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Paraproducts with flag singularities
I. A case study

Camil Muscalu

Abstract

In this paper we prove Lp estimates for a tri-linear operator, whose
symbol is given by the product of two standard symbols, satisfying the
well known Marcinkiewicz-Hörmander-Mihlin condition. Our main
result contains in particular the classical Coifman-Meyer theorem.
This tri-linear operator is the simplest example of a large class of
multi-linear operators, which we called paraproducts with flag singu-
larities.

1. Introduction

The purpose of the present article is to start a systematic study of the Lp

boundedness properties of a new class of multi-linear operators which we
named paraproducts with flag singularities.

For any d ≥ 1 let us denote by M(Rd) the set of all bounded symbols
m ∈ L∞(Rd), smooth away from the origin and satisfying the Marcinkiewicz-
Hörmander-Mihlin condition1

(1.1) |∂αm(ξ)| � 1

|ξ||α|

for every ξ ∈ Rd \ {0} and sufficiently many multi-indices α. We say that
such a symbol m is trivial if and only if m(ξ) = 1 for every ξ ∈ Rd.

2000 Mathematics Subject Classification: 42B25.
Keywords : Paraproducts, L1,∞-sizes, L1,∞-energies, flag singularities.

1A � B simply means that there exists a universal constant C > 1 so that A ≤ CB.
We will also sometime use the notation A ∼ B to denote the statement that A � B and
B � A.
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If n ≥ 1 is a fixed integer, we also denote by Mflag(R
n) the set of all

symbols m given by arbitrary products of the form

(1.2) m(ξ) :=
∏

S⊆{1,...,n}
mS(ξS)

where mS ∈ M(Rcard(S)), the vector ξS ∈ Rcard(S) is defined by ξS := (ξi)i∈S,
while ξ ∈ Rn is the vector ξ := (ξi)

n
i=1.

Every symbol m ∈ Mflag(R
n) defines an n-linear operator Tm by the

formula

(1.3) Tm(f1, . . . , fn)(x) :=

∫
Rn

m(ξ)f̂1(ξ1) . . . f̂n(ξn)e2πix(ξ1+...+ξn)dξ

where f1, . . . , fn are Schwartz functions on the real line R.

In the particular case when all the factors (mS)S⊆{1,...,n} in (1.2) are triv-
ial the expression Tm(f1, . . . , fn)(x) becomes the product of our functions
f1(x) · · ·fn(x) and as a consequence, Hölder inequalities imply the fact that
Tm maps Lp1 × · · · × Lpn → Lp boundedly as long as 1 < p1, . . . , pn < ∞,
1/p1 + · · · + 1/pn = 1/p and 0 < p < ∞. Similar estimates hold in the
situation when all the factors (mS)S⊆{1,...,n} in (1.2) are trivial except for the
one corresponding to the set {1, . . . , n}. This deep and important fact is
a classical result in harmonic analysis known as the Coifman-Meyer theo-
rem [1, 2, 3]. Clearly, the same conclusion is also true if we assume that the
only non-trivial symbols are those corresponding to mutually disjoint sub-
sets of {1, . . . , n}, because this case can be factored out as a combination of
the previous two.

It is therefore natural to ask the following question.

Question 1.1 Is it true that Tm maps Lp1 × · · · × Lpn → Lp boundedly as
long as 1 < p1, . . . , pn < ∞, 1/p1 + · · ·+1/pn = 1/p and 0 < p < ∞ for any
m ∈Mflag(R

n) ?

The main goal of the present paper, is to give an affirmative answer to the
above question, in the simplest case which goes beyond the Coifman-Meyer
theorem. We will consider the case of a tri-linear operator whose non-trivial
factors in (1.2) are those corresponding to the subsets {1, 2} and {2, 3}.

More specifically, let a, b∈M(R2) and denote by Tab the operator given by

Tab(f1,f2,f3)(x)(1.4)

:=

∫
R3

a(ξ1, ξ2)b(ξ2, ξ3)f̂1(ξ1)f̂2(ξ2)f̂3(ξ3)e
2πix(ξ1+ξ2+ξ3)dξ1dξ2dξ3.

Our main theorem is the following.
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Theorem 1.2 The operator Tab previously defined maps Lp1×Lp2×Lp3 →Lp

as long as 1 < p1, p2, p3 < ∞, 1/p1 + 1/p2 + 1/p3 = 1/p and 0 < p < ∞.

Moreover, we will show that in this particular case there are also some
L∞-estimates available (in general, one cannot hope for any of them, as one
can easily see by taking all the factors in (1.2) to be trivial, except for the
ones corresponding to subsets which have cardinality 1). We believe however
that the answer to our Question 1.1 is affirmative in general, and that the
Lp-estimates described above are satisfied by the operators Tm in (1.3) for
all the symbols m ∈Mflag(R

n). We intend to address this general situation
in a separate, future paper.

To motivate the introduction of these paraproducts with flag singularities,
we should mention that some particular examples appeared implicitly in con-
nection with the so-called bi-est and multi-est operators studied in [7, 8, 13].

The bi-est is the tri-linear operator Tbi-est defined by the following formula

Tbi−est(f1, f2, f3)(x)(1.5)

:=

∫
ξ1<ξ2<ξ3

f̂1(ξ1)f̂2(ξ2)f̂3(ξ3)e
2πix(ξ1+ξ2+ξ3)dξ1dξ2dξ3

and we know from [7] and [8] that it satisfies many Lp-estimates of the type
described above. Its symbol χξ1<ξ2<ξ3 can be viewed as a product of two
bi-linear Hilbert transform type symbols, namely χξ1<ξ2 and χξ2<ξ3 [4], [5].
If one replaces them both with smoother symbols in the class M(R2), then
one obtains our tri-linear operator Tab in (1.4).

As mentioned in [10], the interesting fact about such operators as Tm

in (1.3), is that they have a very special multi-parameter structure which
seems to be new in harmonic analysis. This structure is specific to the
multi-linear analysis since only in this context one can construct operators
given by multi-parameter symbols which act on functions defined on the
real line.

2. Adjoint operators and interpolation

The purpose of the present section is to recall the interpolation theory
from [6], that will allow us to reduce our desired estimates in Theorem 1.2 to
some restricted weak type estimates, which are more convenient to handle.

To each generic tri-linear operator T we associate a four-linear form Λ
defined by the following formula

(2.1) Λ(f1, f2, f3, f4) :=

∫
R

T (f1, f2, f3)(x)f4(x)dx.
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There are also three adjoint operators T ∗j , j = 1, 2, 3 attached to T ,
defined by duality as follows∫

R

T ∗1(f2, f3, f4)(x)f1(x)dx := Λ(f1, f2, f3, f4),(2.2) ∫
R

T ∗2(f1, f3, f4)(x)f2(x)dx := Λ(f1, f2, f3, f4),(2.3) ∫
R

T ∗3(f1, f2, f4)(x)f3(x)dx := Λ(f1, f2, f3, f4).(2.4)

For symmetry, we will also sometimes use the notation T ∗4 := T .

The following definition has been introduced in [6].

Definition 2.1 Let (p1 , p2 , p3 , p4) be a 4-tuple of real numbers so that
1 < p1, p2, p3 ≤ ∞, 1/p1 +1/p2 +1/p3 = 1/p4 and 0 < p4 < ∞. We say that
the tri-linear operator T is of restricted weak type (p1, p2, p3, p4), if and only
if for any (Ei)

4
i=1 measurable subsets of the real line R with 0 < |Ei| < ∞

for i = 1, 2, 3, 4, there exists a subset E ′
4 ⊆ E4 with |E ′

4| ∼ |E4| so that

(2.5)
∣∣∣ ∫

R

T (f1, f2, f3)(x)f4(x)dx
∣∣∣ � |E1|1/p1|E2|1/p2|E3|1/p3|E4|1/p′4 ,

for every fi ∈ X(Ei), i = 1, 2, 3 and f4 ∈ X(E ′
4) where in general X(E) de-

notes the space of all measurable functions f supported on E with ‖f‖∞ ≤ 1
and p′4 is the dual index of p4 (note that since 1/p4 + 1/p′4 = 1, p′4 can be
negative if 0 < p4 < 1 ).

As in [7, 8] let us consider now the 3-dimensional hyperspace S defined by

S := {(α1, α2, α3, α4) ∈ R4 : α1 + α2 + α3 + α4 = 1}.

Denote by P the open interior of the convex hull of the 7 extremal points
A11, A12, A21, A22, A31, A32 and A4 in Figure 1. They all belong to S and
have the following coordinates:

A11(−1, 1, 1, 0), A12(−1, 1, 0, 1), A21(1,−1, 1, 0), A22(0, 0, 0, 1),

A31(1, 1,−1, 0), A32(0, 1,−1, 1) and A4(1, 1, 1,−2).

Denote also by P̃ the open interior of the convex hull of the 5 extremal
points A22, G1, G2, G3 and A4 where G1, G2 and G3 have the coordinates
(1, 0, 0, 0), (0, 1, 0, 0) and (0, 0, 1, 0) respectively. The following theorem will
be proved directly in the following sections.
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Figure 1: Polytope

Theorem 2.2 If a, b ∈ M(R2) are as before then, the following statements
about the operator Tab hold:

(a) There exist points (1/p1, 1/p2, 1/p3, 1/p4) ∈ P arbitrarily close to A4

so that Tab is of restricted weak type (p1, p2, p3, p4).

(b) There exist points (1/pij
1 , 1/pij

2 , 1/pij
3 , 1/pij

4 ) ∈ P arbitrarily close to Aij

so that T ∗i
ab is of restricted weak type (pij

1 , pij
2 , pij

3 , pij
4 ) for i = 1, 2, 3 and

j = 1, 2.

If we assume the above result, our main Theorem 1.2 follows immediately
from the interpolation theory developed in [6]. As a consequence of that
theory, if (p1, p2, p3, p) are so that 1 < p1, p2, p3 ≤ ∞, 1/p1+1/p2+1/p3 = 1/p
and 0 < p < ∞ then Tab maps Lp1 × Lp2 × Lp3 → Lp boundedly, as long
as the point (1/p1, 1/p2, 1/p3, 1/p) belongs to P. And this is clearly true if
(p1, p2, p3, p) satisfies the hypothesis of Theorem 1.2. In fact, in this case,

the corresponding points (1/p1, 1/p2, 1/p3, 1/p) belong to P̃ which is a subset
of P.

Moreover, since we also observe that all the points of the form (0, α, β, γ),
(α, 0, β, γ), (α, β, 0, γ) with α, β > 0, α + β + γ = 1 and (0, α̃, 0, β̃) with
α̃, β̃ > 0 α̃ + β̃ = 1 belong to P, we deduce that in addition Tab maps
L∞ × Lp × Lq → Lr, Lp × L∞ × Lq → Lr, Lp × Lq × L∞ → Lr and
L∞ × Ls × L∞ → Ls boundedly, as long as 1 < p, q, s < ∞, 0 < r < ∞ and
1/p + 1/q = 1/r.
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The only L∞ estimates that do not follow from such interpolation argu-
ments are those of the form L∞ × L∞ ×Ls → Ls and Ls ×L∞ × L∞ → Ls,
because points of the form (1/s, 0, 0, 1/s′) and (0, 0, 1/s, 1/s′) only belong to
the boundary of P. But this is not surprising since such estimates are false
in general, as one can easily see by taking f2 ≡ 1 in (1.4).

In conclusion, to have a complete understanding of the boundedness
properties of our operator Tab, it is enough to prove Theorem 2.2.

3. Discrete model operators

In this section we introduce some discrete model operators and state a gen-
eral theorem about them. Roughly speaking, this theorem says that they
satisfy the desired restricted weak type estimates in Theorem 2.2. Later on,
in Section 4, we will prove that the analysis of the operator Tab can in fact
be reduced to the analysis of these discrete models. We start with some
notations.

An interval I on the real line R is called dyadic if it is of the form
I = [2kn, 2k(n + 1)] for some k, n ∈ Z. We denote by D the set of all such
dyadic intervals. If J ∈ D is fixed, we say that a smooth function ΦJ is a
bump adapted to J if and only if the following inequalities hold

(3.1) |Φ(l)
J (x)| ≤ Cl,α

1

|J | l

1(
1 + dist(x,J)

|J |
)α

for every integer α ∈ N and sufficiently many derivatives l ∈ N, where |J | is
the length of J . If ΦJ is a bump adapted to J , we say that |J |−1/pΦJ is an
Lp-normalized bump adapted to J , for 1 ≤ p ≤ ∞. We will also sometimes
use the notation χ̃J for the approximate cutoff function defined by

(3.2) χ̃J(x) :=
(
1 +

dist(x, J)

|J |
)−10

.

Definition 3.1 A sequence of L2-normalized bumps (ΦI)I∈D adapted to
dyadic intervals I ∈ D is called a non-lacunary sequence if and only if for
each I ∈ D there exists an interval ωI(= ω|I|) symmetric with respect to the

origin so that supp Φ̂I ⊆ ωI and |ωI | ∼ |I|−1.

Definition 3.2 A sequence of L2-normalized bumps (ΦI)I∈D adapted to
dyadic intervals I ∈ D is called a lacunary sequence if and only if for
each I ∈ D there exists an interval ωI(= ω|I|) so that supp Φ̂I ⊆ ωI,
|ωI | ∼ |I|−1 ∼ dist(0, ωI) and 0 /∈ 5ωI.
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Let now consider I1,J1 ⊆ D two finite families of dyadic intervals. Let
also (Φj

I)I∈I1 for j = 1, 2, 3 be three sequences of L2- normalized bumps so
that (Φ2

I)I∈I1 is non-lacunary while (Φj
I)I∈I1 for j 
= 2 are both lacunary in

the sense of the above definitions.
We also consider (Φj

J)J∈J1 for j = 1, 2, 3 three sequences of L2- normal-
ized bumps so that at least two of them are lacunary. Then, define the
discrete model operator T1 by the formula

(3.3) T1(f1, f2, f3)(x) :=
∑
I∈I1

1

|I|1/2
〈f1, Φ

1
I〉〈B1

I (f2, f3), Φ
2
I〉Φ3

I

where

(3.4) B1
I (f2, f3)(x) :=

∑
J∈J1;|ω3

J |≤|ω2
I |;ω3

J∩ω2
I �=∅

1

|J |1/2
〈f2, Φ

1
J〉〈f3, Φ

2
J〉Φ3

J .

If k0 is a strictly positive integer, define also the operator T1,k0 by

(3.5) T1,k0(f1, f2, f3)(x) :=
∑
I∈I1

1

|I|1/2
〈f1, Φ

1
I〉〈B1

I,k0
(f2, f3), Φ

2
I〉Φ3

I

where

(3.6) B1
I,k0

(f2, f3)(x) :=
∑

J∈J1;2k0 |ω3
J |∼|ω2

I |;ω3
J∩ω2

I �=∅

1

|J |1/2
〈f2, Φ

1
J〉〈f3, Φ

2
J〉Φ3

J .

Similarly, let us now consider two other finite families of dyadic intervals
I2,J2 ⊆ D. As before, we also consider sequences (Φj

I)I∈I2, (Φj
J)J∈J2 for

j = 1, 2, 3 of L2- normalized bumps, where this time we assume that (Φ1
I)I∈I2

is non-lacunary while (Φj
I)I∈I2 are both lacunary for j 
= 1 and at least two

of the sequences (Φj
J)J∈J2 are lacunary. Using them, we define the operator

T2 by the formula

(3.7) T2(f1, f2, f3)(x) :=
∑
I∈I2

1

|I|1/2
〈B2

I (f1, f2), Φ
1
I〉〈f3, Φ

2
I〉Φ3

I

where

(3.8) B2
I (f1, f2)(x) :=

∑
J∈J2;|ω3

J |≤|ω1
I |;ω3

J∩ω1
I �=∅

1

|J |1/2
〈f1, Φ

1
J〉〈f2, Φ

2
J〉Φ3

J .

And finally, as before, for any strictly positive integer k0 define also the
operator T2,k0 by

(3.9) T2,k0(f1, f2, f3)(x) :=
∑
I∈I2

1

|I|1/2
〈B2

I,k0
(f1, f2), Φ

1
I〉〈f3, Φ

2
I〉Φ3

I
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where

(3.10) B2
I (f1, f2)(x) :=

∑
J∈J2;2k0 |ω3

J |∼|ω1
I |;ω3

J∩ω1
I �=∅

1

|J |1/2
〈f1, Φ

1
J〉〈f2, Φ

2
J〉Φ3

J .

The following theorem about these operators will be proved carefully in
the forthcoming sections.

Theorem 3.3 Our previous Theorem 2.2 holds also for all the operators
T1, T2, T1,k0, T2,k0 with bounds which are independent on k0 and the car-
dinalities of the sets I1, I2, J1, J2. Moreover, the subsets (E ′

j)
4
j=1 which

appear implicitly due to Definition 2.1, can be chosen independently on the
L2-normalized families considered above.

4. Reduction to the model operators

As we promised, the aim of the present section is to show that the analysis
of our operator Tab can be indeed reduced to the analysis of the model
operators defined in the previous section. To achieve this, we will decompose
the multipliers a(ξ1, ξ2) and b(ξ2, ξ3) separately and after that we will study
their interactions.

Fix M > 0 a big integer.

For j = 1, 2, . . . , M consider Schwartz functions Ψj so that supp Ψ̂j ⊆
10
9
[j − 1, j],Ψj = 1 on [j − 1, j] and for j = −M, −M + 1, . . . ,−1 consider

Schwartz functions Ψj so that 2 supp Ψ̂j ⊆ 10
9
[j, j+1] and Ψj = 1 on [j, j+1].

If λ is a positive real number and Ψ is a Schwartz function, we denote by

Dp
λ Ψ(x) := λ−1/p Ψ(λ−1x)

the dilation operator which preserves the Lp norm of Ψ, for 1 ≤ p ≤ ∞.

Define the new symbol ã(ξ1, ξ2) by the formula

(4.1) ã(ξ1, ξ2) :=
∑

max(|j′1|,|j′2|)=M

∫
R

D∞
2λ′ Ψ̂j′1(ξ1)D

∞
2λ′ Ψ̂j′2(ξ2)dλ′.

Clearly, by construction, ã belongs to the class M(R2). Also, things can be
arranged so that |ã(ξ1, ξ2)| ≥ c0 > 0 for every (ξ1, ξ2) ∈ R2, where c0 is a
universal constant. Roughly speaking, this ã should be understood as being

2If I is an interval, we denote by cI(c > 0) the interval with the same center as I and
whose length is c times the length of I
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essentially a decomposition of unity in frequency space into a series of smooth
functions, supported on rectangular annuli. Then, we write a(ξ1, ξ2) as

a(ξ1, ξ2) =
a(ξ1, ξ2)

ã(ξ1, ξ2)
· ã(ξ1, ξ2) := ˜̃a(ξ1, ξ2) · ã(ξ1, ξ2)

=
∑

max(|j′1|,|j′2|)=M

∫
R

(˜̃a(ξ1, ξ2)D
∞
2λ′ Ψ̂j′1(ξ1)D

∞
2λ′ Ψ̂j′2(ξ2)

)
dλ′(4.2)

and observe that ˜̃a(ξ1, ξ2) has the same properties as a(ξ1, ξ2).

Fix now j′1, j
′
2 with max(|j′1|, |j′2|) = M and λ′ ∈ R. By taking advantage

of the fact that ˜̃a ∈ M(R2), one can write it on the support of D∞
2λ′ Ψ̂j′1 ⊗

D∞
2λ′ Ψ̂j′2 as a double Fourier series and this allows us to decompose the inner

term in (4.2) as∑
n′

1,n′
2∈Z

C(a)
j′1,j′2
λ′,n′

1,n′
2

(
D∞

2λ′ Ψ̂j′1(ξ1)e
2πin′

1
9
10

2−λ′
ξ1
)(

D∞
2λ′ Ψ̂j′2(ξ2)e

2πin′
2

9
10

2−λ′
ξ2
)

:=
∑

n′
1,n′

2∈Z

C(a)
j′1,j′2
λ′,n′

1,n′
2

(
D∞

2λ′ Ψ̂
n′

1

j′1
(ξ1)

)(
D∞

2λ′ Ψ̂
n′

2

j′2
(ξ2)

)

where we denoted by Ψ
n′

1

j′1
and Ψ

n′
2

j′2
the functions defined by

Ψ̂
n′

1

j′1
(ξ1) := Ψ̂j′1(ξ1)e

2πin′
1

9
10

ξ1

and

Ψ̂
n′

2

j′2
(ξ2) := Ψ̂j′2(ξ2)e

2πin′
2

9
10

ξ2

and the corresponding constants C(a)
j′1,j′2
λ′,n′

1,n′
2

satisfy the inequalities

(4.3)
∣∣∣C(a)

j′1,j′2
λ′,n′

1,n′
2

∣∣∣ � 1

(1 + |n′
1|)1000

1

(1 + |n′
2|)1000

,

for every n′
1, n

′
2 ∈ Z, uniformly in λ′ ∈ R.

In particular, the symbol a(ξ1, ξ2) can be written as

a(ξ1, ξ2) =
∑

max(|j′1|,|j′2|)=M

∫ 1

0

∑
n′

1,n′
2∈Z

∑
k′∈Z

C(a)
j′1,j′2
k′+κ′,n′

1,n′
2

(
D∞

2k′+κ′ Ψ̂
n′

1

j′1
(ξ1)

)

×
(

D∞
2k′+κ′ Ψ̂

n′
2

j′2
(ξ2)

)
dκ′.(4.4)
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Similarly, the symbol b(ξ2, ξ3) can also be decomposed as

b(ξ2, ξ3) =
∑

max(|j′′1 |,|j′′2 |)=M

∫ 1

0

∑
n′′

1 ,n′′
2∈Z

∑
k′′∈Z

C(b)
j′′1 ,j′′2
k′′+κ′′,n′′

1 ,n′′
2

(
D∞

2k′′+κ′′ Ψ̂
n′′

1

j′′1
(ξ2)

)

×
(

D∞
2k′′+κ′′ Ψ̂

n′′
2

j′′2
(ξ3)

)
dκ′′(4.5)

where as before, the constants C(b)
j′′1 ,j′′2
k′′+κ′′,n′′

1 ,n′′
2

satisfy the inequalities

(4.6) |C(b)
j′′1 ,j′′2
k′′+κ′′,n′′

1 ,n′′
2
| � 1

(1 + |n′′
1|)1000

1

(1 + |n′′
2|)1000

,

for every n′′
1, n

′′
2 ∈ Z, uniformly in k′′ and κ′′.

As a consequence, their product a(ξ1, ξ2) · b(ξ2, ξ3) becomes

a(ξ1, ξ2) · b(ξ2, ξ3) =
∑

max(|j′1|,|j′2|)=M

∑
max(|j′′1 |,|j′′2 |)=M

∑
n′

1,n′
2∈Z

∑
n′′

1 ,n′′
2∈Z∫ 1

0

∫ 1

0

∑
k′,k′′∈Z

C(a)
j′1,j′2
k′+κ′,n′

1,n′
2
· C(b)

j′′1 ,j′′2
k′′+κ′′,n′′

1 ,n′′
2
·

×
[(

D∞
2k′+κ′ Ψ̂

n′
1

j′1
(ξ1)

)(
D∞

2k′+κ′ Ψ̂
n′

2

j′2
(ξ2)

)]
×
[(

D∞
2k′′+κ′′ Ψ̂

n′′
1

j′′1
(ξ2)

)(
D∞

2k′′+κ′′ Ψ̂
n′′

2

j′′2
(ξ3)

)]
dκ′dκ′′.(4.7)

Clearly, one has to have

(4.8) supp(D∞
2k′+κ′ Ψ̂

n′
2

j′2
) ∩ supp(D∞

2k′′+κ′′ Ψ̂
n′′

1

j′′1
) 
= ∅

otherwise, the expression in (4.7) vanishes.

Let now # be a positive integer, much bigger than log M . If k′ and k′′ are
two integers as in the sum above then, there are three possibilities: either
k′ ≥ k′′+# or k′′ ≥ k′+# or |k′−k′′| ≤ #. As a consequence, the multiplier
a(ξ1, ξ2) · b(ξ2, ξ3) can be decomposed accordingly as

a(ξ1, ξ2) · b(ξ2, ξ3) = m1(ξ1, ξ2, ξ3) + m2(ξ1, ξ2, ξ3) + m3(ξ1, ξ2, ξ3).

Since it is not difficult to see that m3 ∈ M(R2), the desired estimates for
the tri-linear operator Tm3 follow from the classical Coifman-Meyer theorem
quoted before. It is therefore enough to concentrate our attention on the
remaining operators Tm1 and Tm2 . Since their definitions are symmetric,
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we will only study the case of Tm1 where the summation in (4.7) runs over
those k′, k′′ ∈ Z having the property that k′ ≥ k′′+#. We then observe that
since # is big in comparison to log M , we have to have j′2 = −1 or j′2 = 1 in
order for (4.8) to hold. In particular, this implies that the intervals

supp(D∞
2k′+κ′ Ψ̂

n′
2

j′2
)k′∈Z

are all intersecting each other.
At this moment, let us also remind ourselves that in order to prove

restricted weak type estimates for Tm1 , we would need to understand ex-
pressions of the form∣∣∣∣∫

R

Tm1(f1, f2, f3)(x)f4(x)dx

∣∣∣∣ =

=

∣∣∣∣∫
ξ1+ξ2+ξ3+ξ4=0

m1(ξ1, ξ2, ξ3)f̂1(ξ1)f̂2(ξ2)f̂3(ξ3)f̂4(ξ4)dξ

∣∣∣∣(4.9)

and as a consequence, from now on, we will think of our tri-dimensional
vectors (ξ1, ξ2, ξ3) ∈ R3 as being part of 4 -dimensional ones (ξ1, ξ2, ξ3, ξ4) ∈
R4 for which ξ1 + ξ2 + ξ3 + ξ4 = 0.

Fix now the parameters j′1, j′2, j′′1 , j′′2 , n′
1, n′

2, n′′
1, n′′

2, k′, k′′, κ′, κ′′ so that
k′ ≥ k′′ + # and look at the corresponding inner term in (4.7). It can be
rewritten as

(4.10)
̂

Ψ
n′

1

k′,κ′,j′1
(ξ1)

̂
Ψ

n′
2

k′,κ′,j′2
(ξ2)

̂
Ψ

n′′
1

k′′,κ′′,j′′1
(ξ2)

̂
Ψ

n′′
2

k′′,κ′′,j′′2
(ξ3)

where

Ψ
n′

1

k′,κ′,j′1
:= D1

2−k′−κ′Ψ
n′

1

j′1
, Ψ

n′
2

k′,κ′,j′2
:= D1

2−k′−κ′Ψ
n′

2

j′2
,

Ψ
n′′

1

k′′,κ′′,j′′1
:= D1

2−k′′−κ′′Ψ
n′′

1

j′′1
and Ψ

n′′
2

k′′,κ′′,j′′1
:= D1

2−k′′−κ′′Ψ
n′′

2

j′′2
.

Consider now Schwartz functions Ψk′, κ′, j′1,j′2 and Ψk′′, κ′′, j′′1 ,j′′2 so that ̂Ψk′, κ′, j′1,j′2
is identically equal to 1 on the interval

−2
(
supp(

̂
Ψ

n′
1

k′,κ′, j′1
) + supp(

̂
Ψ

n′
2

k′,κ′,j′2
)
)

and is supported on a 10
9

enlargement of it, while ̂Ψk′′, κ′′, j′′1 ,j′′2 is identically
equal to 1 on the interval(

supp(
̂

Ψ
n′′

1

k′′, κ′′, j′′1
) + supp(

̂
Ψ

n′′
2

k′′, κ′′, j′′2
)
)

and is also supported on a 10
9

enlargement of it.
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Since ξ1 + ξ2 + ξ3 + ξ4 = 0, one can clearly insert these two new functions
into the previous expression (4.10), which now becomes[

̂
Ψ

n′
1

k′, κ′, j′1
(ξ1)

̂
Ψ

n′
2

k′, κ′, j′2
(ξ2) ̂Ψk′, κ′, j′1,j′2(ξ4)

]
(4.11)

×
[

̂
Ψ

n′′
1

k′′, κ′′, j′′1
(ξ2)

̂
Ψ

n′′
2

k′′, κ′′, j′′2
(ξ3) ̂Ψk′′, κ′′, j′′1 ,j′′2 (ξ2 + ξ3)

]
.

The following elementary lemmas will play an important role in our further
decomposition (see also [8]).

Lemma 4.1 Let η1, η2, η3, η4, η14, η23 be Schwartz functions. Then,∫
ξ1+ξ2+ξ3+ξ4=0

η̂1(ξ1) η̂2(ξ2)η̂3(ξ3)η̂4(ξ4)η̂14(ξ1+ξ4)η̂23(ξ2+ξ3)f̂1(ξ1)f̂2(ξ2)f̂3(ξ3)f̂4(ξ4)dξ

=

∫
R

[(f1 ∗ η1)(f4 ∗ η4)] ∗ η14 · [(f2 ∗ η2)(f3 ∗ η3)] ∗ η23dx.

Proof We write the left hand side of the identity as∫
ξ1+ξ2+ξ3+ξ4=0

f̂1 ∗ η1(ξ1)f̂4 ∗ η4(ξ4)η̂14(ξ1 + ξ4)f̂2 ∗ η2(ξ2)f̂3 ∗ η3(ξ3)η̂23(ξ2 + ξ3)dξ

=

∫
R

[∫
ξ1+ξ4=λ

f̂1 ∗ η1(ξ1)f̂4 ∗ η4(ξ4)dξ1dξ4

]
η̂14(λ)

×
[∫

ξ2+ξ3=−λ

f̂2 ∗ η2(ξ2)f̂3 ∗ η3(ξ3)dξ2dξ3

]
η̂23(−λ)dλ

=

∫
R

[
̂(f1 ∗ η1)(f4 ∗ η4)(λ)η̂14(λ)

] [
̂(f2 ∗ η2)(f3 ∗ η3)(−λ)η̂23(−λ)

]
dλ

=

∫
R

̂[(f1 ∗ η1)(f4 ∗ η4)] ∗ η14(λ) · ̂[(f2 ∗ η2)(f3 ∗ η3)] ∗ η23(−λ)dλ

and this, by Plancherel, is equal to the right hand side of the identity. �
Lemma 4.2 Let k ∈ Z be a fixed integer, F1, F2, F3 three functions in
L1∩L∞(R) and Φ1, Φ2, Φ3 three L1 normalized bumps adapted to the interval
[0, 2k]. Then,∫

R

(F1 ∗ Φ1)(x)(F2 ∗ Φ2)(x)(F3 ∗ Φ3)(x)dx(4.12)

=

∫ 1

0

∑
I∈D;|I|=2k

1

|I|1/2
〈F1, ΦI,t,1〉〈F2, ΦI,t,2〉〈F3, ΦI,t,3〉dt

where ΦI,t,j(y) := |I|1/2Fj(xI + t|I| − y) for j = 1, 2, 3 and xI is the left
hand side of the dyadic interval I.
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Proof For every j = 1, 2, 3 write

Fj ∗ Φj(x) =

∫
R

Fj(y)Φj(x − y)dy = 2−k/2〈Fj , Φx,j〉

where Φx,j(y) := 2k/2Φj(x − y).

As a consequence, the left hand side of (4.12) becomes

2−3k/2

∫
R

〈F1, Φx,1〉〈F2, Φx,2〉〈F3, Φx,3〉dx

= 2−3k/2
∑

I∈D;|I|=2k

∫
I

〈F1, Φx,1〉〈F2, Φx,2〉〈F3, Φx,3〉dx

= 2−3k/2
∑

I∈D;|I|=2k

∫ 2k

0

〈F1, ΦxI+z,1〉〈F2, ΦxI+z,2〉〈F3, ΦxI+z,3〉dz.

If we now change the variables by writing z = t|I|, then this expression
becomes precisely the right hand side of (4.12). �

As a consequence, we have the following corollary.

Corollary 4.3 Let k′, k′′ ∈ Z be as before, Ψ1, Ψ4, Ψ14 be three L1 normal-
ized bumps adapted to the interval [0, 2−k′

] and Ψ2, Ψ3, Ψ23 be three bumps
adapted to the interval [0, 2k′′

].Then,∫
ξ1+ξ2+ξ3+ξ4=0

Ψ̂1(ξ1)Ψ̂2(ξ2)Ψ̂3(ξ3)Ψ̂4(ξ4)Ψ̂14(ξ1+ξ4)

× Ψ̂23(ξ2+ξ3)f̂1(ξ1)f̂2(ξ2)f̂3(ξ3)f̂4(ξ4)dξ

=

∫ 1

0

∑
I∈D;|I|=2−k′

〈f1, ΨI,t′,1〉〈Bk′′(f2, f3), Ψ̃I,t′,14〉〈f4, ΨI,t′,4〉dt′(4.13)

where Bk′′(f2, f3) is given by

Bk′′(f2, f3)(x) =

∫ 1

0

∑
J∈D;|J |=2−k′′

〈f2, ΨJ,t′′,2〉〈f3, ΨJ,t′′,3〉Ψ̃J,t′′,23(x)dt′′

while

Ψ̃I,t′,14(y) := |I|1/2Ψ14(y − xI − t′|I|)
and

Ψ̃J,t′′,23(y) := |J |1/2Ψ23(y − xJ − t′′|J |).
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Proof By using the first Lemma 4.1, the left hand side of (4.13) is equal to∫
R

[(f1 ∗ Ψ1)(f4 ∗ Ψ4)] ∗ Ψ14(x) [(f2 ∗ Ψ2)(f3 ∗ Ψ3)] ∗ Ψ23(x)dx

=

∫
R

[(f1 ∗ Ψ1)(f4 ∗ Ψ4)] ∗ Ψ14(x)F23(x)dx

=

∫
R

(f1 ∗ Ψ1)(x)(f4 ∗ Ψ4)(x)(F23 ∗ Ψ̃14)(x)dx,

where Ψ̃14 is the reflection of Ψ14 defined by Ψ̃14(y) := Ψ14(−y) and F23 is
given by

F23(x) := [(f2 ∗ Ψ2)(f3 ∗ Ψ3)] ∗ Ψ23(x).

By using the second Lemma 4.2, this can be further decomposed as∫ 1

0

∑
I∈D;|I|=2−k′

〈f1, ΨI,t′,1〉〈F23, Ψ̃I,t′,14〉〈f4, ΨI,t′,4〉dt′

On the other hand, since 〈F23, Ψ̃I,t′,14〉 can also be written as∫
R

F23(x)Ψ̃I,t′,14(x)dx =

∫
R

[(f2 ∗ Ψ2)(f3 ∗ Ψ3)] ∗ Ψ23(x)Ψ̃I,t′,14(x)dx

=

∫
R

(f2 ∗ Ψ2)(x)(f3 ∗ Ψ3)(x)(Ψ̃I,t′,14 ∗ Ψ̃23)(x)dx,

we can apply again Lemma 4.1 and this will lead us to the desired expression.
�

Clearly, modulo the two averages over parameters t′, t′′ ∈ [0, 1], the dis-
cretized expressions in Corollary 4.3 are similar to the ones that appeared
in the definition of the model operators T1 and T1,k0 in Section 3 (one has to
consider the 4- linear form associated to them to have a perfect similarity).
Consequently, we would like to apply this corollary to the expressions ob-
tained after combining (4.11) with (4.9). We observe however that the for-
mulas in (4.11) are not precisely of the required form (we would need to have

instead of the factor
̂

Ψ
n′

2

k′,κ′,j′2
(ξ2) a similar one but depending on ξ1 + ξ4) and

so they need to be “fixed”.
Before doing this, let us first make another reduction. Write the opera-

tor Tm1 as

(4.14) Tm1 :=
∑

max(|j′1|,|j′2|)=M

∑
max(|j′′1 |,|j′′2 |)=M

∑
n′

1,n′
2∈Z

∑
n′′

1 ,n′′
2∈Z

T
�j′, �j′′
�n′, �n′′,
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where T
�j′, �j′′
�n′, �n′′ are given by the corresponding symbols in (4.7) with the ex-

pressions in (4.7) being replaced by their new formulas in (4.11) and where
the summation over k′, k′′ ∈ Z satisfies the constraint k′ ≥ k′′ + #.

We are going to prove explicitly that for each �j′ := (j′1, j
′
2) and �j′′ :=

(j′′1 , j′′2 ) the operator T
�j′, �j′′

�0,�0
:= T

�j′, �j′′ satisfies the required estimates. It will

also be clear from our proof that the same arguments give∥∥∥T �j′, �j′′
�n′, �n′′

∥∥∥
Lp1×Lp2×Lp3→Lp

� 1

(1 + |�n′|)10

1

(1 + | �n′′|)10

∥∥∥T �j′, �j′′
∥∥∥

Lp1×Lp2×Lp3→Lp
,

and this would be enough to prove our desired estimates for Tm1 , due to the
big decay in (4.3).

We now come back to the operator T
�j′, �j′′. Its symbol is given by an

infinite sum of expressions of the form (see (4.11) and (4.14))[
Ψ̂k′,κ′,j′1(ξ1)Ψ̂k′,κ′,j′2(ξ2) ̂Ψk′,κ′,j′1,j′2(ξ4)

]
(4.15)

×
[
Ψ̂k′′,κ′′,j′′1 (ξ2)Ψ̂k′′,κ′′,j′′2 (ξ3) ̂Ψk′′,κ′′,j′′1 ,j′′2 (ξ2 + ξ3)

]
,

where we suppressed the indices n′
1, n

′
2, n

′′
1, n

′′
2, since they are all equal to

zero now.
Fix then M̃ ∈ [100, 200] an integer and write the function Ψ̂k′,κ′,j′2(ξ2) as

a Taylor series as follows

Ψ̂k′,κ′,j′2(ξ2) =

�M−1∑
l=0

(−ξ3)
l
(Ψ̂k′,κ′,j′2)

(l)(ξ2 + ξ3)

l!
+ (−ξ3)

�M
R
�M
k′,κ′,j′2

(ξ2, ξ3)

M̃ !

=

�M−1∑
l=0

(−ξ3)
l

l!
(Ψ̂k′,κ′,j′2)

(l)(−ξ1 − ξ4) +
(−ξ3)

�M

M̃ !
R
�M
k′,κ′,j′2

(ξ2, ξ3),

where R
�M
k′,κ′,j′2

is the usual M̃th rest in the Taylor expansion.

Inserting this into (4.15) we rewrite (4.15) as

�M−1∑
l=0

(2k′′

2k′

)l [
Ψ̂k′, κ′, j′1(ξ1)Ψ̂k′, κ′, j′2,l(ξ1 + ξ4) ̂Ψk′, κ′, j′1,j′2(ξ4)

]
(4.16)

×
[
Ψ̂k′′, κ′′, j′′1 (ξ2) ̂Ψk′′, κ′′, j′′2 ,l(ξ3) ̂Ψk′′, κ′′, j′′1 ,j′′2 (ξ2 + ξ3)

]
+
(2k′′

2k′

)
�M

m�k,�κ,�j′, �j′′,�M(ξ1, ξ2, ξ3, ξ4),
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where the functions

Ψ̂k′,κ′,j′2,l(ξ1 + ξ4), Ψ̂k′′,κ′′,j′′2,l(ξ3) and m�k,�κ,�j′, �j′′,�M(ξ1, ξ2, ξ3, ξ4)

have the obvious definitions, so that the two expressions in (4.15) and (4.16)
to be consistent.

In particular, using (4.14) and (4.16) one can decompose T
�j′, �j′′ accord-

ingly as

T
�j′, �j′′ = T

�j′, �j′′
0 +

�M−1∑
l=1

T
�j′, �j′′
l + T

�j′, �j′′
�M

.

Since we are in the case when k′ ≥ k′′ + #, we can decompose T
�j′, �j′′ even

further as

(4.17) T
�j′, �j′′ = T

�j′, �j′′
0 +

�M−1∑
l=1

∞∑
k0=#

(2−k0)lT
�j′, �j′′
l,k0

+
∞∑

k0=#

(2−k0)
�MT

�j′, �j′′
�M,k0

.

For a fixed k0 ≥ # we observe that the multiplier corresponding to the op-

erator T
�j′, �j′′
�M,k0

which we denote by m�j′, �j′′,�M,k0
(ξ1, ξ2, ξ3) satisfies the estimates

|∂αm�j′, �j′′,�M,k0
(�ξ)| � (2k0)|α|

1

|�ξ||α|

for sufficiently many multi-indices α and as a consequence the classical
Coifman-Meyer theorem (see for instance its new proof in [11]) provides

the required estimates for T
�j′, �j′′
�M,k0

with a bound not bigger than C210k0 , which

is acceptable due to the big decay in (4.17). It is therefore enough to un-

derstand the operators T
�j′, �j′′
0 and T

�j′, �j′′
l,k0

for l = 1, . . . , M̃ − 1 and k0 ≥ #.
But their multipliers have the correct form now and to them we can apply
the discretization procedure provided by Corollary 4.3. And this will reduce
them to the model operators T1 and T1,k0 defined in Section 3. 3 Using now
Theorem 3.3 and tacking advantage of the uniformity properties described

there, the estimates for T
�j′, �j′′ follow immediately.

In conclusion, it is indeed sufficient to prove our estimates for these model
operators.

3The lacunarity and non-lacunarity assumptions are also satisfied, as one can easily
check.
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5. L1,∞-sizes and L1,∞-energies

We can now start the proof of Theorem 3.3. It is of course enough to treat
the operators T1 and T1,k0 only, since the case of T2 and T2,k0 is similar.
We denote by Λ1 and Λ1,k0 the 4 -linear forms associated with the operators
T1 and T1,k0. As in [8], since the I- spatial intervals are narrower than their
corresponding J- spatial intervals, it will be convenient to change the order
of summation in (3.3) and rewrite the form Λ1 as

(5.1) Λ1(f1, f2, f3, f4) =
∑
J∈J1

1

|J |1/2
a

(1)
J a

(2)
J a

(3)
J

where

a
(1)
J := 〈f2, Φ

1
J〉,

a
(2)
J := 〈f3, Φ

2
J〉

and

a
(3)
J :=

〈 ∑
I∈I1;ω3

J∩ω2
I �=∅;|ω3

J |≤|ω2
I |

1

|I|1/2
〈f1, Φ

1
I〉〈f4, Φ

3
I〉Φ2

I , Φ
3
J

〉
.

Similarly, we rewrite the form Λ1,k0 as

(5.2) Λ1,k0(f1, f2, f3, f4) =
∑
J∈J1

1

|J |1/2
a

(1)
J a

(2)
J a

(3)
J,k0

where

a
(3)
J,k0

:=
〈 ∑

I∈I1;ω3
J∩ω2

I �=∅;2k0 |ω3
J |∼|ω2

I |

1

|I|1/2
〈f1, Φ

1
I〉〈f4, Φ

3
I〉Φ2

I , Φ
3
J

〉
.

We know from the definition of T1 and T1,k0 in Section 3 that the family
(Φ2

I)I may be non-lacunary while (Φi
I)I for i 
= 2 are both lacunary. On the

other hand we also know that there exists a unique j = 1, 2, 3 which we fix
from now on, so that the corresponding family (Φj

J)J is non-lacunary while
(Φi

J)J for i 
= j are both lacunary.

The standard way to estimate the forms Λ1 and Λ1,k0 is to do so by
introducing some sizes and energies which in our case are going to be more
abstract variants of similar quantities considered in [11].

The following definition contains those expressions which will be useful
when estimating the form Λ1.
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Definition 5.1 Let J be a finite family of dyadic intervals and i = 1, 2, 3.
For i = j we define

sizej
i,J ((a

(i)
J )J) := sup

J∈J

| a(i)
J |

|J |1/2

and for i 
= j we define

sizej
i,J ((a

(i)
J )J) := sup

J∈J

1

|J |

∥∥∥∥∥
( ∑

J ′∈J ;J ′⊆J

| a(i)
J ′ |2
|J ′| χJ ′(x)

)1/2 ∥∥∥∥∥
1,∞

.

Similarly, for i = j we define

energyj
i,J ((a

(i)
J )J) := sup

n∈Z

sup
D

2n
(∑

J∈D

|J |
)

where D ranges over those collections of disjoint dyadic intervals J having
the property that

| a(i)
J |

|J |1/2
≥ 2n

and finally, for i 
= j we define

energyj
i,J ((a

(i)
J )J) := sup

n∈Z

sup
D

2n
(∑

J∈D

|J |
)

where this time D ranges over those collections of disjoint dyadic intervals J
having the property that

1

|J |

∥∥∥∥∥
( ∑

J ′∈J ;J ′⊆J

| a(i)
J ′ |2
|J ′| χJ ′(x)

)1/2 ∥∥∥∥∥
1,∞

≥ 2n.

The next definition will be useful when estimating the form Λ1,k0.

Definition 5.2 Let J be a finite family of dyadic intervals and k0 ≥ #.
For j = 3 we define

sizej
3,k0,J ((a

(3)
J,k0

)J) := sup
J∈J

| a(3)
J,k0

|
|J |1/2

and for j 
= 3 we define

sizej
3,k0,J ((a

(3)
J,k0

)J) := sup
J∈J

1

|J |

∥∥∥∥∥
( ∑

J ′∈J ;J ′⊆J

| a(3)
J ′,k0

|2
|J ′| χJ ′(x)

)1/2 ∥∥∥∥∥
1,∞

.
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Similarly, for j = 3 we define

energyj
3,k0,J ((a

(3)
J,k0

)J) := sup
n∈Z

sup
D

2n
(∑

J∈D

|J |
)

where D ranges over those collections of disjoint dyadic intervals J having
the property that

|a(3)
J,k0

|
|J |1/2

≥ 2n

and finally, for j 
= 3 we define

energyj
3,k0,J ((a

(3)
J,k0

)J) := sup
n∈Z

sup
D

2n(
∑
J∈D

|J |)

where this time D ranges over those collections of disjoint dyadic intervals J
having the property that

1

|J |

∥∥∥∥∥
( ∑

J ′∈J ;J ′⊆J

|a(i)
J ′,k0

|2
|J ′| χJ ′(x)

)1/2 ∥∥∥∥∥
1,∞

≥ 2n.

The following John-Nirenberg type inequality holds in this context, see [6].

Lemma 5.3 Let J be a finite family of dyadic intervals as before. Then,
for i 
= j one has

sizej
i,J ((a

(i)
J )J) ∼ sup

J∈J

1

|J |1/2

(∑
J ′⊆J

|a(i)
J ′ |2
)1/2

and similarly, if j 
= 3 one also has

sizej
3,k0,J ((a

(3)
J,k0

)J) ∼ sup
J∈J

1

|J |1/2

(∑
J ′⊆J

|a(3)
J ′,k0

|2
)1/2

.

The following lemma, which has been proven in [6], will also be very
useful.

Lemma 5.4 Let J be as before and i 
= j. Then, for every J ∈ J one has
the inequality∥∥∥∥

( ∑
J ′∈J ;J ′⊆J

|〈f, Φi
J ′〉|2

|J ′| χJ ′(x)

)1/2 ∥∥∥∥∥
1,∞

� ‖fχ̃N
J ‖1

for every positive integer N , with the implicit constants depending on it.
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The following general inequality will play a fundamental role in our fur-
ther estimates. It is an abstract variant of the corresponding Proposition 3.6
in [11].

Proposition 5.5 Let J be as before and k0 ≥ #. Then,

(5.3) |Λ1(f1, f2, f3, f4)| �
3∏

i=1

(sizej
i,J ((a

(i)
J )J))1−θi(energyj

i,J ((a
(i)
J )J))θi

for any 0 ≤ θ1, θ2, θ3 < 1 such that θ1 + θ2 + θ3 = 1, with the implicit
constants depending on θi for i = 1, 2, 3. Similarly, one also has

|Λ1,k0(f1, f2, f3, f4)|(5.4)

� (sizej
1,J ((a

(1)
J )J))1−θ1(sizej

2,J ((a
(2)
J )J))1−θ2(sizej

3,k0J ((a
(3)
J )J))1−θ3

×(energyj
1,J ((a

(1)
J )J))θ1(energyj

2,J ((a
(2)
J )J))θ2(energyj

3,k0J ((a
(3)
J )J))θ3,

for any θ1, θ2, θ3 exactly as before.

The proof of this Proposition will be presented later on. In the meantime
we will take advantage of it. In order to make it effective we would need to
further estimate all these sizes and energies in terms of certain norms involv-
ing our functions f1, f2, f3, f4. The following lemma is an easy consequence
of the previous definitions and of Lemma 5.4 (see [6]).

Lemma 5.6 Let E ⊆ R be a set of finite measure, i 
= 3 and fi+1 ∈ X(E).
Then,

sizej
i,J ((a

(i)
J )J) � sup

J∈J

1

|J |
∫

E

χ̃N
J dx,

for every integer N , with the implicit constants depending on it.

Similarly, one also has

Lemma 5.7 With the same notations as in the previous lemma, we also
have

energyj
i,J ((a

(i)
J )J) � |E|.

Proof Let n ∈ Z and D be so that the suppremum in Definition 5.2 is
attained. We also assume that i 
= j (the case i = j is in fact easier and is
left to the reader).
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Then, since the intervals J ∈ D are all disjoint, we can estimate the left
hand side of our inequality by

2n
(∑

J∈D

|J |
)

= 2n
∥∥∥∑

J∈D

χJ

∥∥∥
1

= 2n
∥∥∥∑

J∈D

χJ

∥∥∥
1,∞

�
∥∥∥∥∥∑

J∈D

1

|J |
∥∥∥( ∑

J ′∈J ;J ′⊆J

|a(i)
J ′ |2
|J ′| χJ ′(x)

)1/2∥∥∥
1,∞

χJ

∥∥∥∥∥
1,∞

�
∥∥∥∥∥∑

J∈D

( 1

|J |
∫

|fi+1|χ̃Jdx
)
χJ

∥∥∥∥∥
1,∞

�
∥∥∥∥∥∑

J∈D

(
1

|J |
∫

χEχ̃Jdx)χJ

∥∥∥∥∥
1,∞

�
∥∥∥M(χE)

∥∥∥
1,∞

� |E|,

where M is the Hardy-Littlewood maximal function and we also used Lem-
ma 5.6. �

We will also need

Lemma 5.8 Let E1, E4 ⊆ R be sets of finite measure, f3 ∈ X(E3) and
f4 ∈ X(E4). Then,

sizej
3,J ((a

(3)
J )J), sizej

3,k0J ((a
(3)
J )J)

�
(

sup
J∈J

1

|J |
∫

E1

χ̃N
J dx

)1−θ(
sup
J∈J

1

|J |
∫

E4

χ̃N
J dx

)θ

,

for any 0 < θ < 1 and for every positive integer N , with the implicit con-
stants depending on them.

Similarly, we also have

Lemma 5.9 With the same notations as in Lemma 5.8, we have

energyj
3,J ((a

(3)
J )J), energyj

3,k0J ((a
(3)
J )J)

�
(

sup
I∈I1

1

|I|
∫

E1

χ̃N
I dx

)1−θ1
(

sup
I∈I1

1

|I|
∫

E4

χ̃N
I dx

)1−θ2

|E1|θ1|E4|θ2,

for any 0 ≤ θ1, θ2 < 1 with θ1 + θ2 = 1 and for every integer N , with the
implicit constants depending on them.

The proofs of these two lemmas will be presented later on. In the mean-
time, we will take advantage of them, in order to complete the proof of our
Theorem 3.3.
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6. Estimates for T1 and T1,k0
near A4

In this section we start the proof of Theorem 3.3. Clearly, due to symmetry
considerations, it is enough to analyze the case of T1 and T1,k0 , the case of
T1 and T2,k0 being similar.

Let now (p1, p2, p3, p4) be so that (1/p1, 1/p2, 1/p3, 1/p4) ∈ D and is
arbitrarily close to A4 which has coordinates (1, 1, 1,−2). Let also E1, E2,
E3, E4 ⊆ R be measurable sets of finite measure. By scaling invariance, we
can also assume that |E4| = 1. Our goal is to construct a subset E ′

4 ⊆ E4

with |E ′
4| ∼ 1 and so that

(6.1) |Λ1(f1, f2, f3, f4)|, |Λ1,k0(f1, f2, f3, f4)| � |E1|1/p1|E2|1/p2|E3|1/p3

for every fi ∈ X(Ei), i = 1, 2, 3 and f4 ∈ X(E ′
4). As in [11] define first the

exceptional set Ω by

Ω :=
3⋃

j=1

{
M

(
χEj

|Ej |
)

> C

}
and observe that |Ω| < 1/2 if C is a big enough constant. Then, set E ′

4 :=
E4 \ Ω which clearly has the property that |E ′

4| ∼ 1.

Now, we decompose the sets J1 and I1 as

J1 :=
⋃
d≥0

J d
1 , I1 :=

⋃
d′≥0

Id′
1

where J d
1 is the set of all intervals J ∈ J1 with the property that(

1 +
dist(J, Ωc)

|J |
)

∼ 2d

and Id′
1 is the set of all intervals I ∈ I1 with the property that(

1 +
dist(I, Ωc)

|J |
)

∼ 2d′.

From the definition of Ω we have

(6.2)
1

|J |
∫

Ej

χ̃Jdx � 2d|Ej|

for j = 1, 2, 3 and since obviously the left hand side of (6.2) is also smaller
than 1, it follows that

1

|J |
∫

Ej

χ̃Jdx � 2αd|Ej|α

for every 0 ≤ α ≤ 1 and j = 1, 2, 3.
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Similarly, we also have that

1

|I|
∫

Ej

χ̃Idx � 2βd′|Ej |α

for every 0 ≤ β ≤ 1 and j = 1, 2, 3.

On the other hand, since E ′
4 ⊆ Ωc we also know that

1

|J |
∫

E′
4

χ̃N
J dx � 2−Nd and

1

|I|
∫

E′
4

χ̃N
I dx � 2−Nd′

for any integer N > 0. Using now our previous lemmas together with all
these observations, we obtain the estimates

sizej

1,J d
1
((a

(1)
J )J) � 2dα2 |E2|α2 ,

sizej

2,J d
1
((a

(2)
J )J) � 2dα3 |E3|α3 ,

sizej

3,J d
1
((a

(3)
J )J), sizej

3,k0J d
1
((a

(3)
J,k0

)J) � (2dα1 |E1|α1)1−θ(2−Nd)θ

and similarly,

energyj

1,J d
1
((a

(1)
J )J) � |E2|,

energyj

2,J d
1
((a

(2)
J )J) � |E3|,

energyj

3,J d
1
((a

(3)
J )J), energyj

3,k0J d
1
((a

(3)
J,k0

)J) � (2d′β1 |E1|β1)1−θ′1(2−Nd′)1−θ′2 |E1|θ′1
whenever 0 ≤ α1, α2, α3, β1 ≤ 1, 0 < θ < 1 and 0 ≤ θ′1, θ

′
2 < 1 with

θ′1 + θ′2 = 1.

By using now Proposition 5.5 we deduce that for any 0 ≤ θ1, θ2, θ3 < 1
with θ1 + θ2 + θ3 = 1, one can estimate the left hand side of (6.1) by

(2dα2 |E2|α2)1−θ1(2dα3 |E3|α3)1−θ2[(2d|E1|)1−θ(2−Nd)θ]1−θ3

× |E2|θ1|E3|θ2[(2d′ |E1|)1−θ′1(2−Nd′)1−θ′2 |E1|θ′1]θ3

= |E1|(1−θ)(1−θ3)+θ3 · |E2|α2(1−θ1)+θ1 · |E3|α3(1−θ2)+θ2 · 2−ud · 2−vd′

where u, v are both positive numbers depending on all these parameters and
also on N .

Now, if one takes θ1 very close to 0 and α2, α3 very close to 1, one
can then define 1/p1 := (1 − θ)(1 − θ3) + θ3, 1/p2 := α2(1 − θ1) + θ1 and
1/p3 := α3(1 − θ2) + θ2 and they can be chosen as close as we want to the
point (1, 1, 1).

In the end, one can sum over d, d′ ≥ 0 if our constant N is big enough.

A similar argument proves the desired estimates for T ∗1
1 and T ∗1

1,k0
near

the points A11 and A12.
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7. Estimates for T ∗3
1 and T ∗3

1,k0
near A31 and A32

The proof uses similar ideas as in the argument in the previous section.

Let (p1, p2, p3, p4) so that (1/p1, 1/p2, 1/p3, 1/p4) ∈ D and is arbitrarily
close to either A31 or A32. Consider E1, E2, E3, E4 ⊆ R measurable sets of
finite measure and assume as before that |E3| = 1. Our task is to construct
a subset E ′

3 ⊆ E3 with |E ′
3| ∼ 1 so that

(7.1) |Λ1(f1, f2, f3, f4)|, |Λ1,k0(f1, f2, f3, f4)| � |E1|1/p1|E2|1/p2|E4|1/p4

for every fi ∈ X(Ei), i = 1, 2, 4 and f3 ∈ X(E ′
3).

Define the exceptional set

Ω :=

{
M

(
χE1

|E1|
)

> C

}
∪
{

M

(
χE2

|E2|
)

> C

}
∪
{

M

(
χE4

|E4|
)

> C

}
and then set E ′

3 := E3 \ Ω for a sufficiently large constant C > 0.

With the same notations as in Section 6, we obtain the estimates (this
time there is no need to decompose I1 as there)

sizej

1,J d
1
((a

(1)
J )J) � 2dα2 |E2|α2,

sizej

2,J d
1
((a

(2)
J )J) � 2−Nd,

sizej

3,J d
1
((a

(3)
J )J), sizej

3,k0J d
1
((a

(3)
J,k0

)J) � (2dα1 |E1|α1)1−θ(2dα4 |E4|α4)θ

and similarly,

energyj

1,J d
1
((a

(1)
J )J) � |E2|,

energyj

2,J d
1
((a

(2)
J )J) � 1,

energyj

3,J d
1
((a

(3)
J )J), energyj

3,k0J d
1
((a

(3)
J,k0

)J) � |E1|�θ1 |E4|�θ2

whenever 0 ≤ α1, α2, α4 ≤ 1, 0 < θ < 1 and 0 ≤ θ̃1, θ̃2 < 1 with θ̃1 + θ̃2 = 1.

Then, by applying Proposition 5.5 we obtain the following estimates for
the left hand side of (7.1)

(2dα2 |E2|α2)1−θ1(2−Nd)1−θ2[(2d|E1|)1−θ(2d|E4|)θ]1−θ3 |E2|θ1 [|E1|�θ1|E4|�θ2]θ3

= |E1|(1−θ)(1−θ3)+�θ1θ3 · |E2|α2(1−θ1)+θ1 · |E4|θ(1−θ3)+�θ2θ3 · 2−ud

where again u is a positive number depending on all these parameters.
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Then, we define 1/p1 := (1−θ)(1−θ3)+ θ̃1θ3, 1/p2 := α2(1−θ1)+θ1 and

1/p4 := θ(1−θ3)+ θ̃2θ3 and since (1−θ)(1−θ3)+ θ̃1θ3 +θ(1−θ3)+ θ̃2θ3 = 1,
one can easily check that p2 can be chosen very close to 1 (by choosing α2

close to 1) and the pair (1/p1, 1/p4) very close either to (0, 1) or (1, 0) which
is what we wanted. And in the end we sum over d ≥ 0 since u remains
positive if we chose N big enough.

A similar argument proves the required estimates for the operators T ∗2
1

and T ∗2
1,k0

near A21 and A22.

8. Proof of Proposition 5.5

This section is devoted to the proof of Proposition 5.5. As we pointed
out earlier, this proposition is a more abstract version of the correspond-
ing Proposition 3.6 in [11]. Its proof is similar and we include it here for
completeness and also for the reader’s convenience.

Proposition 8.1 Let J be a finite family of dyadic intervals, J ′ a subset
of J , i = 1, 2, 3, n0 ∈ Z and assume that

sizej
i,J ′((a

(i)
J )J) ≤ 2−n0energyj

i,J ((a
(i)
J )J).

Then, there exists a decomposition J ′ = J ′′ ∪ J ′′′ such that

(8.1) sizej
i,J ′′((a

(i)
J )J) ≤ 2−n0−1energyj

i,J ((a
(i)
J )J)

and so that J ′′′ can be written as a disjoint union of subsets T ∈ T such that
for every T ∈ T there exists a dyadic interval JT ∈ J having the property
that every J ∈ T satisfies J ⊆ JT and also such that

(8.2)
∑
T∈T

|JT | � 2n0.

Proof Case 1: i = j. First, chose an interval J ∈ J ′ having the property
that |J | is as big as possible and so that

(8.3)
|a(i)

J |
|J | > 2−n0−1energyj

i,J ((a
(i)
J )J).

Then, collect all the intervals J ′ ∈ J ′ with J ′ ⊆ J into a set called T .
After this, define JT := J and look at the remaining intervals in J ′ \ T and
repeat the procedure. Since there are finitely many such dyadic intervals,
the procedure ends after finitely many steps producing the subsets T ∈ T.
Define J ′′′ := ∪T∈TT and J ′′ := J \ J ′′′. Now clearly, by construction, the
inequality (8.1) is satisfied and it only remains to check (8.2).
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Since the intervals (JT )T∈T are all disjoint by construction, we deduce
from (8.3) and Definition 5.2 that

2−n0energyj
i,J ((a

(i)
J )J)(

∑
T∈T

|JT |) � energyj
i,J ((a

(i)
J )J)

which is equivalent to our desired estimate (8.2).

Case 2: i 
= j. The procedure of selecting the intervals is very similar.
The only difference is that this time, we pick intervals J ′ ∈ J ′ so that |J | is
again as big as possible, but having the property that

1

|J |

∥∥∥∥∥
( ∑

J ′∈J ;J ′⊆J

|a(i)
J ′ |2
|J ′| χJ ′(x)

)1/2 ∥∥∥∥∥
1,∞

> 2−n0−1energyj
i,J ((a

(i)
J )J).

After this the argument is identical to the one we described before. �
Similarly, we also have

Proposition 8.2 Using the same notations as in the previous Proposition 8.1,
assume that

sizej
3,k0,J ′((a

(3)
J )J) ≤ 2−n0energyj

3,k0,J ((a
(3)
J )J).

Then, there exists a decomposition J ′ = J ′′ ∪ J ′′′ as before, such that

(8.4) sizej
3,k0,J ′′((a

(3)
J )J) ≤ 2−n0−1energyj

3,k0,J ((a
(3)
J )J)

and so that J ′′′ can be written as a disjoint union of subsets T ∈ T such that
for every T ∈ T there exists a dyadic interval JT ∈ J having the property
that every J ∈ T satisfies J ⊆ JT and also such that

(8.5)
∑
T∈T

|JT | � 2n0.

By iterating these two propositions, we obtain the following corollaries.

Corollary 8.3 Let i = 1, 2, 3 and J be a finite family of dyadic intervals.
Then, there exists a partition

J =
⋃
n∈Z

J n,i

such that for every n ∈ Z we have

sizej
i,J n,i((a

(i)
J )J) ≤ min(2−nenergyj

i,J ((a
(i)
J )J), sizej

i,J ((a
(i)
J )J)).

Also, we can write each J n,i as a disjoint union of subsets T ∈ Ti
n as before,

having the property that ∑
T∈Ti

n

|JT | � 2n.
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Corollary 8.4 Let J be a finite family of dyadic intervals. Then, there
exists a partition

J =
⋃
n∈Z

J n

such that for every n ∈ Z we have

sizej
3,k0,J n((a

(3)
J )J) ≤ min(2−nenergyj

3,k0,J ((a
(3)
J )J), sizej

3,k0,J ((a
(3)
J )J)).

Also, we can write each J n as a disjoint union of subsets T ∈ Tn as before,
having the property that ∑

T∈Tn

|JT | � 2n.

Having all these decompositions available, we can now start the actual
proof of Proposition 5.5. We will only present the proof of the first inequal-
ity (5.3), the proof of (5.4) being similar.

As in [11], since j is fixed anyways, we will write for simplicity Si :=

sizej
i,J ((a

(i)
J )J) and Ei := energyj

i,J ((a
(i)
J )J), for i = 1, 2, 3. If we apply

Corollary 8.3 to our collection J , we obtain a decomposition

J =
⋃
n

J n,i

such that each J n,i can be written as a union of subsets in Ti
n with the

properties described in Corollary 8.3. Consequently, one can estimate the
left hand side of our inequality (5.3) as

(8.6)
∑

n1,n2,n3

∑
T∈Tn1,n2,n3

∑
J∈T

1

|J |1/2
|a(1)

J ||a(2)
J ||a(3)

J |

where Tn1,n2,n3 := T1
n1

∩ T2
n2

∩T3
n3

.

Fix such a T and look at the corresponding inner term in (8.6). It can
be estimated by

sup
J∈T

|a(j)
J |

|J |1/2

∏
i�=j

(∑
J∈T

|a(i)
J |2
)1/2

= sup
J∈T

|a(j)
J |

|J |1/2

(∏
i�=j

1

|JT |1/2

(∑
J∈T

|a(i)
J |2
)1/2

)
|JT |

�
( 3∏

i=1

sizej
i,T ((a

(i)
J )J)

)
|JT |,

by also using the John-Nirenberg inequality in Lemma 5.3.
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In particular, we can estimate (8.6) further by

(8.7) E1E2E3

∑
n1,n2,n3

2−n12−n22−n3

∑
T∈Tn1,n2,n3

|IT |

where, according to the same Corollary 8.3, the summation goes over those
n1, n2, n3 ∈ Z having the property that

(8.8) 2−nj � Sj

Ej
.

On the other hand, Corollary 8.3 allows us to estimate the inner sum in (8.7)
in three different ways, namely∑

T∈Tn1,n2,n3

|IT | � 2n1, 2n2, 2n3

and so, as a consequence, we can also write

(8.9)
∑

T∈Tn1,n2,n3

|IT | � 2n1θ12n2θ22n3θ3

whenever 0 ≤ θ1, θ2, θ3 < 1 with θ1 + θ2 + θ3 = 1. Using (8.9) and (8.8), one
can estimate (8.7) again by

E1E2E3

∑
n1,n2,n3

2−n1(1−θ1)2−n2(1−θ2)2−n3(1−θ3)

� E1E2E3

(S1

E1

)1−θ1
(S2

E2

)1−θ2
(S2

E2

)1−θ3

=

3∏
j=1

S
1−θj

j

3∏
j=1

E
θj

j ,

and this ends the proof.

9. Proof of Lemma 5.8

Case I: Estimates for sizej
3,J ((a(3))J).

These are essentially known (see [8]). We include a slightly different
proof here for completeness and also since the same argument has enough
flexibility to also handle the case of sizej

3,k0,J ((a(3))J) later on. There are
two subcases.

Case I1: j 
= 3.

Fix J0 ∈ J . Clearly, to prove our estimates it is enough to show that

(9.1)

∥∥∥∥( ∑
J⊆J0

|a(3)
J |2
|J | χJ(x)

)1/2∥∥∥∥
1,∞

� ‖f3χ̃
N
J0
‖p · ‖f4χ̃

N
J0
‖q

whenever 1 < p, q < ∞ with 1/p + 1/q = 1.
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Let us now recall that a
(3)
J is defined by

(9.2) a
(3)
J :=

〈 ∑
I∈I1;ω3

J∩ω2
I �=∅;|ω3

J |≤|ω2
I |

1

|I|1/2
〈f1, Φ

1
I〉〈f4, Φ

3
I〉Φ2

I , Φ
3
J

〉
.

Define the collection Ĩ to be the set of all dyadic intervals I ∈ I1 for which
there exists J ∈ J with the property that ω3

J ∩ ω2
I 
= ∅ and |ω3

J | ≤ |ω2
I |. We

claim that

(9.3) a
(3)
J = 〈B(f1, f4), φ

3
J〉

where B(f1, f4) is defined by

(9.4) B(f1, f4) :=
∑
I∈�I

1

|I|1/2
〈f1, Φ

1
I〉〈f4, Φ

3
I〉Φ2

I(x).

To check the claim, let us observe that for each I ∈ Ĩ

〈Φ2
I , Φ

3
J〉 
= 0 iff ω3

J ∩ ω2
I 
= ∅.

There are two possibilities: either |ω3
J | ≤ |ω2

I | which is acceptable by (9.2),
or |ω2

I | < |ω3
J |. We then make the claim that this last situation cannot occur.

Indeed, since ω2
I is symmetric with respect to the origin, that would imply

that 0 ∈ 3ω3
J which is clearly false, since by Definition 3.2 one has 0 /∈ 5ω3

J .

Using now (9.3) together with Lemma 5.4 it follows that to prove (9.1)
it is enough to prove that

(9.5)
∥∥B(f1, f4)χ̃

N ′
J0

∥∥
1

�
∥∥f3χ̃

N
J0

∥∥
p
· ∥∥f4χ̃

N
J0

∥∥
q

By scaling invariance, we may assume without loss of generality that |J0|=1.
Our plan is to prove a slightly weaker version of (9.5), namely to prove that

(9.6)
∥∥B(f1, f4)χJ

∥∥
1

�
∥∥f3χ̃

N
J

∥∥
p
· ∥∥f4χ̃

N
J

∥∥
q

for every dyadic interval J ⊆ R of length 1. We now prove that if we
assume (9.6) then (9.5) follows quite easily.

To see this, consider a partition of the real line with disjoint intervals of
length 1 (Jn)n∈Z∗ so that ( ⋃

n∈Z∗
Jn

)
∪ J0 = R.
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Then, estimate the left hand side of (9.5) by∥∥B(f1, f4)χ̃
N ′
J0

∥∥
1

�
∥∥B(f1, f4)χJ0

∥∥
1
+
∑
n∈Z∗

∥∥B(f1, f4)χ̃
N ′
J0

χJn

∥∥
1

�
∥∥B(f1, f4)χJ0

∥∥
1
+
∑
n∈Z∗

1

|n|N ′
∥∥B(f1, f4)χJn

∥∥
1
.

The first term clearly satisfies the desired estimates. The second one can be
further majorized using (9.6) by

∑
n∈Z∗

1

|n|N ′ ‖f1χ̃
N ′′
Jn

‖p · ‖f4χ̃
N ′′
Jn

‖q

�
(∑

n∈Z∗

1

|n|N ′ ‖f1χ̃
N ′′
Jn

‖p
p

)1/p

·
(∑

n∈Z∗

1

|n|N ′ ‖f4χ̃
N ′′
Jn

‖q
q

)1/q

�
(∫

R

|f1|p
(∑

n∈Z∗

1

|n|N ′ χ̃
pN ′′
Jn

)
dx

)1/p

·
(∫

R

|f4|q
(∑

n∈Z∗

1

|n|N ′ χ̃
qN ′′
Jn

)
dx

)1/q

� ‖f1χ̃
N
J0
‖p · ‖f1χ̃

N
J0
‖q

if N ′ is big enough. It remains to prove (9.6).

Case I1a: suppf1, suppf4 ⊆ 5J .

In this case, our inequality (9.6) follows from the known estimates on
discrete paraproducts (see for instance [11]).

Case I1b: Either suppf1 ⊆ (5J)c or suppf4 ⊆ (5J)c.

Assume for instance that suppf1⊆(5J)c. Then, we decompose B(f1,f4) as

B(f1, f4) = B′(f1, f4) + B′′(f1, f4)

where

B′(f1, f4) :=
∑

I∈�I;I∩5J �=∅

1

|I|1/2
〈f1, Φ

1
I〉〈f4, Φ

3
I〉Φ2

I

and

B′′(f1, f4) :=
∑

I∈�I;I∩5J=∅

1

|I|1/2
〈f1, Φ

1
I〉〈f4, Φ

3
I〉Φ2

I

By our reduction (|J0| = 1) we observe that the lengths of our intervals I
are all smaller than 1.
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For h ∈ L∞, ‖h‖∞ ≤ 1 one can write∣∣∣ ∫
R

B′(f1, f4)(x)h(x)χJ (x)dx
∣∣∣

�
∑

I∈�I;I∩5J �=∅

1

|I|1/2
|〈f1, Φ

1
I〉||〈f4, Φ

3
I〉||〈hχJ , Φ2

I〉|

=
∞∑

k=0

∑
I∈�I;I∩5J �=∅;|I|=2−k

2k/2|〈f1, Φ
1
I〉||〈f4, Φ

3
I〉||〈hχJ , Φ2

I〉|

=
∞∑

k=0

∑
I∈�I;I∩5J �=∅;|I|=2−k

22k|〈f1, 2
−k/2Φ1

I〉||〈f4, 2
−k/2Φ3

I〉||〈hχJ , 2−k/2Φ2
I〉|(9.7)

and observe that all the functions 2−k/2Φ1
I , 2−k/2Φ3

I and 2−k/2Φ2
I are L∞-

normalized. Then, we estimate (9.7) by

∞∑
k=0

22k

(
sup

I∩5J �=∅;|I|=2−k

|〈f1, 2
−k/2Φ1

I〉|
)(

sup
I∩5J �=∅;|I|=2−k

|〈f4, 2
−k/2Φ3

I〉|
)

×
∣∣∣〈hχJ ,

∑
I∈�I;I∩5J �=∅;|I|=2−k

χ̃N
I 〉
∣∣∣

�
∞∑

k=0

22k2−100k‖f1χ̃
N
J ‖1 · ‖f4χ̃

N
J ‖1 � ‖f1χ̃

N
J ‖p · ‖f4χ̃

N
J ‖q.

Similarly, one can also write∣∣∣∫
R

B′′(f1, f4)(x)h(x)χJ (x)dx
∣∣∣

�
∑

I∈�I;I∩5J=∅

1

|I|1/2
|〈f1, Φ

1
I〉||〈f4, Φ

3
I〉||〈hχJ , Φ2

I〉|

=
∞∑

k=0

∑
I∈�I;I∩5J=∅;|I|=2−k

22k|〈f1, 2
−k/2Φ1

I〉||〈f4, 2
−k/2Φ3

I〉||〈hχJ , 2−k/2Φ2
I〉|

�
∞∑

k=0

22k
∑

I∈�I;I∩5J=∅;|I|=2−k

dist(I, J)2N‖f1χ̃
N
J ‖1 · ‖f4χ̃

N
J ‖1 · (dist(I, J)

|I| )−N ′

� ‖f1χ̃
N
J ‖p · ‖f4χ̃

N
J ‖q ·

∞∑
k=0

2−(N ′−2)k
∑

I∈�I;I∩5J=∅;|I|=2−k

(dist(I, J))−(N ′−2N).(9.8)
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Now, if N ′ is much bigger than 2N then the inner sum in (9.8) is smaller than

∞∑
n=0

1

(1 + n2−k)N ′−2N
= 2k(N ′−2N)

∞∑
n=0

1

(2k + n)N ′−2N

� 2k(N ′−2N)

∫ ∞

2k

1

xN ′−2N
dx � 2k

and this makes the geometric series in (9.8) convergent. We are then left
with Case I2 when j = 2 but this clearly follows by the same arguments.

Case II: Estimates for sizej
3,k0,J ((a

(3)
J )).

The argument follows the same ideas as before. There are several sub-
cases.

Case II1: j 
= 3.

Fix as before J0 ∈ J . Clearly, to prove our estimates it is enough to
show that

(9.9)

∥∥∥∥( ∑
J⊆J0

|a(3)
J,k0

|2
|J | χJ(x)

)1/2
∥∥∥∥

1,∞
� ‖f3χ̃

N
J0
‖p · ‖f4χ̃

N
J0
‖q

whenever 1 < p, q < ∞ with 1/p + 1/q = 1. Let us now recall that a
(3)
J,k0

is
defined by the formula

(9.10) a
(3)
J :=

〈 ∑
I∈I1;ω3

J∩ω2
I �=∅;2k0 |ω3

J |∼|ω2
I |

1

|I|1/2
〈f1, Φ

1
I〉〈f4, Φ

3
I〉Φ2

I , Φ
3
J

〉
.

Since the frequency intervals ω2
I and ω3

J depend only on the scales |I| and |J |
respectively (see Section 3) it follows that by a certain refinement we can
assume that given |J | there exists only one |I| so that ω3

|J | ∩ ω2
|I| 
= ∅ and

2k0|ω3
|J || ∼ |ω2

|I||. Fix now such a pair of dyadic intervals I and J . Then, by
Plancherel, we have

(9.11) 〈Φ2
I , φ

3
J〉 = 〈Φ̂2

I , φ̂3
J〉.

Since |J | ∼ 2k0|I|, pick a Schwartz function Ψ|I|,k0
so that suppΨ̂|I|,k0

⊆ 2ω3
|J |

and Ψ̂|I|,k0 ≡ 1 on ω3
|J |.

Then, (9.11) equals

〈Φ̂2
I , φ̂

3
J · Ψ̂|I|,k0

〉 = 〈 ̂Φ2
I ∗ Ψ|I|,k0

, Φ̂3
J〉

= 2−k0/2〈 ̂2k0/2Φ2
I ∗ Ψ|I|,k0, Φ̂

3
J〉 = 2−k0/2〈Φ̃2

I , Φ
3
J〉
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where

Φ̃2
I := 2k0/2Φ2

I ∗ Ψ|I|,k0

and it is not difficult to observe that Φ̃2
I is an L2- normalized bump adapted

to Ĩ, where Ĩ is the unique dyadic interval of length 2k0 |I| which contains I.

We also observe that for different scales, the supports of
̂̃
Φ2

I are disjoint.

Because of all these properties, we now observe that

(9.12) a
(3)
J,k0

= 〈B̃k0(f1, f4), Φ
3
J〉

where

B̃k0(f1, f4) := 2−k0/2
∑

I

1

|I|1/2
〈f1, Φ

1
I〉〈f4, Φ

3
I〉Φ̃2

I .

As before, using now (9.12) together with lemma 5.4 it follows that to
prove (9.9) we just need to prove that

(9.13) ‖B̃k0(f1, f4)χ̃
N ′
J0
‖1 � ‖f3χ̃

N
J0
‖p · ‖f4χ̃

N
J0
‖q

By scaling invariance, we may assume also as before that |J0| = 1 and

observe that then, for every I one has |Ĩ| ≤ 1. Then, an argument similar
to the one before allows us to reduce (9.13) to

(9.14) ‖B̃k0(f1, f4)χJ‖1 � ‖f3χ̃
N
J ‖p · ‖f4χ̃

N
J ‖q

for every dyadic interval J ⊆ R of length 1. It is thus sufficient to prove (9.14).
We have, as before, several cases.

Case II1a: suppf1, suppf4 ⊆ 5J .

Let h ∈ L∞, ‖h‖∞ ≤ 1. Then,∣∣∣ ∫
R

B̃k0(f1, f4)(x)h(x)χJ (x)dx
∣∣∣

� 2−k0/2
∑

I

1

|I|1/2
|〈f1, Φ

1
I〉||〈f4, Φ

3
I〉||〈hχJ , Φ̃2

I〉|

=
∑

I

|〈f1, Φ
1
I〉||〈f4, Φ

3
I〉|

|〈hχJ , Φ̃2
I〉|

2k0/2|I|1/2

and since now
�Φ2

I

2k0/2|I|1/2 is L1- normalized, the previous expression is smaller
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than∑
I

|〈f1, Φ
1
I〉||〈f4, Φ

3
I〉| =

∑
I

|〈f1, Φ
1
I〉|

|I|1/2

|〈f4, Φ
3
I〉|

|I|1/2
· |I|

=

∫
R

∑
I

|〈f1, Φ
1
I〉|

|I|1/2

|〈f4, Φ
3
I〉|

|I|1/2
χI(x)dx

�
∫

R

(∑
I

|〈f1, Φ
1
I〉|2

|I| χI(x)

)1/2

·
(∑

I

|〈f4, Φ
3
I〉|2

|I| χI(x)

)1/2

dx

�
∫

R

S(f1)(x) · S(f4)(x)dx � ‖S(f1)‖p · ‖S(f4)‖q

� ‖f1‖p · ‖f4‖q � ‖f1χ̃
N
J ‖p · ‖f4χ̃

N
J ‖q

using the fact that the square functions S(f1) and S(f4) are bounded on Lr

for 1 < r < ∞ and also the fact that we are in the Case II1a.

Case II1b: Either suppf1 ⊆ (5J)c or suppf4 ⊆ (5J)c

Assume as before that suppf1 ⊆ (5J)c. Then, decompose B̃k0(f1, f4) as

B̃k0(f1, f4) = B̃′
k0

(f1, f4) + B̃′′
k0

(f1, f4)

where

B̃′
k0

(f1, f4) := 2−k0/2
∑
�I∩5J �=∅

1

|I|1/2
〈f1, Φ

1
I〉〈f4, Φ

3
I〉Φ̃2

I

and

B̃′′
k0

(f1, f4) := 2−k0/2
∑
�I∩5J=∅

1

|I|1/2
〈f1, Φ

1
I〉〈f4, Φ

3
I〉Φ̃2

I .

If h is as before, then we can write again∣∣∣ ∫
R

B̃′
k0

(f1, f4)(x)h(x)χJ(x)dx
∣∣∣ � 2−k0

∞∑
k=0

∑
I;�I∩5J �=∅;|I|=2−k

22k|〈f1, 2
−k/2Φ1

I〉|

× |〈f4, 2
−k/2Φ3

I〉||〈hχJ , 2k0/22−k/2Φ̃2
I〉|

(9.15)

and we observe that the functions 2−k/2Φ1
I , 2−k/2Φ3

I and 2k0/22−k/2Φ̃2
I are all

L∞-normalized. Then, we estimate (9.15) by

2−k0

∞∑
k=0

22k

(
sup

I:�I∩5J �=∅;|I|=2−k

|〈f1, 2
−k/2Φ1

I〉|
)(

sup
I:�I∩5J �=∅;|I|=2−k

|〈f4, 2
−k/2Φ3

I〉|
)

×
∣∣∣∣〈hχJ ,

∑
I:�I∈�I;I∩5J �=∅;|I|=2−k

χ̃N
�I

〉∣∣∣∣.
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Since ∣∣∣∣〈hχJ ,
∑

I:�I∈�I;I∩5J �=∅;|I|=2−k

χ̃N
I

〉∣∣∣∣ � 2k0,

the estimate follows as in the previous Case I1b.
Finally, one can also write∣∣∣ ∫

R

B̃′′
k0

(f1, f4)(x)h(x)χJ (x)dx
∣∣∣

�
∑

I:�I∩5J=∅

1

|I|1/2
|〈f1, Φ

1
I〉||〈f4, Φ

3
I〉||〈hχJ , Φ̃2

I〉|

=
∑

I:�I∩5J=∅
|〈f1, Φ

1
I〉||〈f4, Φ

3
I〉|

|〈hχJ , Φ̃2
I〉|

2k0/2|I|1/2

�
∑

K:K∩5J=∅

∑
I:�I=K

|〈f1, Φ
1
I〉||〈f4, Φ

3
I〉|

|〈hχJ , χ̃N
K〉|

|K|

�
∑

K:K∩5J=∅

(
dist(K, J)

|K|
)−N ′ ∑

I:�I=K

|〈f1, Φ
1
I〉||〈f4, Φ

3
I〉|

�
∑

K:K∩5J=∅

(
dist(K, J)

|K|
)−N ′∫

R

(∑
I:�I=K

|〈f1,Φ
1
I〉|2

|I| χI(x)

)1/2

·
(∑

I:�I=K

|〈f4,Φ
3
I〉|2

|I| χI(x)

)1/2

dx

�
∑

K:K∩5J=∅

(
dist(K, J)

|K|
)−N ′

‖f1χ̃
N
K‖p · ‖f4χ̃

N
K‖q

by using Lemma 5.4. And this can be estimated further by

∑
K:K∩5J=∅

(
dist(K, J)

|K|
)−N ′

(dist(K, J)2N‖f1χ̃
N
J ‖p · ‖f4χ̃

N
J ‖q.

As in the Case I1b one observes that the sum

∑
K:K∩5J=∅

(
dist(K, J)

|K|
)−N ′

(dist(K, J)2N

is O(1) if N ′ is much bigger than 2N and so we obtain in the end the desired
estimate.

Case II2: j = 3.

This is actually easier, follows the same ideas and is left to the reader.
This completes the proof of Lemma 5.8.
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10. Proof of Lemma 5.9

We are therefore left with proving Lemma 5.9 in order to complete the proof
of our main theorem.

Case I: Estimates for energyj
3,J ((a(3))J).

There are, as before, two subcases.

Case I1: j 
= 3.

Let n ∈ Z and D be so that the suppremum in Definition 5.2 is attained.
Then, since the intervals J ∈ D are all disjoint, we can write

energyj
3,J ((a(3))J) ∼ 2n(

∑
J∈D

|J |) = 2n‖
∑
J∈D

χJ‖1 = ‖
∑
J∈D

2nχJ‖1,∞

�
∥∥∥∥∥∑

J∈D

1

|J |
∥∥∥∥(∑

J ′⊆J

|a(3)
J ′ |2
|J ′| χJ ′(x)

)1/2∥∥∥∥
1,∞

χJ

∥∥∥∥∥
1,∞

.(10.1)

As in Section 9, define the collection Ĩ to be the set of all intervals I having
the property that there exists J ∈ D and J ′ ⊆ J with ω3

J ′ ∩ ω2
I 
= ∅ and

|ω3
J ′| ≤ |ω2

I |. Then, we observe as before that

(10.2) a
(3)
J ′ = 〈B(f1, f4), Φ

3
J ′〉

where B(f1, f4) was defined by (9.3). Using this fact together with Lemma 5.4
one can majorize (10.1) by∥∥∥∥∑

J∈D

(
1

|J |
∫

R

|B(f1, f4)|χ̃N
J dx

)
χJ

∥∥∥∥
1,∞

�
∥∥∥M(B(f1, f4))

∥∥∥
1,∞

�
∥∥∥B(f1, f4)

∥∥∥
1

�
∑
I∈�I

1

|I|1/2
|〈f1, Φ

1
I〉||〈f4, Φ

3
I〉||〈h, Φ2

I〉|(10.3)

for a certain h ∈ L∞, ‖h‖∞ ≤ 1. Since
Φ2

I

|I|1/2 is an L1-normalized function,

it follows that (10.3) is smaller than

(10.4)
∑
I∈�I

|〈f1, Φ
1
I〉||〈f4, Φ

3
I〉|.

Since both of the families (Φ1
I)I and (Φ3

I)I are lacunary, by a similar argu-
ment used to prove Proposition 5.5, one can estimate the expression (10.4) by(

size1,�I((〈f1, Φ
1
I〉)I)

)1−θ1
(
size2,�I((〈f1, Φ

3
I〉)I)

)1−θ2

×
(
energy1,�I((〈f1, Φ

1
I〉)I)

)θ1
(
energy2,�I((〈f1, Φ

3
I〉)I)

)θ2

(10.5)
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for any 0≤θ1,θ2 <1 with θ1+θ2=1 where size1,�I((〈f1,Φ
1
I〉)I), size2,�I((〈f1,Φ

3
I〉)I),

energy1,�I((〈f1, Φ
1
I〉)I) and energy2,�I((〈f1, Φ

3
I〉)I) are naturally defined as in

Definition 5.2.
Using now the upper bounds for sizes and energies provided by Lem-

mas 5.6 and 5.7, (10.5) can be estimated by(
sup

I

∫
E1

χ̃N
I dx

)1−θ1
(

sup
I

∫
E1

χ̃N
I dx

)1−θ2

|E1|θ1 |E4|θ4

which is the desired estimate.

Case I2: j = 3.

This is easier. Pick again n ∈ Z and D so that the suppremum in
Definition 5.2 is attained. Then,

energy3
3,J ((a(3))J) ∼ 2n

(∑
J∈D

|J |
)

= 2n
∥∥∥∑

J∈D

χJ

∥∥∥
1

=
∥∥∥∑

J∈D

2nχJ

∥∥∥
1,∞

�
∥∥∥∥∥∑

J∈D

(
1

|J |
∫

R

∣∣∣ ∑
I:ω3

J∩ω2
I �=∅;|ω3

J |≤|ω2
I |

1

|I|1/2
〈f1, Φ

1
I〉〈f4, Φ

3
I〉Φ2

I

∣∣∣χ̃N
J dx

)
χJ

∥∥∥∥∥
1,∞

�
∥∥∥∥∥∑

J∈D

(
1

|J |
∫

R

(∑
I

|〈f1, Φ
1
I〉||〈f4, Φ

3
I〉|

χ̃N ′
I

|I|
)
χ̃N

J dx

)
χJ

∥∥∥∥∥
1,∞

�
∥∥∥∥∥M(∑

I

|〈f1, Φ
1
I〉||〈f4, Φ

3
I〉|

χ̃N ′
I

|I|
)∥∥∥∥∥

1,∞

�
∥∥∥∥∥∑

I

|〈f1, Φ
1
I〉||〈f4, Φ

3
I〉|

χ̃N ′
I

|I|

∥∥∥∥∥
1

�
∑

I

|〈f1, Φ
1
I〉||〈f4, Φ

3
I〉|

and from here we can continue as before.
To obtain the estimates for energyj

3,k0,J ((a(3))J), one argues in the same
way. The j = 3 case is identical to the corresponding previous one, while
j 
= 3 follows also similarly. The only difference is that instead of (9.3) one

has to use (9.12) and then to observe that for every interval I,
�Φ2

I

2k0/2|I|1/2 is

an L1-normalized function. This ends our proof.
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