑
j=0

βj

and thus

(59)

∞∑
j=0

βj ≤ 4

(
β0 + β1 +

N0∑
j=1

C2
0αj

( j∑
k=0

αk

)( j∑
l=0

βl

))
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8. Serrin’s uniqueness criterion

Recall that we consider the Navier-Stokes equations on the whole space R
3:

(60)

{ ∃p ∈ D′((0, T ) × R
3) ∂t�u= ∆�u− �∇.(�u⊗ �u) − �∇p

�∇.�u= 0

We shall speak of weak solutions when the derivatives in (60) are taken in
the sense of distributions theory.

Leray [21] studied the Cauchy initial value problem for equations (60)
with a square-integrable initial value. He proved the existence of weak so-
lutions, which satisfy moreover an energy inequality:

Definition 2 (Leray solutions). A Leray solution on (0, T ) for the Navier-
Stokes equations with initial value �u0 ∈ (L2)3 is a solution �u such that

i) t �→ �u(t, .) is weakly continuous from (0, T ) to (L2)3

ii) �u(t, .) converges weakly to �u0 as t→ 0+,

iii) �u ∈ L∞((0, T ), (L2)3) ∩ L2((0, T ), (Ḣ1)3),

iv) �u satisfies the Leray energy inequality

(61) for all t ∈ (0, T ), ‖�u(t, .)‖2
2 + 2

∫ t

0

∫
R3

|�∇⊗ �u|2 dx ds ≤ ‖�u0‖2
2.

Weak continuity of (a representant of) �u is a consequence of the Navier–
Stokes equations and of the hypothesis iii). An easy consequence of inequal-
ity (61) is then the strong continuity at t = 0:

lim
t→0+

‖�u− �u0‖2 = 0.

But it is still not known whether we have continuity for all time t and whether
we have uniqueness in the class of Leray solutions. Serrin’s theorem [29] gives
a criterion for uniqueness:

Proposition 3 (Serrin’s uniqueness theorem). Let �u0 ∈ (L2(R3))3 with
�∇.�u0 = 0. Assume that there exists a solution �u of the Navier-Stokes equa-
tions on (0, T )×R

3 (for some T ∈ (0,+∞]) with initial value �u0 such that :

i) �u ∈ L∞((0, T ), (L2(R3)3) ;

ii) �u ∈ L2((0, T ), (Ḣ1(R3)3) ;

iii) For some r ∈ [0, 1), �u belongs to (Lσ((0, T ), L3/r))3 with 2/σ = 1 − r.

Then, �u satisfies the Leray energy inequality and it is the unique Leray so-
lution associated to �u0 on (0, T ).
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The limit case r = 1 is dealt with Von Wahl’s theorem [31]:

Proposition 4. [Sohr and Von Wahl’s uniqueness Theorem] Let �u0 ∈
(L2(R3))3 with �∇.�u0 = 0. Assume that there exists a solution �u of the
Navier-Stokes equations on (0, T ) × R

3 (for some T ∈ (0,+∞]) with initial
value �u0 such that:

i) �u ∈ L∞((0, T ), (L2(R3)3) ;

ii) �u ∈ L2((0, T ), (H1(R3)3) ;

iii) �u belongs to (C([0, T ], L3))3.

Then, �u satisfies the Leray energy inequality and it is the unique Leray so-
lution associated to �u0 on (0, T ).

The theorem of Sohr and Von Wahl has been generalized to the case of
a solution �u ∈ (L∞([0, T ], L3))3 (instead of (C([0, T ], L3))3) by Kozono and
Sohr [14].

We sketch the proof of those well-known propositions. Let �v be another
solution associated to �u0 on (0, T ) (with associated pressure q) such that
�v ∈ L∞((0, T ), (L2(R3)3)∩L2((0, T ), (Ḣ1(R3)3). The main point is to check
the validity of the formula

(62) ∂t

∫
�u.�v dx = −2

∫
�∇⊗�u.�∇⊗�v dx+

∫
�u.(�u.�∇)�v dx−

∫
�u.(�v.�∇)�v dx.

This is checked by regularizing �u and �v: we use a smoothing function θ(t,x)=
α(t)β(x)∈D(R3+1), where α is supported in [−1, 1], with

∫∫
θdxdt = 1, and

define, for ε > 0,

θε(t, x) =
1

ε3+1
θ
( t
ε
,
x

ε

)
.

Then, θε ∗ �u and θε ∗ �v are smooth functions on (ε, T − ε) × R
3 and we may

write ∂t

(
(θε ∗ �u).(θε ∗ �v)

)
= (θε ∗ ∂t�u).(θε ∗ �v) + (θε ∗ �u).(θε ∗ ∂t�v). We then

get by an integration with respect to x :

∂t

∫
(θε ∗ �u).(θε ∗ �v) dx = −2

∫
(θε ∗ [�∇⊗ �u]).(θε ∗ [�∇⊗ �v]) dx(63)

+

∫
(θε ∗ [�u⊗ �u]).(θε ∗ [�∇⊗ �v]) dx+

∫
(θε ∗ [�v ⊗ �v]).(θε ∗ [�∇⊗ �u]) dx

We may rewrite the last summand in∫
(θε ∗ [�v ⊗ �v]).(θε ∗ [�∇⊗ �u]) dx = −

∫
(θε ∗ [�∇.(�v ⊗ �v)]).(θε ∗ �u) dx(64)

= −
∫

(θε ∗ [{�v.�∇}�v)]).(θε ∗ �u) dx
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To deal with θε ∗ [�u⊗�u], we write that the pointwise product maps L2/rḢr ×
L2/(1−r)L3/r to L2L2, hence θε ∗ [�u ⊗ �u] converges strongly to �u ⊗ �u in

(L2((0, T ) × R
3))3×3. To deal with θε ∗ [{�v.�∇}�v)], we write that the point-

wise product maps Ḣr × L2 to the pre-dual L
3

3−r of L3/r and that smooth
functions are dense in L3/r ; thus, θε ∗ [(�v.�∇)�v] converges strongly to (�v.�∇)�v

in (L
2

1+rL
3

3−r )3 while θε ∗ �u converges weakly to �u in (L
2

1−rL3/r)3. This
proves (62).

Since �u⊗ �u ∈ (L2((0, T )×R
3))3×3 and �u = et∆�u(0)− P

∫ t

0
e(t−s)∆ �∇.(�u⊗

�u) ds, t �→ �u is continuous from [0, T ] to (L2(dx))3 and (since t �→ �v is weakly
continuous from [0, T ] to (L2(dx))3) t �→ ∫

�u.�v dx is continuous. Thus, we
may integrate equality (62) and obtain

(65)

∫
�u(t, x).�v(t, x) dx+ 2

∫ t

0

∫
R3

�∇⊗ �u.�∇⊗ �v dx ds

= ‖�u0‖2
2 +

∫ t

0

∫
R3

�u.(�u.�∇)�v dx ds−
∫ t

0

∫
R3

�u.(�v.�∇)�v dx ds

Of course, this equality holds as well for �v = �u.

Now, if we assume moreover that �v satisfies the Leray inequality

(66) ‖�v(t)‖2
2 + 2

∫ t

0

‖�∇⊗ �v‖2
2 ds ≤ ‖�u0‖2

2,

we get the following inequality for �u− �v:

‖�u(t, .) − �v(t, .)‖2
2 ≤− 2

∫ t

0

∫
R3

|�∇⊗ (�u− �v)|2 dx ds

− 2

∫ t

0

∫
R3

�u.
(
(�u− �v).�∇)

�v dx ds(67)

Moreover, we have the antisymmetry property
∫ t

0

∫
R3 �u.

(
(�u− �v).�∇)

�u dx ds = 0.
We then write

(68)

∣∣∣ ∫ t

τ

∫
R3

�u.
(
(�u− �v).�∇)

(�v − �u) dx ds
∣∣∣

≤ Cr

(∫ t

τ

‖�u‖
2

1−r

L3/r ds
) 1−r

2
(∫ t

0

‖�v − �u‖2
Ḣ1 ds

) 1
2
(∫ t

τ

‖�v − �u‖
2
r

Ḣr ds
) r

2

≤ C ′
r

(∫ t

τ

‖�u‖
2

1−r

L3/r ds
) 1−r

2
(∫ t

0

‖�v − �u‖2
Ḣ1 ds

) 1+r
2

(
sup

τ<s<t
‖�v − �u‖2

2

) 1−r
2

If r < 1, we may easily conclude: we write with help of the Young
inequality

(69) C ′
ra

(1−r)/2b(1+r)/2 ≤ 1 − r

2
C ′

r
2/(1−r)

a+
1 + r

2
b
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Thus, if �u = �v on [0, τ ], we find from (67) and (68) that

(70) sup
0<s≤t

‖�u− �v‖2
2 ≤ C ′′

r

( ∫ t

τ

‖�u‖
2

1−r

L3/r ds

)1/2

sup
0<s≤t

‖�u− �v‖2
2

and uniqueness is valid on a bigger interval. By weak continuity of t �→ �v,
we find �u = �v.

If r = 1, �u belongs to (C([0, T ], L3))3; if T0 < T , then for each ε > 0 we

may split �u on [0, T0] in �u = �α+ �β with ‖�α‖L∞L3 < ε and �β ∈ (L∞((0, T0)×
R

3)3. Then we write∣∣∣ ∫ t

0

∫
R3

�u.
(
(�u− �v).�∇)

(�v − �u) dx ds
∣∣∣

≤ C‖�α‖L∞L3

∫ t

0

‖�v − �u‖2
Ḣ1 ds

+ ‖�β‖∞
(∫ t

0

∫
R3

|�∇⊗ (�v − �u)|2 dx ds
) 1

2
(∫ t

0

∫
R3

|�v − �u|2 dx ds
) 1

2
(71)

≤ 2Cε

∫ t

0

∫
R3

|�∇⊗ (�v − �u)|2 dx ds

+
( 4

Cε
‖�β‖2

∞ + Cε
)∫ t

0

∫
R3

|�v − �u|2 dx ds.

Choosing ε such that 2Cε < 1, we get that

(72) ‖�v(t, .) − �u(t, .)‖2
2 ≤

( 4

Cε
‖�β‖2

∞ + Cε
)∫ t

0

‖�v(s, .) − �u(s, .)‖2
2 ds.

The Gronwall lemma gives then that �u = �v.

Thus, the main tool in proving Propositions 3 and 4 is the facts that
when f ∈ L∞L2 ∩ L2Ḣ1, then f belongs to L2/rḢr and that the pointwise
product is bounded from Ḣr × L3/r to L2. Considering the space Ẋr of
pointwise multipliers from Ḣr to L2 then gives a direct generalization of
Propositions 3 and 4, as it has been observed in [18] [20]:

Definition 3 (Pointwise multipliers of negative order). For 0 ≤ r < 3
2
, we

define the space Ẋr(R
3) as the space of functions which are locally square

integrable on R
3 and such that pointwise multiplication with these functions

maps boundedly the Sobolev space Ḣr(R3) to L2(R3). The norm in Ẋr is
given by the operator norm of pointwise multiplication:

(73) ‖f‖Ẋr
= sup{ ‖fg‖2 / ‖g‖Ḣr ≤ 1}.

The closure of the space D of smooth test functions in Ẋr will be denoted
by X̃r.
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The spaces Ẋr have been characterized by Maz’ya [23] in terms of Sobolev
capacities. A weaker result establishes a comparison between the spaces Ẋr

and the Morrey–Campanato spaces Ṁ2,p [5] [18].

Lemma 5 (Comparison theorem). For 2 < p ≤ 3/r and 0 < r we have
Ṁp,3/r ⊂ Ẋr ⊂ Ṁ2,3/r.

Another easy result is the embedding L3/r,∞ ⊂ Ẋr for r < 3/2.

We may now state the generalization of Propositions 3 and 4:

Proposition 5. Let �u0 ∈ (L2(R3))3 with �∇.�u0 = 0. Assume that there
exists a solution �u of the Navier-Stokes equations on (0, T ) × R

3 (for some
T ∈ (0,+∞]) with initial value �u0 such that:

i) �u ∈ L∞((0, T ), (L2(R3)3) ;

ii) �u ∈ L2((0, T ), (Ḣ1(R3)3) ;

iii) For some r ∈ [0, 1), �u belongs to (Lσ((0, T ), Ẋr))
3 with 2/σ = 1 − r.

Then, �u satisfies the Leray energy inequality and it is the unique Leray so-
lution associated to �u0 on (0, T ).

A similar results holds for r = 1 when iii) is replaced by

iii’) �u belongs to (C([0, T ], X̃1))
3.

The structure of the multiplier spaces Ẋr is not easy to describe. How-
ever, when r < 1, we may replace the space Ẋr by the (greater) Morrey–
Campanato space Ṁ2,3/r :

Theorem 4. Let �u0 ∈ (L2(R3))3 with �∇.�u0 = 0. Assume that there exists
a solution �u of the Navier-Stokes equations on (0, T ) × R

3 (for some T ∈
(0,+∞]) with initial value �u0 such that:

i) �u ∈ L∞((0, T ), (L2(R3)3) ;

ii) �u ∈ L2((0, T ), (Ḣ1(R3)3) ;

iii) For some r ∈ [0, 1), �u belongs to (Lσ((0, T ), Ṁ2,3/r))3 with 2/σ = 1−r.
Then, �u satisfies the Leray energy inequality and it is the unique Leray so-
lution associated to �u0 on (0, T ).

For r = 0, we have Ṁ2,∞ = Ẋ0 = L∞, and this is Serrin’s theorem. When
0 < r < 1, we use the fact that L2 ∩ Ḣ1 ⊂ Ḃr,1

2 ⊂ Ḣr. Thus, in generalizing
Serrin’s theorem, we may replace the pointwise multipliers from Ḣr to L2 by
the pointwise multipliers from the Besov space Ḃr,1

2 to L2. We then conclude
with the following lemma:
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Lemma 6. For 0 ≤ r ≤ 3/2, we define the space M(Ḃr,1
2 �→ L2) as the

space of functions which are locally square integrable on R
3 and such that

pointwise multiplication with these functions maps boundedly the Besov space
Ḃr,1

2 (R3) to L2(R3). The norm in M(Ḃr,1
2 �→ L2) is given by the operator

norm of pointwise multiplication:

(74) ‖f‖M(Ḃr,1
2 	→L2) = sup{ ‖fg‖2 / ‖g‖Ḃr,1

2
≤ 1}.

Then, f belongs to M(Ḃr,1
2 �→ L2) if and only if f belongs to Ṁ2,3/r (with

equivalence of norms).

The embedding M(Ḃr,1
2 �→ L2) ⊂ Ṁ2,3/r is obvious: if ω ∈ D(R3) is

equal to 1 on B(0, 1), then we find that∫
B(x0,R)

|f(x)|2 dx ≤ ‖f‖2
M(Ḃr,1

2 	→L2)

∥∥∥ω(x− x0

R

)∥∥∥2

Ḃr,2
1

= R3−2r‖f‖2
M(Ḃr,1

2 	→L2)
‖ω‖2

Ḃr,2
1
.

Conversely, if f ∈ Ṁ2,3/r and g ∈ Ḃ
2,3/r
1 , then we use the decomposition

of g in a regular enough Daubechies basis of compactly supported wavelets
[26], [10], [18]. The wavelet basis is an orthonormal basis of L2(R3) which is
given as a family of functions (ψε,j,k)1≤ ε≤ 7, j ∈Z, k ∈Z3 derived through dyadic
dilations and translations from a finite set of functions (ψε)1≤ε≤7:

(75) ψε,j,k(x) = 23j/2ψε(2
jx− k)

where the functions ψε are compactly supported and of class C2. Then for
0 ≤ r < 3/2, the family (ψε,j,k)1≤ε≤7,j∈Z,k∈Z3 is a Riesz basis of Ḃr,1

2 (R3) ;
more precisely, there exists two positive constants 0 < Ar ≤ Br < ∞ such
that for all g ∈ Ḃr,1

2 (R3) we have

(76) Ar‖g‖Ḃr,1
2
≤Nr(g) ≤ Br‖g‖Ḃr,1

2 (R3)

with

(77) Nr(g) =
∑
j∈Z

2jr

√∑
k∈Z3

∑
1≤ε≤7

|〈g|ψε,j,k〉|2.

Now, we write

(78) ‖fg‖2 ≤
∑
j∈Z

∥∥∥ ∑
k∈Z3

∑
1≤ε≤7

〈g|ψε,j,k〉 ψε,j,kf
∥∥∥

2
;
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since the family (ψε,j,kf)k∈Z3, 1≤ε≤7 is (uniformly) locally finite, we find that

(79)
∥∥∥ ∑

k∈Z3

∑
1≤ε≤7

〈g|ψε,j,k〉 ψε,j,kf
∥∥∥2

2
≤ C

∑
k∈Z3

∑
1≤ε≤7

∣∣〈g|ψε,j,k〉
∣∣2∥∥ψε,j,kf

∥∥2

2

and, since ψε is bounded and compactly supported,

(80) ‖ψε,j,kf‖2
2 ≤ C23j‖f‖2

Ṁ2,3/r2
−3j(1− 2r

3
).

Thus, we get

(81) ‖fg‖2 ≤C
∑
j∈Z

√∑
k∈Z3

∑
1≤ε≤7

|〈g|ψε,j,k〉|2‖f‖2
Ṁ2,3/r2

2jr ≤ C ′‖g‖Ḃr,1
2
‖f‖Ṁ2,3/r .

Thus, Lemma 6 is proved.

Theorem 4 does not include the limit case r = 1, which is still an open
question:

Open question 1. In Theorem 4, does a similar results holds for r = 1
when iii) is replaced by

iii’) �u belongs to (C([0, T ], M̃2,3))3?

We end this section with two further remarks:

i) the condition �u ∈ (L2((0, T ), L∞))3 in the limit case r = 0 may be
modified in �u ∈ (L2((0, T ), BMO))3 [15]. In order to prove this, one
replaces poinwise multiplication with the paraproduct operator. Using
paramultipliers instead of multipliers, Germain has recently extended
Proposition 5 to negative values of r [8].

ii) If �u is a solution to the Navier–Stokes equations such that

�u ∈ (Lσ((0,∞), Ṁ2,3/r))3

with 2/σ = 1− r and 0 < r < 1, then it is easy to see that �u0 belongs
to the Besov space (Ḃr−1,σ

Ṁ2,3/r)
3 based on the Morrey–Campanato space

Ṁ2,3/r. Conversely, if �u0 belongs to the Besov space (Ḃr−1,σ

Ṁ2,3/r)
3 and has

a small enough norm in this space, then one can construct a solution
�u ∈ (Lσ((0,∞), Ṁ2,3/r))3 [16] [18].
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9. Uniqueness theorems

In 1997, Furioli, Lemarié-Rieusset and Terraneo [6] proved uniqueness of
mild solutions in C([0, T ∗), (L3)3). They extended their proof to the case of
Morrey-Campana to spaces by using the Besov spaces over Morrey-Campa-
nato spaces described by Kozono and Yamazaki [16] and found that unique-
ness holds as well in the class C([0, T ∗), (M̃p,3)3) for p > 2, where M̃p,3 is
the closure of the smooth compactly supported functions in the Morrey-
Campanato space Ṁp,3. In his thesis dissertation, May [22] [20] proved a
slightly more general result by extending the approach of Monniaux (i.e. by
using the maximal LpLq property of the heat kernel):

Proposition 6. If �u and �v are two weak solutions of the Navier-Stokes
equations on (0, T ∗) × R

3 such that �u and �v belong to C([0, T ∗), (X̃1)
3) and

have the same initial value, then �u = �v.

May’s result generalizes the results of Furioli, Lemarié–Rieusset and Ter-
raneo, but leaves open the limit case of Ṁ2,3:

Open question 2. Does uniqueness holds in (C([0, T ∗), M̃2,3))3?

The problem of uniqueness we may consider in a more general approach
is the following one:

Definition 4 (Regular critical space). A regular critical space is a Banach
space X such that we have the continuous embeddings D(R3) ⊂ X ⊂ L2

loc(R
3)

and such that moreover:

(a) for all x0 ∈ R
3 and for all f ∈ X, f(x − x0) ∈ X and ‖f‖X =

‖f(x− x0)‖X .

(b) for all λ > 0 and for all f ∈ X, f(λx) ∈ X and λ‖f(λx)‖X = ‖f‖X.

(c) D(R3) is dense in X.

We have the obvious result:

Lemma 7. Let X be a regular critical space. Then X is continuously em-
bedded in M̃2,3.

We shall then consider the problem of uniqueness in C([0, T ∗), X3):

Uniqueness problem:

Let X be a regular critical space. If �u and �v are two weak solutions of
the Navier-Stokes equations on (0, T ∗) × R

3 such that �u and �v belong to
C([0, T ∗), X3) and have the same initial value, then do we have �u = �v ?
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We may do the following remarks on this problem:

i) We can write the Navier–Stokes equations as

(82)

{
∂t�u=∆�u− P�∇ · (�u⊗ �u)

�∇.�u=0

since a solution �u ∈ C([0, T ∗), X3) vanishes at infinity in the sense of [6]
(see also [18]). Another way to write the equations is then

(83) �u = et∆�u0 − B(�u, �u)

where B is the bilinear operator

(84) B(�u,�v)(t) =

∫ t

0

e(t−s)∆
P�∇.(�u⊗ �v) ds.

ii) It is easy to check that, in a regular critical space, local uniqueness
implies global uniqueness. Local uniqueness means that, if T ∗ > 0
and if �u and �v are two weak solutions of the Navier-Stokes equations
on (0, T ∗) × R

3 such that �u and �v belong to C([0, T ∗), X3) and have
the same initial value, then there exists a positive ε such that we have
�u = �v on [0, ε]×R

3. Global uniqueness then means that we must have
�u = �v on [0, T ∗).

iii) The basic idea in Furioli, Lemarié-Rieusset and Terraneo [6] is to split
the solutions in tendency and fluctuation, and to use different esti-
mates on each term. More precisely, we consider two mild solutions
�u = et∆�u0−B(�u, �u) = et∆�u0− �w1 and �v = et∆�u0−B(�v,�v) = et∆�u0− �w2

in C([0, T ∗), X3) and write �w = �u−�v = �w2− �w1 = −B(�w,�v)−B(�u, �w),
and finally

(85) �w = B(�w1, �w) +B(�w, �w2) − B(et∆�u0, �w) −B(�w, et∆�u0).

Thus we see clearly the role of the fluctuations: they control the be-
haviour of �w. We shall use the regularization properties of the heat
kernel for the term et∆�u0 (mainly, that limt→0

√
t‖et∆�u0‖∞ = 0), while

we shall use the fact that, for i = 1 or 2, we have

lim
ε→0

sup
0≤t≤ε

‖�wi(t)‖X = 0,

thus we shall assume that the norm of �wi is very small.
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Those remarks give us a simple way for proving uniqueness of some reg-
ular solutions. First, we define fully adapted critical Banach spaces for the
Navier–Stokes equations. The notion of adapted spaces was introduced by
Cannone in his book [2]: Cannone studied Banach spaces X such that the
bilinear operator B defined by

B(�f,�g)(t) =

∫ t

0

e(t−s)∆
P�∇. �f ⊗ �g ds

is bounded from L∞((0, T ), X3) × L∞((0, T ), X3) to L∞((0, T ), X3). Ac-
cording to Cannone, a Banach space X is adapted to the Navier-Stokes
equations if the following assertions are satisfied:

1) X is a shift-invariant Banach space of distributions

2) the pointwise product between two elements of X is still well defined
as a tempered distribution

3) there is a sequence of real numbers ηj > 0, j ∈ Z, such that∑
j∈Z

2−|j| ηj <∞

and such that

∀j ∈ Z, ∀f ∈ X, ∀g ∈ X ‖∆j(fg)‖X ≤ ηj ‖f‖X ‖g‖X

IfX is a Banach space adapted (according to Cannone) to the Navier-Sto-
kes equations, then the bilinear transformB is continuous on L∞((0, T ), X3).
But this definition doesn’t work in the case of critical spaces: if the norm of
X is invariant under the dilations f �→ λf(λx) and if we have the inequalities
‖∆j(fg)‖X ≤ ηj ‖f‖X ‖g‖X, then we find that ηj = 2jη0 and thus∑

j∈Z

2−|j| ηj = ∞ .

Other definitions of adapted spaces have been proposed by Meyer and
Muschetti [27] or Auscher and Tchamitchian [1]. While those definitions
are introduced to deal with critical spaces, they don’t allow to prove the
boundedness of B on L∞((0, T ), X3), but on a smaller space of smooth
trajectories (as in the case of Theorem 1, points (A) and (B)).

However, there are some critical shift–invariant spaces E for which the
boundedness of B on L∞((0, T ), E3) is known : the first instance was given
by Le Jan and Sznitman [17] and is known since the works of Cannone as the
Besov space Ḃ2,∞

PM based on pseudo-measures [3] [18]; another instance was
then given by Yves Meyer [27]: the Lorentz space L3,∞. All those examples
can be dealt with with the following notion of fully adapted Banach spaces:
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Definition 5 (Fully adapted critical space). A fully adapted critical Banach
space for the Navier–Stokes equations is a Banach space E such that we have
the continuous embeddings D(R3) ⊂ E ⊂ L2

loc(R
3) and such that moreover:

(a) for all x0 ∈ R
3 and for all f ∈ E, f(x − x0) ∈ E and ‖f‖E =

‖f(x− x0)‖E.

(b) for all λ > 0 and for all f ∈ E, f(λx) ∈ E and λ‖f(λx)‖E = ‖f‖E.

(c) The closed unit ball of E is a metrizable compact subset of S ′(R3).

(d) e∆ maps boundedly E to the space M of pointwise multipliers of E

(e) Let F be the Banach space

F =
{
f ∈ L1

loc / ∃(fn), (gn) ∈ EN

s.t. f =
∑
n∈N

fngn and
∑
n∈N

‖fn‖E‖gn‖E <∞
}

(normed with ‖f‖F = minf=
�

n∈N
fngn

∑
n∈N

‖fn‖E‖gn‖E). There exists
a Banach space of tempered distributions G such that

i) e∆ maps boundedly F to G

ii) the real interpolation space [F,G]1/2,∞ is continuously embedded into E

iii) for all λ > 0 and for all f ∈ G, f(λx) ∈ G and ‖f(λx)‖G = ‖f‖G.

Hypothesis (c) (together with (a)) shows that E is invariant under con-
volution with an integrable kernel:

(86) ∀f ∈ E ∀g ∈ L1 f ∗ g ∈ E and ‖f ∗ g‖E ≤ ‖f‖E‖g‖1.

This hypothesis (c) is fulfilled in the case where E is the dual space of a
separable Banach space containing S as a dense subspace.

The following proposition shows why those spaces are called adapted to
the Navier–Stokes equations:

Proposition 7. Let E be a fully adapted critical space and let M=M(E �→E)
be the space of pointwise multipliers of E. For T ∈ (0,+∞), let AT and BT

be the spaces defined by

f ∈ AT ⇔ f ∈ L2
loc((0, T ) × R

3), sup
0<t<T

‖f(t, .)‖E <∞

and

f ∈ BT ⇔ f ∈ L1
loc((0, T ) × R

3), sup
0<t<T

t1/2‖f(t, .)‖M <∞.
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Then B is bounded from (AT )3 × (AT )3 to (AT )3 and from (AT )3 × (BT )3

or (BT )3 × (AT )3 to (AT )3. More precisely, there exists a constant CE such

that, for all T ∈ (0,+∞], all �u0 ∈ E3, all �f,�g ∈ (AT )3 and all �h ∈ (AT )3

we have

sup
t>0

√
t‖et∆�u0‖M ≤ CE‖�u0‖E(87)

‖B(�f,�g)‖AT
≤ CE‖�f‖AT

‖�g‖AT
(88)

and

‖B(�f,�h)‖AT
+ ‖B(�h, �f)‖AT

≤ CE‖�f‖AT
‖�h‖BT

.(89)

Since e∆ maps E to M, (87) is a direct consequence of the homogeneity of
the norm of E (and therefore of the norm of M). (89) is a direct consequence
of the convolution inequality (86). We now prove (88). We want to estimate

the norm ‖B(�f,�g)‖E. We split the integral I =
∫ t

0
e(t−s)∆

P�∇.(�f ⊗ �f) ds into
GA +HA with ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
GA =

∫ A

0

e(t−s)∆
P�∇.(�f ⊗ �g) ds

HA =

∫ t

A

e(t−s)∆
P�∇.(�f ⊗ �g) ds

We then use the inequalities⎧⎪⎪⎨
⎪⎪⎩

‖e(t−s)∆
P�∇.(�f ⊗ �g)‖F ≤C

1√
t− s

‖�f‖E‖�g‖E

‖e(t−s)∆
P�∇.(�f ⊗ �g)‖G ≤C

1

(t− s)
3
2

‖�f‖E‖�g‖E

We obtain

‖HA‖F ≤ C
√
t− A sup

0<s<t
‖�f‖E sup

0<s<t
‖�g‖E

and

‖GA‖G ≤ C
1√
t− A

sup
0<s<t

‖�f‖E sup
0<s<t

‖�g‖E.

If λ ≥ √
t, we define A(λ) = 0 so that I = HA and GA = 0; if 0 < λ <

√
t, we

define A(λ) = t−λ2. Thus, we find that, for every λ > 0, I = GA(λ) +HA(λ)

with

‖HA(λ)‖F ≤ Cλ sup
0<s<t

‖�f‖E sup
0<s<t

‖�g‖E

and

‖GA(λ)‖G ≤ C
1

λ
sup

0<s<t
‖�f‖E sup

0<s<t
‖�g‖E.
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Since such a splitting may be done for any positive λ, we obtain

‖I‖[F,G]1/2,∞ ≤ C sup
0<s<t

‖�f‖E sup
0<s<t

‖�g‖E.

Then, one easily finishes the proof of Proposition 7.

Combining (85) and Proposition 7, we easily get the following uniqueness
result:

Theorem 5. If X is a regular critical space such that X is boundedly em-
bedded into a a fully adapted critical space E, then uniqueness holds in
(C([0, T ∗), X))3.

Indeed, we have, with the notations of Proposition 7 and of formula (85)

‖�w‖AT
≤ CE‖�w‖AT

(2‖et∆�u0‖BT
+ ‖�w1‖AT

+ ‖�w2‖AT
)

with

lim
T→0

‖et∆�u0‖BT
= lim

T→0
‖�w1‖AT

= lim
T→0

‖�w2‖AT
= 0

so that �w = 0 on (0, T ) for T small enough. Thus, local (hence global)
uniqueness holds in (C([0, T ∗), X))3.

Examples of fully adapted spaces

i) the space of Le Jan and Sznitman

E = Ḃ2,∞
PM = {f ∈ S ′(R3) / f̂ ∈ L1

loc and ξ2f̂(ξ) ∈ L∞}

with F ⊂ Ḃ1,∞
PM and G = Ḃ3,1

PM

ii) the homogeneous Besov space

E = Ḃ3/p−1,∞
p where 1 ≤ p < 3

with F ⊂ Ḃ
3/p−2,∞
p and G = Ḃ

3/p,1
p

iii) the Lorentz space

E = L3,∞

with F = L3/2,∞ and G = L∞

iv) the homogeneous Morrey–Campanato spaces based on Lorentz spaces:

E = Ṁp,3
∗ where 2 < p ≤ 3
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with F = Ṁ
p/2,3/2
∗ and G = L∞. The space Ṁp,q

∗ (R3) is defined for
1 < p ≤ q <∞ as the space of locally integrable functions f such that

sup
x0∈R3

sup
0<R<∞

R3(1/q−1/p)‖1B(x0,R)f‖Lp,∞ <∞;

the predual of Ṁp,q
∗ (R3) is then the space of functions f which may

be decomposed as a series
∑

n∈N
λnfn with fn supported by a ball

B(xn, Rn) with Rn > 0, fn ∈ Lp/(p−1),1, ‖fn‖Lp/(p−1),1 ≤ R
3(1/q−1/p)
n and∑

n∈N
|λn| <∞.

All those examples however give no new information on the uniqueness
problem, since we have the embeddings (for 2 ≤ p < 3 and 2 < q ≤ 3)

(90) Ḃ2,∞
PM ⊂ Ḃ3/p−1,∞

p ⊂ L3,∞ ⊂ Ṁ q,3
∗ ⊂ Ẋ1

and thus uniqueness may be dealt with by using May’s theorem (Proposi-
tion 6).

We finish this section with an example of a regular space where unique-
ness holds but which cannot be dealt with by using either Theorem 5 or
Proposition 6:

Theorem 6. Let X be defined as the space of locally integrable functions f
such that

sup
x0∈R3

sup
0<R<∞

R−1/2‖1B(x0,R)f‖L2,1 <∞

and let X̃ be the closure of D in X. Then

a) Uniqueness holds in (C([0, T ∗), X̃))3.

b) X̃ is not included in the multiplier space Ẋ1 = M(Ḣ1 �→ L2)

c) there is no fully adapted critical space E such that X̃ ⊂ E.

The proof of (b) and (c) is easy. Indeed, let β be the bilinear operator
β(u, v) = 1√−∆

(uv). Then β is continuous from Ẋ1 × Ẋ1 to Ẋ1 (this is
a direct consequence of the characterization by Maz’ya and Verbitsky of
M(Ḣ1 �→ H−1) [25]) and from E × E to E for a fully adapted critical
space E (as is checked by writing 1√−∆

=
∫ ∞
0
et∆

√−∆ dt and adapting the

proof of Proposition 7). Thus, we shall prove (b) and (c) by checking that
β is not bounded from X̃ × X̃ to Ṁ2,3. Let ω ∈ D(R) with ω = 1 on
[−1/4, 1/4] and

∫
R
ω(t) dt = 1. We define

(91) uR(x) = Rω(Rx1)ω(Rx2)ω(x3/R)

uR ∈ X̃ and ‖uR‖X = ‖u1‖X .
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If β were bounded from X̃ × X̃ to Ṁ2,3, we would have that

lim
R→∞

β(uR, uR) ∈ Ṁ2,3 ⊂ L2
loc

(the limit being taken in the sense of distributions). But

(92) lim
R→∞

β(uR, uR) =
c0
|x|2 ∗ (δ(x1) ⊗ δ(x2) ⊗ 1) =

πc0√
x2

1 + x2
2

for a positive constant c0. Since (
√
x2

1 + x2
2)

−1 is not locally square inte-
grable, we proved (b) and (c).

In order to prove (a), we use again the equality

(93) �w = B(�w1, �w) +B(�w, �w2) − B(et∆�u0, �w) − B(�w, et∆�u0).

where we have �w ∈ C([0, T ∗), (X̃)3), �wi ∈ C([0, T ∗), (X̃)3) with �wi(0, .) = 0
for i ∈ {1, 2}, sup

√
t‖et∆�u0‖∞ < ∞ and limt→0

√
t‖et∆�u0‖∞ = 0. We then

use the inclusion X ⊂ Ṁ2,3
∗ . Since the pointwise product maps boundedly

X × Ṁ2,3
∗ to Ṁ1,3/2 and since we have

(94) Ṁ2,3
∗ = [Ṁ1,3/2, L∞]1/2,∞

we find that

sup
0<t<T

‖�w‖Ṁ2,3
∗ ≤(95)

≤ C sup
0<t<T

‖�w‖Ṁ2,3
∗ ( sup

0<t<T
‖�w1‖X + sup

0<t<T
‖�w2‖X + sup

0<t<T

√
t‖et∆�u0‖∞).

Thus, Theorem 6 is proved.
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des équations de Navier-Stokes. Preprint, 1999.

[2] Cannone, M.: Ondelettes, paraproduits et Navier–Stokes. Diderot Edi-
teur, Paris, 1995.

[3] Cannone, M. and Karch, G.: Smooth or singular solutions to the
Navier–Stokes system? J. Differential Equations 197 (2004), 247–274.

[4] Federbush, P.: Navier and Stokes meet the wavelet. Comm. Math. Phys.
155 (1993), 219–248.

[5] Fefferman, C.: The uncertainty principle. Bull. Amer. Math. Soc. (N.S.)
9 (1983), 129–206.



The Navier-Stokes equations in the critical Morrey-Campanato space 929
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